Solutions to problems of Chapter 1

Section 1.1

1.1.1 The minimal deterministic automaton recognizing the set X of words on
an alphabet A with ¢ symbols having w = ajas - - - ai as a subword has the form
indicated below. This shows that
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is an unambiguous regular expression for X. Thus, the generating sequence of
the number of words of X has the form

fx(z) =
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1.1.2 The axioms of a distance are easy to verify.
Section 1.2

1.2.1 The call b <+ Border(x) can be replaced by b <« BorderSharp(x)

Section 1.3
1.3.1 It is enough to keep track for each state p and for 0 < ¢ < n of a word
x(p,i) € X which realizes the distance d(p, %) with ag---a;—1. Th result is the
word z(s,n) where s is the terminal state such that d(s,n) is minimal.
1.3.2 If u € p~tS(w) N ¢ 1S(w), then pu = qu € S(w). Thus one the words,
say pu, is a suffix of the other. This implies that p is a suffix of ¢ and thus that
¢ 1S(w) C p~'S(w). Thus we can arrange the states of the automaton, which
are the sets p~1S(w), as the nodes of a tree reflecting the ordering of the set of
states by inclusion. This tree has at most n + 1 leaves and thus a total number
of nodes at most 2n.
Section 1.5
1.5.1 The states of B are the sets

P ={(w,q) | there exists a path ¢ ulvey q with i € T}.



u|vw

Let (w,q) be a pair appearing in P, with a path i — ¢. If |u| < n?, then
|w| < n?M. Otherwise, by definition of the transitions of B, there is another

pair (w’,q’) with a path ¢’ ulv ¢’ such that w and w’ have no common prefix.
Since |u| > n?, there are two decompositions
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with vw = vivevs, vw’ = vjvhvs in which we may assume |ugus| < n?. The
twinning property implies that v1ve and vjv) are prefix one of the other. This
implies that w is a suffix of vavs and thus |w| < n?M.
Section 1.7
1.7.1 The form of (I — Mz)’lL1 results easily from the formula for the star of a
matrix. If we multiply both sides of the formula [+ (I—Mz)"*Mz = (I-Mz)~!
by (o — z) and take the value of the any row for z = o, we obtain vMo = v.
Section 1.8
1.8.1 Let fo @ (A%)* — (AY* be the morphism defined as follows. For z =
ar---ap € A%, let f(x) = biby---b, and let m = |f(a;)|. Then fi(x) =
YiY2 - Ym With y; = bjbjr1---bj1;. The matrix M® is defined by Még) =
| fe()]y-

The entry (ab,y) of both sides of the equality UM = M®U is the number
of occurrences of y in fP1(ab) that begin in the prefix f?(a). The other assertion
follows from the fact that if voM = pM, then

MO = 0 UM® = v, MU = pvy = vy

1.8.2 This follows from the previous problem since the vector vs = voU has
all entries equal to 1. Note that we can also use p = 2 to define U. Indeed,
|f?(a)] = 4 > £—2 = 3. The assertion on the frequencies of the factors of length
5 follows. It can also be obtained using the function 7 of example 1.8.4.

1.8.3 Let T'(w) = biby -+ -b,. We may assume (up to conjugacy) that w is the
first row of the array. Let z = cjca - - - ¢, be nondecreasing rearrangment of w
(which is also the first column of the array). The first symbol of w is clearly
c1. Let j be the smallest index such that ¢; = b;. then we have as = ¢;. More
generally, we have a; = ¢:-1(1) where the permutation 7 is defined as follows.
For each index i, we define 7(¢) as the least integer ¢ > 1 such that ¢; = b; and
such that the numbers of symbols equal to ¢; in ¢; ---¢; and by - - - b; are equal.
1.8.4 This results simply from the fact that

S(z) =Y (/9"
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1.8.5 This results from the previous problem. Indeed, we have uz(z) = F(2z) =
(1 -C(22))/(1 — 2z) whence the desired formula.



