Solutions to problems of Chapter 1

Section 1.1
1.1.1 The minimal deterministic automaton recognizing the set X of words on an alphabet A with q symbols having $w=a_{1} a_{2} \cdots a_{k}$ as a subword has the form indicated below. This shows that

is an unambiguous regular expression for X. Thus, the generating sequence of the number of words of X has the form

$$
\begin{aligned}
f_{X}(z) & =\frac{z^{k}}{(1-(q-1) z)^{k}(1-q z)} \\
& =\sum_{i=0}^{n-k}\binom{n-i-1}{k-1}(q-1)^{n-i-k} q^{i}
\end{aligned}
$$

since

$$
\frac{1}{(1-z)^{k}}=\sum\binom{n+k-1}{k-1} z^{n} .
$$

1.1.2 The axioms of a distance are easy to verify.

Section 1.2
1.2.1 The call $b \leftarrow \operatorname{Border}(x)$ can be replaced by $b \leftarrow \operatorname{BorderSharp}(x)$

Section 1.3
1.3.1 It is enough to keep track for each state p and for $0 \leq i \leq n$ of a word $x(p, i) \in X$ which realizes the distance $d(p, i)$ with $a_{0} \cdots a_{i-1}$. Th result is the word $x(s, n)$ where s is the terminal state such that $d(s, n)$ is minimal.
1.3.2 If $u \in p^{-1} \mathcal{S}(w) \cap q^{-1} \mathcal{S}(w)$, then $p u=q u \in \mathcal{S}(w)$. Thus one the words, say $p u$, is a suffix of the other. This implies that p is a suffix of q and thus that $q^{-1} \mathcal{S}(w) \subset p^{-1} \mathcal{S}(w)$. Thus we can arrange the states of the automaton, which are the sets $p^{-1} \mathcal{S}(w)$, as the nodes of a tree reflecting the ordering of the set of states by inclusion. This tree has at most $n+1$ leaves and thus a total number of nodes at most $2 n$.
Section 1.5
1.5.1 The states of \mathfrak{B} are the sets

$$
P=\{(w, q) \mid \text { there exists a path } i \xrightarrow{u \mid v w} q \text { with } i \in I\} .
$$

Let (w, q) be a pair appearing in P, with a path $i \xrightarrow{u \mid v w} q$. If $|u|<n^{2}$, then $|w|<n^{2} M$. Otherwise, by definition of the transitions of \mathfrak{B}, there is another pair $\left(w^{\prime}, q^{\prime}\right)$ with a path $i^{\prime} \xrightarrow{u \mid v w^{\prime}} q^{\prime}$ such that w and w^{\prime} have no common prefix. Since $|u| \geq n^{2}$, there are two decompositions

$$
i \xrightarrow{u_{1} \mid v_{1}} p \xrightarrow{u_{2} \mid v_{2}} p \xrightarrow{u_{3} \mid v_{3}} q
$$

and

$$
i^{\prime} \xrightarrow{u_{1} \mid v_{1}^{\prime}} p^{\prime} \xrightarrow{u_{2} \mid v_{2}^{\prime}} p^{\prime} \xrightarrow{u_{3} \mid v_{3}^{\prime}} q^{\prime}
$$

with $v w=v_{1} v_{2} v_{3}, v w^{\prime}=v_{1}^{\prime} v_{2}^{\prime} v_{3}^{\prime}$ in which we may assume $\left|u_{2} u_{3}\right| \leq n^{2}$. The twinning property implies that $v_{1} v_{2}$ and $v_{1}^{\prime} v_{2}^{\prime}$ are prefix one of the other. This implies that w is a suffix of $v_{2} v_{3}$ and thus $|w| \leq n^{2} M$.
Section 1.7
1.7.1 The form of $(I-M z)^{-1}{ }_{1,1}$ results easily from the formula for the star of a matrix. If we multiply both sides of the formula $I+(I-M z)^{-1} M z=(I-M z)^{-1}$ by $(\sigma-z)$ and take the value of the any row for $z=\sigma$, we obtain $v M \sigma=v$.
Section 1.8
1.8.1 Let $f_{\ell}:\left(\mathcal{A}^{\ell}\right)^{*} \rightarrow\left(\mathcal{A}^{l}\right)^{*}$ be the morphism defined as follows. For $x=$ $a_{1} \cdots a_{\ell} \in \mathcal{A}^{\ell}$, let $f(x)=b_{1} b_{2} \cdots b_{n}$ and let $m=\left|f\left(a_{1}\right)\right|$. Then $f_{l}(x)=$ $y_{1} y_{2} \cdots y_{m}$ with $y_{j}=b_{j} b_{j+1} \cdots b_{j+l}$. The matrix $M^{(\ell)}$ is defined by $M_{x y}^{(\ell)}=$ $\left|f_{\ell}(x)\right|_{y}$.

The entry $(a b, y)$ of both sides of the equality $U M^{(\ell)}=M^{(2)} U$ is the number of occurrences of y in $f^{p+1}(a b)$ that begin in the prefix $f^{p}(a)$. The other assertion follows from the fact that if $v_{2} M=\rho M$, then

$$
v_{\ell} M^{(\ell)}=v_{2} U M^{(\ell)}=v_{2} M^{(2)} U=\rho v_{2}=v_{\ell} .
$$

1.8.2 This follows from the previous problem since the vector $v_{5}=v_{2} U$ has all entries equal to 1 . Note that we can also use $p=2$ to define U. Indeed, $\left|f^{2}(a)\right|=4>\ell-2=3$. The assertion on the frequencies of the factors of length 5 follows. It can also be obtained using the function π of example 1.8.4.
1.8.3 Let $T(w)=b_{1} b_{2} \cdots b_{n}$. We may assume (up to conjugacy) that w is the first row of the array. Let $z=c_{1} c_{2} \cdots c_{n}$ be nondecreasing rearrangment of w (which is also the first column of the array). The first symbol of w is clearly c_{1}. Let j be the smallest index such that $c_{1}=b_{j}$. then we have $a_{2}=c_{j}$. More generally, we have $a_{i}=c_{\pi^{i-1}}(1)$ where the permutation π is defined as follows. For each index i, we define $\pi(i)$ as the least integer $i \geq 1$ such that $c_{i}=b_{j}$ and such that the numbers of symbols equal to c_{i} in $c_{1} \cdots c_{i}$ and $b_{1} \cdots b_{j}$ are equal. 1.8.4 This results simply from the fact that

$$
S(z)=\sum_{w \in \mathcal{S}}(z / q)^{|w|}
$$

1.8.5 This results from the previous problem. Indeed, we have $u_{\mathcal{F}}(z)=F(2 z)=$ $(1-C(2 z)) /(1-2 z)$ whence the desired formula.

