
Résultats récents sur deux problèmes anciens

Jean Berstel

Institut Gaspard-Monge, Université Paris-Est

Créteil, 15 juin 2009

Berstel (IGM) Old and New 15 juin 2009 1 / 18

Outline

1 Hopcroft’s algorithm
Éléments d’algorithmique
Minimal automata
History
The algorithm

2 Tiling by Translation
Exact Polyominoes
Pseudosquares

Berstel (IGM) Old and New 15 juin 2009 2 / 18

Hopcroft’s algorithm Éléments d’algorithmique

C’est dans ce livre qu’est paru la
première rédaction (et la seule à ce
jour, je crois), à l’usage des étudiants
d’université, de l’algorithme de
Hopcroft.

Cette rédaction a été faite par Danièle
Beauquier.

Berstel (IGM) Old and New 15 juin 2009 3 / 18

Hopcroft’s algorithm Minimal automata

Automata

1

2

5

3

6

4

0

a

b

a

b

a

b

a

b

a

b

a

b

a, b

Each state q defines a language
Lq = {w | q · w is final}.

The automaton is minimal if all languages Lq are
distinct.

Here L2 = L4. States 2 and 4 are (Nerode)
equivalent.

The Nerode equivalence is the coarsest partition
that is compatible with the next-state function.

Refinement algorithm

Starts with the partition into two classes 05 and 12346.
Tries to refine by splitting classes which are not compatible with the next-state function.
A first refinement: 12346→ 1234|6 because 6 · a is final.
A second refinement: 05→ 0|5 because of 0 · a is final.

Berstel (IGM) Old and New 15 juin 2009 4 / 18

Hopcroft’s algorithm History

History of Hopcroft’s algorithm

History

Hopcroft has developed in 1970 a minimization algorithm that runs in time O(n log n) on an
n state automaton (discarding the alphabet).

No faster algorithm is known for general automata.

Question

Question: is the time estimation sharp ?

A first answer, by Berstel and Carton: there exist automata where you need Ω(n log n) steps
if you are “unlucky”. These are related to De Bruijn words.

A better answer, by Castiglione, Restivo and Sciortino: there exist automata where you need
always Ω(n log n) steps. These are related to Fibonacci words.

The same holds for all Sturmian words whose directive sequence have bounded geometric
means.

Berstel (IGM) Old and New 15 juin 2009 5 / 18

Hopcroft’s algorithm History

Splitter

A = (Q, i ,F) automaton on the alphabet A. Let P be a partition of Q.

Definition

A splitter is a pair (P, a), with P ∈ P and a ∈ A.

The aim of a splitter is to split another class of P.

Definition

The splitter (P, a) splits the class R ∈ P if

∅ (P ∩ R · a (R · a or equivalently if ∅ (a−1P ∩ R (R .

Here a−1P = {q | q · a ∈ P}.

Notation

In any case, we denote by (P, a)|R the partition of R composed of the nonempty sets among
a−1P ∩ R and R \ a−1P. The splitter (P, a) splits R if (P, a)|R 6= {R}.

Berstel (IGM) Old and New 15 juin 2009 6 / 18

Hopcroft’s algorithm History

Example

1

2

5

3

6

4

0

a

b

a

b

a

b

a

b

a

b

a

b

a, b

Partition P = 05 | 12346.

Splitter (05, a). One has a−105 = 06.

The splitter splits both 05 and 12346.

One gets

(05, a)|05 = 0 | 5 and (05, a)|12346 = 1234 | 6

Berstel (IGM) Old and New 15 juin 2009 7 / 18

Hopcroft’s algorithm The algorithm

Notation

P is the current partition. W is the waiting set.

Hopcroft’s algorithm

1: ⊲ The initial partitionP ← {F , F c}
2: for all a ∈ A do

3: ⊲ The initial waiting setAdd((min(F , F c), a),W)
4: while W 6= ∅ do

5: ⊲ takes some splitter in W and remove it(W , a)← TakeSome(W)
6: for each P ∈ P which is split by (W , a) do

7: ⊲ Compute the splitP′,P′′ ← (W , a)|P
8: ⊲ Refine the partitionReplace P by P′ and P′′ in P
9: for all ⊲ Update the waiting setb ∈ A do

10: if (P, b) ∈ W then

11: Replace (P, b) by (P′, b) and (P′′, b) in W
12: else

13: Add((min(P′, P′′), b),W)

Basic fact

Splitting all sets of the current partition by one splitter (C , a) has a total cost of Card(a−1C).

Berstel (IGM) Old and New 15 juin 2009 8 / 18

Tiling by Translation Exact Polyominoes

Polyominoes

History

Danièle Beauquier and Maurice Nivat have characterized those polyominoes that tile the
plane by tranlation On translating one polyomino to tile the plane Discrete Math. 1991.

The condition is a combinatorial property of circular words.

The complexity of checking whether this condition holds is still open.

In the particular case of socalled pseudo-squares, there exists a linear time algorithm,
developed by Srečko Brlek, Xavier Provençal, Jean-Marc Fédou On the tiling by translation

problem, Discrete Applied Math. 2009.

Berstel (IGM) Old and New 15 juin 2009 9 / 18

Tiling by Translation Exact Polyominoes

Exact polyominoes

Definition

A polyomino is a finite set of squares in the discrete plane which are simply 4-connected (without
wholes).

Example

Berstel (IGM) Old and New 15 juin 2009 10 / 18

Tiling by Translation Exact Polyominoes

Exact polyominoes

Definition

A polyomino is exact if it tiles the plane by translation.

Example

Berstel (IGM) Old and New 15 juin 2009 11 / 18

Tiling by Translation Exact Polyominoes

Boundary of a polyomino

Definition

The boundary of a polyomino is the circular word obtained by reading the the polygonal boundary
in counterclockwise manner and encoding it over the alphabet {a, ā, b, b̄}.

Example

The boundary is

aab̄ab̄ababbāāābāb̄āb̄

Berstel (IGM) Old and New 15 juin 2009 12 / 18

Tiling by Translation Exact Polyominoes

Theorem

Notation

We denote by ¯ the mapping defined by uv = v̄ ū for words u, v .

Theorem (Beauquier, Nivat)

A polyomino tiles the plane by translation if and only if its boundary admits a factorization of the

form u v w ū v̄ w̄ for some words u, v ,w.

Example

b

b

b

b

b

b

The boundary admits the factorization

aab̄ · ab̄a · bab · bāā · ābā · b̄āb̄

Berstel (IGM) Old and New 15 juin 2009 13 / 18

Tiling by Translation Pseudosquares

Searching for aBN-factorization

A naive algorithm

Given a word w of length n, do for each of the n conjugates of w

consider all n2 factorizations xyzstu with |x | = |s|, |y | = |t|, |z | = |u|.

check whether x = s̄, y = t̄, z = ū.

Each positive answer gives a BN-factorization. The complexity is O(n4).

An algorithm in O(n2) has been given by Gambini and Vuillon An algorithm for deciding if a

polyomino tiles the plane by translation2007.

Berstel (IGM) Old and New 15 juin 2009 14 / 18

Tiling by Translation Pseudosquares

Pseudo-square

Definition

A pseudo-square is a boundary that has a factorization of the form xy x̄ȳ for nonempty words x , y .

Note

A pseudo-polygon is a boundary with a factorization xyzx̄ȳ z̄ for nonempty words x , y , z .

Example (Pseudo-square and pseudo-polygon)

b

b

b

b

b

b

b

b

b

b

The first is a pseudo-square, and the second is a pseudo-polygon. BN-factorizations are

ab̄aa · bab · āābā · b̄āb̄ and aab̄ · ab̄a · bab · bāā · ābā · b̄āb̄

Berstel (IGM) Old and New 15 juin 2009 15 / 18

Tiling by Translation Pseudosquares

An algorithm for pseudo-square detection

A linear algorithm

An algorithm for pseudo-square detection that is linear in the length of the boundary has been
given by Brlek, Provençal and Fédou.
It uses in a clever way a preprocessing phase that allows to compute in contant time the longest
common extension of two words.

Notation

ρi (x) is the conjugate of x starting at position i (ρ0(x) = x).

Example

For x = aabbbaab, one has ρ4(x) = baabaabb.

Berstel (IGM) Old and New 15 juin 2009 16 / 18

Tiling by Translation Pseudosquares

Definition (Longest common right and left extension)

The longest common right (left) extension of x at position i and y at position j is the word
lcre(x , i , y , j) = ρi (x) ∧ ρj (y) (resp. lcle(x , i , y , j) = ρi (x) ∨ ρj (y)). Here u ∧ v (resp. u ∨ v) is
the longest common prefix (suffix) of u and v .

Example

For x = aabb · baab and y = babaabb · baabb, one has

lcre(x , 4, y , 7) = baabaabb ∧ baabbbabaabb = baab

and

lcle(x , 4, y , 7) = baabaabb ∨ baabbbabaabb = abaabb

Definition (Longest common extension)

The longest common extension of x at position i and y at position j is the word

lcle(x , i , y , j)lcre(x , i , y , j).

Example

For x = aabb · baab and y = babaabb · baabb, one has

lce(x , 4, y , 7) = abaabbbaab

Berstel (IGM) Old and New 15 juin 2009 17 / 18

Tiling by Translation Pseudosquares

BN-factorzation

Algorithm

Let w be a boundary of length n. For each j = 0, . . . , n − 1

Compute x = lce(w , 0, w̄ , j).

Locate x̄ in w and, if x and x̄ do not overlap, factorize w into w = xy x̄z .

check whether y = z̄ by checking whether lcre(w , k, w̄ , 0) = y , with k = |x |.

If the answer is positive, a pseudo-square factorization has been found.

Example

w = aab̄aabaabāābāāb̄āāb̄ = aab̄aabaabāābāāb̄āāb̄ = aab̄aabaabāābāāb̄āāb̄

w̄ = baabaab̄aab̄āāb̄āābāā = baabaab̄aab̄āāb̄āābāā = baabaab̄aab̄āāb̄āābāā

lce(w , 0, w̄ , 1) = aa and w = aab̄aabaabāābāāb̄āāb̄ bad.
lce(w , 0, w̄ , 4) = aab̄aa and w = aab̄aabaabāābāāb̄āāb̄ good!.
lce(w , 0, w̄ , 7) = b̄aab̄ and w = aab̄aabaabāābāāb̄āāb̄ good!.

Remark

Since the computation of the lce is in constant time, the algorithm is linear.

Berstel (IGM) Old and New 15 juin 2009 18 / 18

	Hopcroft's algorithm
	Éléments d'algorithmique
	Minimal automata
	History
	The algorithm

	Tiling by Translation
	Exact Polyominoes
	Pseudosquares

