Résultats récents sur deux problèmes anciens

Jean Berstel
Institut Gaspard-Monge, Université Paris-Est

Créteil, 15 juin 2009

Outline

(1) Hopcroft's algorithm

- Éléments d'algorithmique
- Minimal automata
- History
- The algorithm
(2) Tiling by Translation
- Exact Polyominoes
- Pseudosquares

Éléments d'algorithmique

D. BEAUQUIER J. BERSTEL Ph. CHRÉTIENNE

- C'est dans ce livre qu'est paru la première rédaction (et la seule à ce jour, je crois), à l'usage des étudiants d'université, de l'algorithme de Hopcroft.
- Cette rédaction a été faite par Danièle Beauquier.

Automata

Each state q defines a language $L_{q}=\{w \mid q \cdot w$ is final $\}$.

The automaton is minimal if all languages L_{q} are distinct.

Here $L_{2}=L_{4}$. States 2 and 4 are (Nerode) equivalent.

The Nerode equivalence is the coarsest partition that is compatible with the next-state function.

Refinement algorithm

Starts with the partition into two classes 05 and 12346.
Tries to refine by splitting classes which are not compatible with the next-state function.
A first refinement: $12346 \rightarrow 1234 \mid 6$ because $6 \cdot a$ is final.
A second refinement: $05 \rightarrow 0 \mid 5$ because of $0 \cdot a$ is final.

History of Hopcroft's algorithm

History

- Hopcroft has developed in 1970 a minimization algorithm that runs in time $O(n \log n)$ on an n state automaton (discarding the alphabet).
- No faster algorithm is known for general automata.

Question

- Question: is the time estimation sharp ?
- A first answer, by Berstel and Carton: there exist automata where you need $\Omega(n \log n)$ steps if you are "unlucky". These are related to De Bruijn words.
- A better answer, by Castiglione, Restivo and Sciortino: there exist automata where you need always $\Omega(n \log n)$ steps. These are related to Fibonacci words.
- The same holds for all Sturmian words whose directive sequence have bounded geometric means.

Splitter

$\mathcal{A}=(Q, i, F)$ automaton on the alphabet A. Let \mathcal{P} be a partition of Q.

Definition

A splitter is a pair (P, a), with $P \in \mathcal{P}$ and $a \in A$.

The aim of a splitter is to split another class of \mathcal{P}.

Definition

The splitter (P, a) splits the class $R \in \mathcal{P}$ if

$$
\emptyset \subsetneq P \cap R \cdot a \subsetneq R \cdot a \text { or equivalently if } \emptyset \subsetneq a^{-1} P \cap R \subsetneq R .
$$

Here $a^{-1} P=\{q \mid q \cdot a \in P\}$.

Notation

In any case, we denote by $(P, a) \mid R$ the partition of R composed of the nonempty sets among $a^{-1} P \cap R$ and $R \backslash a^{-1} P$. The splitter (P, a) splits R if $(P, a) \mid R \neq\{R\}$.

Example

- Partition $\mathcal{P}=05 \mid 12346$.
- Splitter $(05, a)$. One has $a^{-1} 05=06$.
- The splitter splits both 05 and 12346.
- One gets

$$
(05, a)|05=0| 5 \quad \text { and } \quad(05, a)|12346=1234| 6
$$

Notation

\mathcal{P} is the current partition. \mathcal{W} is the waiting set.

Hopcroft's algorithm

```
\(\mathcal{P} \leftarrow\left\{F, F^{c}\right\}\)
for all \(a \in A\) do
    \(\operatorname{ADD}\left(\left(\min \left(F, F^{c}\right), a\right), \mathcal{W}\right) \quad \triangleright\) The initial waiting set
while \(\mathcal{W} \neq \emptyset\) do
    \((\mathcal{W}, a) \leftarrow \operatorname{TAKESOME}(\mathcal{W}) \quad \triangleright\) takes some splitter in \(\mathcal{W}\) and remove it
    for each \(P \in \mathcal{P}\) which is split by \((W, a)\) do
        \(P^{\prime}, P^{\prime \prime} \leftarrow(W, a) \mid P\)
    \(\triangleright\) Compute the split
        Replace \(P\) by \(P^{\prime}\) and \(P^{\prime \prime}\) in \(\mathcal{P} \quad \triangleright\) Refine the partition
        for all \(b \in A\) do
                            \(\triangleright\) Update the waiting set
            if \((P, b) \in \mathcal{W}\) then
                    Replace \((P, b)\) by \(\left(P^{\prime}, b\right)\) and \(\left(P^{\prime \prime}, b\right)\) in \(\mathcal{W}\)
            else
                        \(\operatorname{ADD}\left(\left(\min \left(P^{\prime}, P^{\prime \prime}\right), b\right), \mathcal{W}\right)\)
```


Basic fact

Splitting all sets of the current partition by one splitter (C, a) has a total cost of $\operatorname{Card}\left(a^{-1} C\right)$.

Polyominoes

History

- Danièle Beauquier and Maurice Nivat have characterized those polyominoes that tile the plane by tranlation On translating one polyomino to tile the plane Discrete Math. 1991.
- The condition is a combinatorial property of circular words.
- The complexity of checking whether this condition holds is still open.
- In the particular case of socalled pseudo-squares, there exists a linear time algorithm, developed by Srečko Brlek, Xavier Provençal, Jean-Marc Fédou On the tiling by translation problem, Discrete Applied Math. 2009.

Exact polyominoes

Definition

A polyomino is a finite set of squares in the discrete plane which are simply 4-connected (without wholes).

Example

Exact polyominoes

Definition

A polyomino is exact if it tiles the plane by translation.

Example

Boundary of a polyomino

Definition

The boundary of a polyomino is the circular word obtained by reading the the polygonal boundary in counterclockwise manner and encoding it over the alphabet $\{a, \bar{a}, b, \bar{b}\}$.

Example

The boundary is $a a \bar{b} a \bar{b} a b a b b \bar{a} \bar{a} \bar{a} b \bar{a} \bar{b} \bar{a} \bar{b}$

Theorem

Notation

We denote by ${ }^{-}$the mapping defined by $\overline{u v}=\bar{v} \bar{u}$ for words u, v.

Theorem (Beauquier, Nivat)

A polyomino tiles the plane by translation if and only if its boundary admits a factorization of the form $u v w \bar{u} \bar{v} \bar{w}$ for some words u, v, w.

Example

The boundary admits the factorization

$$
a a \bar{b} \cdot a \bar{b} a \cdot b a b \cdot b \bar{a} a \bar{a} \cdot \bar{a} b \bar{a} \cdot \bar{b} \bar{a} \bar{b}
$$

Searching for aBN-factorization

A naive algorithm

Given a word w of length n, do for each of the n conjugates of w

- consider all n^{2} factorizations xyzstu with $|x|=|s|,|y|=|t|,|z|=|u|$.
- check whether $x=\bar{s}, y=\bar{t}, z=\bar{u}$.

Each positive answer gives a BN-factorization. The complexity is $O\left(n^{4}\right)$.

An algorithm in $O\left(n^{2}\right)$ has been given by Gambini and Vuillon An algorithm for deciding if a polyomino tiles the plane by translation2007.

Pseudo-square

Definition

A pseudo-square is a boundary that has a factorization of the form $x y \bar{x} \bar{y}$ for nonempty words x, y.

Note

A pseudo-polygon is a boundary with a factorization $x y z \bar{x} \bar{y} \bar{z}$ for nonempty words x, y, z.
Example (Pseudo-square and pseudo-polygon)

The first is a pseudo-square, and the second is a pseudo-polygon. BN-factorizations are

$$
a \bar{b} a a \cdot b a b \cdot \bar{a} a \bar{a} b \bar{a} \cdot \bar{b} \bar{a} \bar{b} \quad \text { and } \quad a a \bar{b} \cdot a \bar{b} a \cdot b a b \cdot b \bar{a} \bar{a} \cdot \bar{a} b \bar{a} \cdot \bar{b} \bar{a} \bar{b}
$$

An algorithm for pseudo-square detection

A linear algorithm

An algorithm for pseudo-square detection that is linear in the length of the boundary has been given by Brlek, Provençal and Fédou.
It uses in a clever way a preprocessing phase that allows to compute in contant time the longest common extension of two words.

Notation

$\rho^{i}(x)$ is the conjugate of x starting at position $i\left(\rho^{0}(x)=x\right)$.

Example

For $x=a a b b b a a b$, one has $\rho^{4}(x)=$ baabaabb.

Definition (Longest common right and left extension)

The longest common right (left) extension of x at position i and y at position j is the word $\operatorname{lcre}(x, i, y, j)=\rho^{i}(x) \wedge \rho^{j}(y)\left(\right.$ resp. Icle $\left.(x, i, y, j)=\rho^{i}(x) \vee \rho^{j}(y)\right)$. Here $u \wedge v($ resp. $u \vee v)$ is the longest common prefix (suffix) of u and v.

Example

For $x=a a b b \cdot b a a b$ and $y=b a b a a b b \cdot b a a b b$, one has

$$
\operatorname{lcre}(x, 4, y, 7)=b a a b a a b b \wedge b a a b b b a b a a b b=b a a b
$$

and

$$
\text { Icle }(x, 4, y, 7)=b a a b a a b b \vee \text { baabbbabaabb }=a b a a b b
$$

Definition (Longest common extension)

The longest common extension of x at position i and y at position j is the word

$$
\text { Icle }(x, i, y, j) / \operatorname{cre}(x, i, y, j)
$$

Example

For $x=a a b b \cdot b a a b$ and $y=b a b a a b b \cdot b a a b b$, one has

$$
\operatorname{lce}(x, 4, y, 7)=a b a a b b b a a b
$$

BN-factorzation

Algorithm

Let w be a boundary of length n. For each $j=0, \ldots, n-1$

- Compute $x=\operatorname{Ice}(w, 0, \bar{w}, j)$.
- Locate \bar{x} in w and, if x and \bar{x} do not overlap, factorize w into $w=x y \bar{x} z$.
- check whether $y=\bar{z}$ by checking whether $\operatorname{Icre}(w, k, \bar{w}, 0)=y$, with $k=|x|$.

If the answer is positive, a pseudo-square factorization has been found.

Example

$\bar{w}=$ baabaa $\bar{b} a a \bar{b} \bar{a} \bar{a} \bar{b} \bar{a} \bar{a} b \bar{a} \bar{a}=$ baabaa $\bar{b} a a \bar{b} a \bar{a} \bar{a} \bar{a} \bar{a} b \bar{a} \bar{a}=$ baabaa $\bar{b} a a \bar{b} \bar{a} \bar{a} \bar{b} \bar{a} a ̄ b a ̄ a ̄$
Ice $(w, 0, \bar{w}, 1)=$ aa and $w=a a \bar{b} a a b a a b \bar{a} a \bar{b} b \bar{a} a \bar{b} \bar{a} \bar{a} \bar{b} \quad$ bad.
Ice $(w, 0, \bar{w}, 4)=a a \bar{b} a a$ and $w=a a \bar{b} a a b a a b \bar{a} a \bar{b} \bar{a} \bar{a} \bar{b} \bar{a} \bar{a} \bar{b}$ good!.
Ice $(w, 0, \bar{w}, 7)=\bar{b} a a \bar{b}$ and $w=$ aa $\bar{b} a a b a a b \bar{a} a ̄ b \bar{a} \bar{a} \bar{b} \bar{a} a \bar{b} \bar{b}$ good!.

Remark

Since the computation of the Ice is in constant time, the algorithm is linear.

