Solution to Exercise I.3.4

Let (M,+) be a commutative monoid, with the subinvariant ultrametric d. Given $a,b\in M$, and a fixed $\epsilon>0$, $a\sim b$ denotes that a,b are ϵ -near of each other, this means $d(a,b)<\epsilon$. Observe that \sim is an equivalence relation using the fact that d is an ultrametric:

- 1. Obviously \sim is reflexive and symmetric.
- 2. If $a \sim b$ and $b \sim c$, then $d(a,c) \leq \max(d(a,b),d(b,c)) < \epsilon$, hence $a \sim c$. Hence \sim is transitive.
- 3. Also note that if $a \sim b$ then by the fact that d is subinvariant we get $a + c \sim b + c$ for all c.
- 4. Moreover if $c \sim a$ and $c \sim a+b$, then $c \sim c+b$. This is because $d(c,c+b) \leq \max(d(c,a+b),d(a+b,c+b)) \leq \max(d(c,a+b),d(a,c)) < \epsilon$.

Now suppose $\sum a_n = L$, then given any permutation π of the elements of this series, we have $\sum a_{\pi(n)} = L$.

Proof. Fix $\epsilon > 0$. There exists K such that for all $n, \ell > K$ we have $S_n \sim L$ and $S_n \sim S_\ell$, where S_n is the partial sum of n terms. Fix any $n_1 > K$. Take any n_3, n_2 such that $n_3 > n_2 > n_1$. We have the following:

- 1. We have $S_{n_1} \sim S_{n_2}$ and $S_{n_1} \sim S_{n_3}$. By the above item number 4, we get $S_{n_1} \sim S_{n_1} + a_{n_2+1} + \dots + a_{n_3}$.
- 2. Similarly $S_{n_1} \sim S_{n_2-1}$ and $S_{n_1} \sim S_{n_3}$ entail that $S_{n_1} \sim S_{n_1} + a_{n_2} + ... + a_{n_3}$.
- 3. and thus from $S_{n_1} \sim S_{n_1} + a_{n_2+1} + ... a_{n_3}$ and $S_{n_1} \sim S_{n_1} + a_{n_2} + ... a_{n_3}$ conclude that $S_{n_1} \sim S_{n_1} + a_{n_2}$.

So far we have shown that for any n_1, n_2 such that $n_2 > n_1 > K$ we have $S_{n_1} \sim S_{n_1} + a_{n_2}$. We can generalize this iteratively and inductively as follows. Take any finite set $I \subset \mathbb{N}$, such that for all $i \in I$ we have $i > n_1$. Then we have

$$S_{n_1} \sim S_{n_1} + \sum_{i \in I} a_i$$
.

Let's see this in the simple case $I=\{n_2,n_3\}$, where $n_3>n_2>n_1>K$. By the basis of the induction: $S_{n_1}\sim S_{n_1}+a_{n_2}$. Since $S_{n_1}\sim S_{n_3}$ and $S_{n_1}\sim S_{n_3-1}$, by the transitivity of \sim we get $S_{n_3}\sim S_{n_1}+a_{n_2}$ and $S_{n_3-1}\sim S_{n_1}+a_{n_2}$. Now again by the item number 4 above, we have $S_{n_1}+a_{n_2}+a_{n_3}\sim S_{n_1}+a_{n_2}$. Since $S_{n_1}\sim S_{n_1}+a_{n_2}$, by the transitivity of \sim we get $S_{n_1}\sim S_{n_1}+a_{n_2}+a_{n_3}$.

Now let M be large enough such that $\{\pi(1), \pi(2), \ldots, \pi(M)\} \supseteq \{1, \ldots, n_1\}$. Take any $\ell > M$. We have:

$$\sum_{1 \le i \le \ell} a_{\pi(i)} = S_{n_1} + \sum_{i \in I} a_i$$

for some finite set I. Thus

$$\sum_{1 \le i \le \ell} a_{\pi(i)} \sim S_{n_1} ,$$

and since $L \sim S_{n_1}$, we get by transitivity:

$$\sum_{1 \le i \le \ell} a_{\pi(i)} \sim L.$$

This completes the proof.