
Solutions to problems of Chapter 1

Section 1.1
1.1.1 The minimal deterministic automaton recognizing the set X of words on
an alphabet A with q symbols having w = a1a2 · · · ak as a subword has the form
indicated below. This shows that
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is an unambiguous regular expression for X . Thus, the generating sequence of
the number of words of X has the form
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1.1.2 The axioms of a distance are easy to verify.
Section 1.2

1.2.1 The call b← Border(x) can be replaced by b← BorderSharp(x)
Section 1.3
1.3.1 It is enough to keep track for each state p and for 0 ≤ i ≤ n of a word
x(p, i) ∈ X which realizes the distance d(p, i) with a0 · · · ai−1. Th result is the
word x(s, n) where s is the terminal state such that d(s, n) is minimal.
1.3.2 If u ∈ p−1S(w) ∩ q−1S(w), then pu = qu ∈ S(w). Thus one the words,
say pu, is a suffix of the other. This implies that p is a suffix of q and thus that
q−1S(w) ⊂ p−1S(w). Thus we can arrange the states of the automaton, which
are the sets p−1S(w), as the nodes of a tree reflecting the ordering of the set of
states by inclusion. This tree has at most n + 1 leaves and thus a total number
of nodes at most 2n.
Section 1.5
1.5.1 The states of B are the sets

P = {(w, q) | there exists a path i
u|vw
−→ q with i ∈ I}.
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Let (w, q) be a pair appearing in P , with a path i
u|vw
−→ q. If |u| < n2, then

|w| < n2M . Otherwise, by definition of the transitions of B, there is another

pair (w′, q′) with a path i′
u|vw′

−→ q′ such that w and w′ have no common prefix.
Since |u| ≥ n2, there are two decompositions

i
u1|v1

−→ p
u2|v2

−→ p
u3|v3

−→ q

and

i′
u1|v

′

1−→ p′
u2|v

′

2−→ p′
u3|v

′

3−→ q′

with vw = v1v2v3, vw′ = v′1v
′
2v

′
3 in which we may assume |u2u3| ≤ n2. The

twinning property implies that v1v2 and v′1v
′
2 are prefix one of the other. This

implies that w is a suffix of v2v3 and thus |w| ≤ n2M .
Section 1.7
1.7.1 The form of (I −Mz)−1

1,1 results easily from the formula for the star of a

matrix. If we multiply both sides of the formula I+(I−Mz)−1Mz = (I−Mz)−1

by (σ − z) and take the value of the any row for z = σ, we obtain vMσ = v.
Section 1.8
1.8.1 Let fℓ : (Aℓ)∗ → (Al)∗ be the morphism defined as follows. For x =
a1 · · ·aℓ ∈ A

ℓ, let f(x) = b1b2 · · · bn and let m = |f(a1)|. Then fl(x) =

y1y2 · · · ym with yj = bjbj+1 · · · bj+l. The matrix M (ℓ) is defined by M
(ℓ)
xy =

|fℓ(x)|y .
The entry (ab, y) of both sides of the equality UM (ℓ) = M (2)U is the number

of occurrences of y in fp+1(ab) that begin in the prefix fp(a). The other assertion
follows from the fact that if v2M = ρM , then

vℓM
(ℓ) = v2UM (ℓ) = v2M

(2)U = ρv2 = vℓ.

1.8.2 This follows from the previous problem since the vector v5 = v2U has
all entries equal to 1. Note that we can also use p = 2 to define U . Indeed,
|f2(a)| = 4 > ℓ−2 = 3. The assertion on the frequencies of the factors of length
5 follows. It can also be obtained using the function π of example 1.8.4.
1.8.3 Let T (w) = b1b2 · · · bn. We may assume (up to conjugacy) that w is the
first row of the array. Let z = c1c2 · · · cn be nondecreasing rearrangment of w
(which is also the first column of the array). The first symbol of w is clearly
c1. Let j be the smallest index such that c1 = bj . then we have a2 = cj. More
generally, we have ai = cπi−1(1) where the permutation π is defined as follows.
For each index i, we define π(i) as the least integer i ≥ 1 such that ci = bj and
such that the numbers of symbols equal to ci in c1 · · · ci and b1 · · · bj are equal.
1.8.4 This results simply from the fact that

S(z) =
∑

w∈S

(z/q)|w|

1.8.5 This results from the previous problem. Indeed, we have uF (z) = F (2z) =
(1− C(2z))/(1− 2z) whence the desired formula.
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