
Recursion Schemes and Logical Reflection

Christopher H. Broadbent∗, Arnaud Carayol†, C.-H. Luke Ong∗ and Olivier Serre‡

∗Oxford University Computing Laboratory — {Christopher.Broadbent,Luke.Ong}@comlab.ox.ac.uk
†LIGM (Univ. Paris Est & CNRS) — Arnaud.Carayol@univ-mlv.fr
‡LIAFA (Univ. Paris 7 & CNRS) — Olivier.Serre@liafa.jussieu.fr

Abstract—Let R be a class of generators of node-labelled
infinite trees, and L be a logical language for describing correctness
properties of these trees. Given R ∈ R and ϕ ∈ L, we say
that Rϕ is a ϕ-reflection of R just if (i) R and Rϕ generate the
same underlying tree, and (ii) suppose a node u of the tree [[R]]
generated by R has label f , then the label of the node u of [[Rϕ]]
is f if u in [[R]] satisfies ϕ; it is f otherwise. Thus if [[R]] is
the computation tree of a program R, we may regard Rϕ as a
transform of R that can internally observe its behaviour against a
specification ϕ. We say that R is (constructively) reflective w.r.t. L
just if there is an algorithm that transforms a given pair (R,ϕ) to
Rϕ. In this paper, we prove that higher-order recursion schemes are
reflective w.r.t. both modal µ-calculus and monadic second order
(MSO) logic. To obtain this result, we give the first characterisation
of the winning regions of parity games over the transition graphs
of collapsible pushdown automata (CPDA): they are regular sets
defined by a new class of automata. (Order-n recursion schemes
are equi-expressive with order-n CPDA for generating trees.) As
a corollary, we show that these schemes are closed under the
operation of MSO-interpretation followed by tree unfolding à la
Caucal.

I. INTRODUCTION

An old model of computation, recursion schemes were

originally designed as a canonical programming calculus for

studying program transformation and control structures. In

recent years, higher-order recursion schemes (HORS) have

received much attention as a method of constructing rich

and robust classes of possibly infinite ranked trees (or sets

of such trees) with strong algorithmic properties. The interest

was sparked by the discovery of Knapik et al. [12] that

HORSs which satisfy a syntactic constraint called safety

generate the same class of trees as higher-order pushdown

automata. Remarkably these trees have decidable monadic

second-order (MSO) theories, subsuming earlier well-known

MSO decidability results for regular (or order-0) trees [17]

and algebraic (or order-1) trees [7]. We now know [16]

that the modal µ-calculus (local) model checking problem

for trees generated by arbitrary order-n recursion schemes

is n-EXPTIME complete (hence these trees have decidable

MSO theories); further [9] these schemes are equi-expressive

with a new variant class of higher-order pushdown automata,

called collapsible pushdown automata (CPDA).

Let T be a class of finitely-presentable infinite structures

(such as trees or graphs) and L be a logical language for

Proofs are in the (downloadable) long version [2] of this paper.

describing correctness properties of these structures. The

global model checking problem asks, given t ∈ T and

ϕ ∈ L, whether the set ||t||ϕ of nodes defined by ϕ and t is

finitely describable, and if so, whether it is decidable. Our

first contribution is a solution of the modal µ-calculus global

model checking problem for transition graphs of CPDA (the

problem is equivalent to characterising winning regions of

parity games played over the transition graphs of CPDA). To

this end, we introduce a new kind of finite-state automata.

Recall that an order-n collapsible stack is an order-n stack

in which every symbol (except the bottom-of-stack) has a

back pointer to some deeper stack of order less than n. For

a fixed n, these (deterministic) automata take as input order-

n collapsible stacks represented as well-bracketed sequences

of symbols that have back pointers. When reading a symbol,

the transition to a new state depends on, not just the

current state, but also the state of the automaton when the

symbol pointed to was read. These automata are closed

under Boolean operations and have decidable acceptance and

emptiness problems. We show that (Theorem 4) the winning

regions of parity games played over the transition graphs of

CPDA are regular i.e. recognizable by these (deterministic)

automata. The proof is by induction on the order, and uses

a sequence of game reductions that preserve regular sets.

An innovation of our work is a new approach to global

model checking, by “internalising” the semantics ||t||ϕ. Let

ϕ ∈ L, and R be a HORS over Σ (i.e. the node labels of

[[R]], the tree generated by R, are elements of the ranked

alphabet Σ). We say that Rϕ, which is a HORS over Σ∪Σ
(where Σ consists of a marked copy of each Σ-symbol),

is a ϕ-reflection1 of R just if R and Rϕ generate the

same underlying tree; further, suppose a node u of [[R]]
has label f , then the label of the node u of [[Rϕ]] is f if

u in [[R]] satisfies ϕ, and it is f otherwise. Equivalently

we can think of [[Rϕ]] as the tree that is obtained from

[[R]] by distinguishing the nodes that satisfy ϕ. Our second

contribution is the result that HORS are (constructively)

reflective w.r.t. the modal µ-calculus (Theorem 2). I.e. we

give an algorithm that, given a modal µ-calculus formula ϕ,

transforms a HORS to its ϕ-reflection. The proof relies on

the closure of CPDA under regular tests (Theorem 3) i.e. we

1In programming languages, reflection is the process by which a com-
puter program can observe and dynamically modify its own structure and
behaviour.

2010 IEEE Conference on Logic in Computer Science

1043-6871/10 $26.00 © 2010 IEEE

DOI 10.1109/LICS.2010.40

120

2010 25th Annual IEEE Symposium on Logic in Computer Science

1043-6871/10 $26.00 © 2010 IEEE

DOI 10.1109/LICS.2010.40

120

can endow the model of CPDA with the ability to test if the

current configuration belongs to a given regular set without

increasing its expressive power as tree generators.

The class of trees generated by HORSs is closed under

two further logical operations. In a ranked tree, a node u
may be represented by its unique path from the root, given

as a finite word path(u) over an appropriate alphabet. Let

B be a finite-state word automaton over the same alphabet.

We say that RB is a B-reflection of R just if R and RB

generate the same underlying tree; further if a node u of

[[R]] has label f , then the label of node u of [[RB]] is f
if B accepts path(u), and it is f otherwise. We show that

if a class C of tree generators is reflective w.r.t. modal µ-

calculus, and w.r.t. regular paths (i.e. there is an algorithm

that transforms a given pair (B, R) to RB), then it is

also reflective w.r.t. MSO. We then obtain two pleasing

consequences. First, trees that are generated by HORS are

reflective w.r.t. MSO (Corollary 2). Secondly, if one starts

with a tree t generated by an order-n recursion scheme and

some MSO-interpretation I , then the unfolding of the graph

I(t) is isomorphic to a tree generated by an order-(n+ 1)
recursion scheme (Corollary 3). It follows that the class of

trees generated by HORSs is closed under the operation of

MSO-interpretation followed by tree unfolding à la Caucal.

Related work: Vardi and Piterman [21] studied the

global model checking problem for regular trees and prefix-

recognizable graphs using two-way alternating parity tree

automata. Extending their results, Carayol et al. [4] showed

that the winning regions of parity games played over

the transition graphs of higher-order pushdown automata

(i.e. without collapse) are regular. Recently, using game

semantics, Broadbent and Ong [3] showed that for ev-

ery order-n recursion scheme S, the set of nodes in [[S]]
that are definable by a given modal µ-calculus formula is

recognizable by an order-n (non-deterministic) collapsible

pushdown word automaton. (Here we show in Theorem 2(i)

that the nodes are recognizable by a deterministic CPDA.)

In a different but related direction, Kartzow [11] showed

that order-2 collapsible stacks can be encoded as trees in

such a way that the set of stacks reachable from the initial

configuration corresponds to a regular set of trees. (Since

his notion of regularity on 2-stacks encompasses ours, it

follows from our Theorem 4 that the winning regions of 2-

CPDA parity games are regular sets of trees with Kartzow’s

encoding.)

Outline: In Section II we give the basic definitions.

Section III introduces a notion of regular set of collapsible

stacks, given by a new kind of finite-state automata. In

Section IV, we characterise the winning regions of parity

games played over the transition graphs of CPDA. Section V

presents the reflection results.

II. PRELIMINARIES

An alphabet A is a (possibly infinite) set of letters. In the

sequel A∗ denotes the set of finite words over A, and Aω

the set of infinite words over A. The empty word is written

ε.

Higher-Order Recursion Schemes: Types are generated

from the base type o using the arrow constructor →. Every

type A can be written uniquely as A1 → · · · → An → o
(arrows associate to the right), for some n ≥ 0 which

is called its arity; we shall often write A simply as

(A1, · · · , An, o). We define the order of a type by ord(o) :=
0 and ord(A → B) := max(ord(A) + 1, ord(B)). Let

Σ be a ranked alphabet i.e. each symbol f has an arity

ar(f) ≥ 0; we assume that f ’s type is the (ar (f) + 1)-
tuple (o, · · · , o, o). We further shall assume that each symbol

f ∈ Σ is assigned a finite set Dir(f) of ar(f) direc-

tions (typically Dir(f) = { 1, · · · , ar(f) }), and we define

Dir(Σ) :=
⋃

f∈Σ Dir(f). Let D be a set of directions; a

D-tree is just a prefix-closed subset of D∗. A Σ-labelled

tree is a function t : Dom(t) → Σ such that Dom(t) is a

Dir(Σ)-tree, and for every node α ∈ Dom(t), the Σ-symbol

t(α) has arity k if and only if α has exactly k children and

the set of its children is {α i | i ∈ Dir(t(α)) } i.e. t is a

ranked tree.

For each type A, we assume an infinite collection VarA

of variables of type A, and write Var to be the union of

VarA as A ranges over types; we write t : A to mean

that the expression t has type A. A (deterministic) recursion

scheme is a tuple S = 〈Σ,N ,R, I 〉 where Σ is a ranked

alphabet of terminals; N is a set of typed non-terminals;

I ∈ N is a distinguished initial symbol of type o; R is

a finite set of rewrite rules – one for each non-terminal

F : (A1, · · · , An, o) – of the form F ξ1 · · · ξn → e where

each ξi is in VarAi , and e is an applicative term of type o
generated from elements of Σ∪N ∪{ ξ1, · · · , ξn }. We shall

use lower-case roman letters for terminals (e.g. a, f, g), and

upper-case roman letters for non-terminals (e.g. I, F,H).

The order of a recursion scheme is the highest order of

the types of its non-terminals.

We use recursion schemes as generators of Σ-labelled

trees. The value tree of (or the tree generated by) a recursion

scheme S, denoted [[S]], is a possibly infinite applicative

term, but viewed as a Σ-labelled tree, constructed from the

terminals in Σ, that is obtained by rewriting using the rules

of S ad infinitum, replacing formal by actual parameters

each time, starting from the initial symbol I . See e.g. [9]

for a formal definition.

Example 1. Let S be the order-2 recursion scheme with

non-terminals I : o, H : (o, o), F : ((o, o), o); variables

x : o, ϕ : (o, o); terminals f, g, a of arity 2, 1, 0 respectively;

121121

and the following rewrite rules:





I → H a
H x → F (f x)
F ϕ → ϕ (ϕ (F g))

f
pp

pp
p

NN
NN

N

a f
oo

oo
o

OO
OO

O

a g

g

The value tree [[S]] (as shown above) is the Σ-labelled tree

defined by the infinite term f a (f a (g (g (g · · ·)))).

Higher-Order Collapsible Stacks: Fix a stack alphabet

Γ and a distinguished bottom-of-stack symbol ⊥ ∈ Γ. An

order-0 stack is just a stack symbol. An order-(n+1) stack

s is a non-null sequence (written [s1 · · · sℓ]) of order-n
stacks such that every Γ-symbol γ 6= ⊥ that occurs in s has

a link to a stack (of order k where k ≤ n) situated below

it in s; we call the link a (k + 1)-link. The order of a stack

s is written ord(s); and we shall abbreviate order-n stack

to n-stack. As usual, the bottom-of-stack2 symbol ⊥ cannot

be popped from or pushed onto a stack. We define ⊥k, the

empty k-stack, as: ⊥0 = ⊥ and ⊥k+1 = [⊥k].

The set Opn of order-n stack operations consists of the

following four types of operations:

1) popk for each 1 ≤ k ≤ n
2) pushα,k

1 for each 1 ≤ k ≤ n and each α ∈ (Γ \ {⊥ })
3) pushj for each 2 ≤ j ≤ n.

4) collapse.
First we introduce the auxiliary operations: topi, which

takes a stack s and returns the top (i − 1)-stack of s;
and pushα

1 , which takes a stack s and pushes the symbol

α onto the top of the top 1-stack of s. Precisely let

s = [s1 · · · sℓ+1] be a stack with 1 ≤ i ≤ ord(s), we

define

topi [s1 · · · sℓ+1]︸ ︷︷ ︸
s

=

{
sℓ+1 if i = ord(s)
topi sℓ+1 if i < ord(s)

and define pushα
1 [s1 · · · sℓ+1]︸ ︷︷ ︸

s

by

{
[s1 · · · sℓ pushα

1 sℓ+1] if ord(s) > 1
[s1 · · · sℓ+1 α] if ord(s) = 1

We can now explain the four operations in turn. For i ≥ 1
the order-i pop operation, popi, takes a stack and returns it

with its top (i− 1)-stack removed. Let 1 ≤ i ≤ ord(s) we

define popi [s1 · · · sℓ+1]︸ ︷︷ ︸
s

by

{
[s1 · · · sℓ] if i = ord(s) and ℓ ≥ 1
[s1 · · · sℓ popisℓ+1] if i < ord(s)

We say that a stack s0 is a prefix of a stack s (of the same

order), written s0 ≤ s, just if s0 can be obtained from s by

a sequence of (possibly higher-order) pop operations.

2Thus we require an order-1 stack to be a non-null sequence [a1 · · · aℓ]

of Γ-symbols such that for all 1 ≤ i ≤ l, ai = ⊥ iff i = 1.

Take an n-stack s and let i ≥ 2. To construct pushα,i
1 s

we first attach a link from a fresh copy of α to the (i− 1)-
stack that is immediately below the top (i − 1)-stack of s,
and then push the symbol-with-link onto the top 1-stack of

s. As for collapse, suppose the top1-symbol of s has a

link to (a particular copy of) the k-stack u somewhere in s.
Then collapse s causes s to “collapse” to the prefix s0 of

s such that topk+1 s0 is that copy of u. Finally, for j ≥ 2,

the order-j push operation, pushj , simply takes a stack s
and duplicates the top (j− 1)-stack of s, preserving its link

structure.

To avoid clutter, when displaying n-stacks in examples,

we shall omit the bottom-of-stack symbols and 1-links

(indeed by construction they can only point to the sym-

bol directly below), writing e.g. [[][αγ]] instead of

[[⊥][⊥ α γ]].

Example 2. Take the 3-stack s = [[[α]] [[][α]]].

We have

pushβ,2
1 s = [[[α]] [[][αβ]]]

collapse (pushβ,2
1 s) = [[[α]] [[]]]

pushγ,3
1 (pushβ,2

1 s)︸ ︷︷ ︸
θ

= [[[α]] [[][αβ γ]]].

Then push2 θ and push3θ are respectively

[[[α]] [[][αβ γ][αβ γ]]] and

[[[α]] [[][αβ γ]] [[][αβ γ]]].

We have collapse (push2 θ) = collapse (push3 θ) =
collapse θ = [[[α]]].

Important Remark. Our definition of collapsible stacks

allows non-constructible stacks such as

[[⊥α][⊥β][⊥β]]

From now on, by an n-stack s, we mean a constructible one

i.e. we assume there exists θ ∈ Op∗
n such that s = θ⊥n.

Collapsible Pushdown Automata: An order-n (deter-

ministic) collapsible pushdown automaton (n-CPDA) is a 6-

tuple 〈A∪{ε},Γ, Q, δ, q0, F 〉 where A is an input alphabet

and ε is a special symbol, Γ is a stack alphabet, Q is a

finite set of states, q0 is the initial state, F ⊆ Q is the set

of final states and δ : Q× Γ × (A ∪ {ε}) → Q× Opn is

a transition (partial) function such that, for all q ∈ Q and

γ ∈ Γ, if δ(q, γ, ε) is defined then for all a ∈ A, δ(q, γ, a)
is undefined (i.e. if some ε-transition can be taken, then no

other transition is possible).

In the special case where δ(q, γ, ε) is undefined for all

q ∈ Q and γ ∈ Γ we refer to A as an ε-free n-CPDA

122122

and we omit ε in the definition of A i.e. we denote it as

A = 〈A,Γ, Q, δ, q0, F 〉.
Configurations of an n-CPDA are pairs of the form (q, s)

where q ∈ Q and s is an n-stack over Γ; the initial

configuration is (q0,⊥n) and final configurations are those

whose control state belongs to F .

An n-CPDA A = 〈A ∪ {ε},Γ, Q, δ, q0, F 〉 naturally de-

fines an (A∪{ε})-labelled transition graph G(A) := (V,E)
whose vertices V are the configurations of A and whose

edge relation E is given by: ((q, s), a, (q′, s′)) ∈ E iff

δ(q, top1s, a) = (q′, op) and s′ = op(s). Such a graph is

called an n-CPDA graph.

In this paper we will use n-CPDA for three different

purposes: as words acceptors, as generators for infinite trees

and as generators of the graph underlying a parity game.

Using an n-CPDA as a Words Acceptor: A order-n
CPDA A = 〈A ∪ {ε},Γ, Q, δ, q0, F 〉 accepts the set of

words w ∈ A∗ labeling a run from the initial configuration

to a final configuration (interpreting ε as a silent move). We

write L(A) for the accepted language.

Using an n-CPDA as an Infinite Tree Generator: Fix an

n-CPDA A = 〈A ∪ {ε},Γ, Q, δ, q0, F 〉. Take the ε-closure

Gε(A) of G(A) defined as follows: first add an a-labelled

edge from v1 to v2 whenever there is a path from v1 to v2
labelled by a word that matches aε∗, and there is no outgoing

ε-labelled from v2; then remove any vertex (in the path) that

is the source of an ε-labelled edge. Owing to the restriction

we imposed on δ, the resulting graph is deterministic and

ε-free.

In G(A) there exists a unique configuration v0 which

is reachable from the initial configuration by a (possibly

empty) sequence of ε-labelled edges, and the source of a

non-ε-labelled edge. Trivially, v0 is a vertex of Gε(A). Now,

let T be the tree obtained by unfoldingGε(A) from v0. Then

T is deterministic.

Finally, in order to define a Σ-labelled tree t for a ranked

alphabet Σ, it suffices to identify a total function ρ : Q →
Σ such that for all q ∈ Q and γ ∈ Γ, {a | (q, γ, a) ∈
Dom(δ)} = Dir(ρ(q)), and then to define t by t(u) := ρ(qu)
for every node u ∈ Dom(T), where qu is the state of the

last configuration of u.

In [9] (a version of) the following equi-expressivity result

was proved.

Theorem 1. (i) Let S be an order-n recursion scheme

over Σ and let t be its value tree. Then there is an order-n
CPDA A = 〈A ∪ {ε},Γ, Q, δ, q0, F 〉, and ρ : Q→ Σ such

that t is the tree generated by A and ρ.

(ii) Let A = 〈A ∪ {ε},Γ, Q, δ, q0, F 〉 be an order-n
CPDA, and let t be the Σ-labelled tree generated by A and

a given map ρ : Q→ Σ. Then there is an order-n recursion

scheme over Σ whose value tree is t.
Moreover the inter-translations between schemes and

CPDA are polytime computable.

Using an n-CPDA to Define a Parity Game: We start

by recalling the definition of parity game. Let G = (V,E ⊆
V ×V) be a graph. Let VE∪VA be a partition of V between

two players, Éloı̈se and Abelard. A game graph is such a

tuple G = (G, VE, VA). A colouring function ρ is a mapping

ρ : V → C ⊂ N where C is a finite set of colours. An

infinite two-player parity game on a game graph G is a pair

G = (G, ρ).
Éloı̈se and Abelard play in G by moving a token between

vertices. A play from some initial vertex v0 proceeds as

follows: the player owning v0 moves the token to a vertex v1
such that (v0, v1) ∈ E. Then the player owning v1 chooses

a successor v2 and so on. If at some point one of the players

cannot move, she/he loses the play. Otherwise, the play is

an infinite word v0v1v2 · · · ∈ V ω and is won by Éloı̈se just

in case lim inf(ρ(vi))i≥0 is even. A partial play is just a

prefix of a play.

A strategy for Éloı̈se is a function assigning, to every

partial play ending in some vertex v ∈ VE, a vertex v′ such

that (v, v′) ∈ E. Éloı̈se respects a strategy Φ during a play

Λ = v0v1v2 · · · if vi+1 = Φ(v0 · · · vi), for all i ≥ 0 such that

vi ∈ VE. A strategy Φ for Éloı̈se is winning from a position

v ∈ V if she wins every play that starts from v and respects

Φ. Finally, a vertex v ∈ V is winning for Éloı̈se if she has a

winning strategy from v, and the winning region for Éloı̈se

consists of all winning vertices for her. Symmetrically, one

defines the corresponding notions for Abelard. It follows

from Martin’s Theorem [14] that, from every position, either

Éloı̈se or Abelard has a winning strategy.

Now let A = 〈A ∪ {ε},Γ, Q, δ, q0, F 〉 be an order-n
CPDA and let (V,E) be the graph obtained from G(A) by

removing edge-labels. Let QE∪QA be a partition of Q and

let ρ : Q → C ⊂ N be a colouring function (over states).

Altogether they define a partition VE ∪ VA of V whereby

a vertex belongs to VE iff its control state belongs to QE,

and a colouring function ρ : V → C where a vertex is

assigned the colour of its control state. The structure G =
(G(A), VE, VA) defines a game graph and the pair G =
(G, ρ) defines a parity game (that we call a n-CPDA parity

game).

The Global Model-Checking Problem: Fix a Σ-labelled

tree t given by a recursion scheme or by a CPDA, and a

logical formula ϕ (e.g. a µ-calculus formula, or an MSO

formula with a single free first-order variable). We denote

by ||t||ϕ the set of nodes of t described by ϕ.

The local model checking problem asks whether u ∈ ||t||ϕ
for a given node u. Decidability of this problem was first

proved in [16]. The global model checking problem asks for

a finite description of the set ||t||ϕ, if there is one. As ||t||ϕ
is in general an infinite set, there are several non-equivalent

ways to represent it finitely. However there are two natural

approaches.

• Exogeneous: Given a Σ-labelled tree t and a formula

ϕ, output a description by means of a word acceptor

123123

device recognising ||t||ϕ ⊆ Dir(Σ)∗.

• Endogeneous: Given a Σ-labelled tree t and a formula

ϕ, output a finite description of the (Σ∪Σ)-labelled tree

tϕ — where Σ = {σ | σ ∈ Σ} is a marked copy of Σ
— such that Dom(tϕ) = Dom(t), and tϕ(u) = t(u) if

u ∈ ||t||ϕ and tϕ(u) = t(u) otherwise.

In case the Σ-labelled tree t is generated by an order-n
recursion scheme, it is natural to consider order-n CPDA

both as words acceptors for ||t||ϕ (in the exogeneous ap-

proach) and as tree genarator for tϕ (in the endogeneous

approach). In the latter case, order-n schemes and CPDA

can be used interchangeably.

Example 3. Let S be the order-2 recursion scheme with

non-terminals I : o, F : ((o, o), o, o) (and variables and

terminals as in Example 1) and the following rewrite rules:

{
I → F g (ga)
F ϕx → f (F ϕ (ϕx))x

f

f

f

.

.

.
g

g

g

a

g

g

a

g

a

where the arities of the terminals f, g, a are 2, 1, 0
respectively. The value tree t = [[S]] is the Σ-labelled tree

depicted above.

Let ϕ = pg ∧ µX.(⋄1pa ∨ ⋄1 ⋄1 X), where pg (resp. pa)

is a propositional variable asserting that the current node is

labelled by g (resp. a), be the µ-calculus formula3 defining

the nodes which are labelled by g such that the length of

the (unique) path to an a-labelled node is odd.

An exogeneous approach to the global model checking

problem is to output a 2-CPDA accepting the set ||t||ϕ =
{1n21k | n+k is odd}, which in this special case is regular.

An endogeneous approach to this problem is to output the

following recursion scheme:





I → H g a
H z → f (H g z) z
H z → f (H g z) z

f

f

f

.

.

.
g

g

g

a

g

g

a

g

a

with non-terminals I : o, H : (o, o); and a variable z : o.

The value tree of this new scheme is depicted on the right.

Our first contribution of the paper addresses the global

model checking problem for trees generated by recursion

scheme. (The theorem will be proved in Section V).

Theorem 2 (µ-Calculus Reflection). Let t be a Σ-labelled

tree generated by an order-n recursion scheme S and ϕ be

a µ-calculus formula.

3We refer the reader to [1] for syntax and semantics of µ-calculus.

(i) There is an algorithm that transforms (S, ϕ) to an

order-n CPDA A such that L(A) = ||t||ϕ.

(ii) There is an algorithm that transforms (S, ϕ) to an

order-n recursion scheme that generates tϕ.

Remark 1. Note that (ii) implies (i). To see why this is so,

assume that we can construct an order-n recursion scheme

generating tϕ. Thanks to Theorem 1, we can construct in

polynomial time an order-n CPDA A which, together with

a mapping ρ : Q 7→ Σ ∪ Σ, generates tϕ. Taking {q ∈ Q |
ρ(q) ∈ Σ} as a set of final states, A accepts ||t||ϕ.

Winning Regions: The key ingredient of the proof of

Theorem 2 is a precise characterisation of the winning

regions of parity games defined by CPDA. This exploits

the close connection between µ-calculus and parity games

[8]. Hence, an important part of this article is devoted to

an effective characterisation of the winning regions of n-

CPDA parity games. Section III introduces a new class of

automata accepting sets of configurations of n-CPDA, and

in Section IV we prove that for any n-CPDA parity game

one can effectively represent the winning regions by such

an automaton.

III. REGULAR SETS OF COLLAPSIBLE STACKS

We start by introducing a class of automata with a finite

state-set that can be used to recognize sets of collapsible

stacks. Let s be an order-n collapsible stack. We first

associate with s = s1, · · · , sℓ a well-bracketed word of

depth n, s̃ ∈ (Σ ∪ {[,]})∗:

s̃ :=

{
[s̃1 · · · s̃ℓ] if n ≥ 1

s if n = 0 (i.e. s ∈ Σ)

In order to reflect the link structure, we define a partial

function target(s) : {1, · · · , |s̃|} → {1, · · · , |s̃|} that

assigns to every position in {1, · · · , |s̃|} the index of the end

of the stack targeted by the corresponding link (if exists;

indeed this is undefined for ⊥,[and]). Thus with s is

associated the pair 〈 s̃, target(s) 〉; and with a set S of stacks

is associated the set S̃ = {〈 s̃, target(s) 〉 | s ∈ S}.

Example 4. Let s = [[[⊥α]] [[⊥][⊥ a β γ]]]. Then

s̃ = [[[⊥α]] [[⊥][⊥αβ γ]]] and target(5) = 4,

target(14) = 13, target(15) = 11 and target(16) = 7.

We consider deterministic finite automata working on

such representations of collapsible stacks. The automaton

reads the word s̃ from left to right. On reading a letter that

does not have a link (i.e. target is undefined on its index) the

automaton updates its state according to the current state and

the letter; on reading a letter that has a link, the automaton

updates its state according to the current state, the letter and

the state it was in after processing the targeted position. A

run is accepting if it ends in a final state. One can think

124124

of these automata as a deterministic version of Stirling’s

dependency tree automata [19] restricted to words.

Formally, an automaton is a tuple 〈Q,A, qin, F, δ 〉 where

Q is a finite set of states, A is a finite input alphabet, qin ∈
Q is the initial state, F ⊆ Q is a set of final states and

δ : (Q × A) ∪ (Q × A × Q) → Q is a transition function.

With a pair 〈u, τ 〉 where u = a1 · · · an ∈ A∗ and τ is

a partial map from {1, · · ·n} → {1, · · ·n}, we associate a

unique run r = r0 · · · rn as follows:

- r0 = qin;

- for all 0 ≤ i < n, ri+1 = δ(ri, ai+1) if i+ 1 /∈ Dom(τ);
- for all 0 ≤ i < n, ri+1 = δ(ri, ai+1, rτ(i+1)) if i + 1 ∈
Dom(τ).

The run is accepting just if rn ∈ F , and the pair (u, τ) is

accepted just if the associated run is accepting.

To recognize configurations instead of stacks, we use the

same machinery but now add the control state at the end of

the coding of the stack. We code a configuration (p, s) as

the pair 〈 s̃ · p, target(s) 〉 (hence the input alphabet of the

automaton also contains a copy of the control state of the

corresponding CPDA).

Finally, we say that a set K of n-stacks over alphabet

Γ is regular just if there is an automaton B such that for

every n-stack s over Γ, B accepts 〈 s̃, target(s) 〉 iff s ∈ K .

Regular sets of configurations are defined in the same way.

Remark 2. Non-deterministic automata are strictly more

powerful than deterministic automata. Let L be the set

of words with links 〈s̃, target(s)〉 such that target(s) is

injective: ∀x, y, target(s)(x) = target(s)(y) ⇒ x = y.

Then L is not accepted by a deterministic automaton but its

complement is accepted by a non-deterministic automaton.

Since L is also not accepted by a non-deterministic automa-

ton, the model of non-deterministic automaton is not closed

under complement.

Closure Properties: Regular sets of stacks (resp. con-

figurations) form an effective Boolean algebra.

Property 1. Let H,K be regular sets of n-stacks over an

alphabet Γ. Then L∪K , L∩K and Stacks(Γ)\L are also

regular (here Stacks(Γ) denotes the set of all stacks over

Γ). The same holds for regular sets of configurations.

We can endow the model of CPDA with the ability to test

if the current configuration belongs to a given regular set

without increasing its expressive power as tree generators.

Theorem 3. Given an order-n CPDA A with a state-set Q
and an automaton B (that takes A-configurations as input),

there exist an order-n CPDA A[B] with a state-set Q′, a

subset F ⊆ Q′ and a mapping χ : Q′ → Q such that:

(i) restricted to the reachable configurations, the respec-

tive ε-closures of G(A) and G(A[B]) are isomorphic

(ii) for every configuration (q, s) of A[B], the correspond-

ing configuration of A has state χ(q) and belongs to L(B)

if and only if q ∈ F .

Proof (Sketch): Fix an order-n CPDA A and an

automaton B. We wish to construct a new order-n CPDA

A[B] that simulates A and in the meantime computes the

state reached by B after processing the current stack. To

this end, we associate with every stack a finite amount of

information describing the behaviour of B when reading it.

Let Q be the state set of B. Let S be an order-n stack and

let sk be its top k-stack. If sk was simply a stack without

links, it could be described, from the point of view of B, by

the mapping τ from Q to Q such that if B starts reading sk

in state q then it finishes reading it in state τ(q). However,

if one simply extracts sk from S, there may be “dangling

links” of order greater than k. As the number of these links

is unbounded, it is impossible to specify individually the Q-

state that should be attached to the target of each of these

links. Our idea is to associate with sk a mapping τS
k which

abstracts the behaviour of B on sk but in the context of S
(i.e. the information will only be pertinent when sk is the

top k-stack of S).

Thus sk gives rise to a mapping τS
k : Qn−k → (Q→ Q)

that, given a tuple (qn, · · · , qk+1), defines a transformation

from Q to Q. We use states qn, · · · , qk+1 to define the

values of the states attached to the respective targets of the

links (of order n, · · · , k+1 respectively) in sk: for n-links,

we consider the run induced by reading S (we stop when

sk is reached) starting from qn (this gives the value for

the respective targets of the n-links), for (n − 1)-links, we

consider the run induced by reading topn(S) (we stop when

sk is reached) starting from qn−1, . . . ; and for (k+1)-links,

we consider the run induced by reading topk+2(S) (again

we stop when sk is reached) starting from qk+1.

At any point in the computation of the CPDA A[B] where

a stack S of A is simulated, the top1 symbol is a pair,

consisting of the stack symbol top1(S), and an n-tuple

(τn−1, · · · , τ0) where τi is equal to τ
pop

i
S

i – for technical

reasons, we do not care for the top (i− 1)-stack of S when

defining τi).

The result is finally obtained by first showing that the

state of B, after reading the whole stack, can be recovered

from the τi, and then proving that the values of the τi can

be maintained (for the top elements only) when simulating

any stack action.

Emptiness: The closure under regular tests implies

decidability of emptiness of automata with respect to con-

structible stacks.

Proposition 1. For a fixed n ≥ 2, the question of whether

there is an order-n constructible stack that is accepted by a

given automaton is decidable in (n− 1)-EXPTIME.

Proof (Sketch): Consider the stateless n-CPDA that

allows us to construct all possible stacks. Now take its

125125

closure A′ under regular test with respect to B and use

A′ as a words acceptor (final states are the set F as given

in Theorem 3). Then, the given automaton B accepts at

least one constructible stack iff L(A′) 6= ∅. As the latter is

decidable in (n − 1)-EXPTIME, we get the expected result

[9].

It is to be noted that if we no longer require the ac-

cepted stack to be constructible the problem becomes less

intractable.

Proposition 2. For a fixed n ≥ 2, the question of whether

there is an order-n possibly non-constructible stack that is

accepted by a given automaton is NP-complete.

Proof (Sketch): Upper-bound is by a small model

property argument. Lower-bound is by reducing 3-SAT.

IV. WINNING REGIONS OF CPDA GAMES

The main result of this section is a characterisation of

winning regions by regular sets.

Theorem 4. Let G be an n-CPDA parity game. Then the

winning region for Éloı̈se (resp. for Abelard) is a regular set

which can be effectively constructed.

Proof (Sketch): As the complete proof of Theorem 4

requires a lot of machinery, we will only focus on the key

steps. Let us also stress that this proof borrows several ideas

[9], [4] but also extend in a non trivial way their results

(decidability of CPDA games of [9] and characterisation of

winning region of HOPD games — i.e. games generated by

CPDA without links — of [4]). The full version [2] provides

a self contained proof of the result.

The proof is by induction on the order, and the induction

step can be divided in three sub-steps (for order-1, the result

is a classical one [18]). Assume one starts with an n-CPDA

parity game G (using colours {0, . . . , d}) generated by some

n-CPDA A. One does the following steps:

1) One builds a new n-CPDA Ark that mimics A and

that is rank-aware in the following sense. Take an n-CPDA

and assume that states are coloured by integers. Consider a

finite run λ of A and assume that the top1-element in the

last configuration of λ has an n-link: then the link rank is

defined as the smallest colour encountered since the creation

of the original copy of the current n-link. An n-CPDA is

rank-aware just if there is some function ρ from its stack

alphabet into the set of colours such that at any point in

a run of the automaton, if the top1-element has an n-link,

then applying ρ to it gives the link rank. Then from Ark one

naturally gets a new parity game Grk and a transformation

ν1 from any vertex v in G to a vertex ν1(v) in Grk such that

Éloı̈se wins in G from v iff she wins from ν1(v) in Grk. One

also proves that regular sets of configurations are preserved

by ν−1
1 : hence it suffices to prove that winning regions are

regular for games generated by rank-aware n-CPDA.

2) We now construct a new n-CPDA game that makes no

use of n-links. This game mimics Grk except that whenever

a player wants to perform a pushγ,n
1 action on the stack,

this is replaced by the following negotiation between the

players:

• Éloı̈se has to provide a vector
−→
R = (R0, · · ·Rd) ∈

(2Qrk)d+1 — here Qrk are the control states of Ark —

whose intended meaning is the following: she claims that

she has a strategy such that if the newly created link (or a

copy of it) is eventually used by some collapse then it leads

to a state in Ri where i is the smallest colour visited since

the original copy of the link was created.

• Abelard has two choices. He can agree with Éloı̈se’s

claim, pick a state q in some Ri and perform a popn action

whilst going to state q (through an intermediate dummy

vertex coloured by i): this is the case where Abelard wants to

simulate a collapse involving the link. Alternatively Abelard

can decide to push the symbol (γ,
−→
R) without appending a

link to it.

Later in the play, if the top1-element is of the form (γ,
−→
R),

and if the player controlling the current configuration wants

to simulate a move to state q that collapses the stack, then

this move is replaced by one that goes to a dead end vertex.

This is deemed winning for Éloı̈se iff q ∈ Ri where i
is the link rank found on the current top1-element, which

corresponds to the smallest colour visited since the original

copy of symbol (γ,
−→
R) was pushed onto the stack (recall

that Ark is rank-aware). The intuitive idea is that, when

simulating a collapse (involving an order-n link), Éloı̈se

wins iff her initial claim on the possible reachable states

by following the link was correct. Otherwise she loses.

Call Glf (lf for n-link free) this new game. Then one can

define a transformation ν2 from any vertex v in Grk to a

vertex ν2(v) in Glf such that Éloı̈se wins in Grk from v
iff she wins from ν2(v) in Glf . One also proves that regular

sets of configurations are preserved by ν−1
2 : hence it suffices

to prove that winning regions are regular for order-n games

that have no n-links.

Let us briefly explain how ν2 works as it motivated our

definition of automata recognising collapsible stackss. ν2
takes a collapsible stacks and transforms it into a stack where

every symbol γ with an n-link is replaced by some symbol

(γ,
−→
R) without any link. Hence, one needs to explain how

−→
R

is defined. Consider the stack obtained by removing every

symbol above γ and by collapsing (hence the new topn

stack is the targeted one), and let R be the set of states such

that Éloı̈se wins in Grk from this state with this new stack

content: then
−→
R = (R, · · · , R). An automaton deciding

whether a configuration in Glf is winning will process the

stack and encode on its control state a subset of states (of the

CPDA) that are the winning ones at every position of the

stack. To decide if a configuration is winning in Grk one

computes on-the-fly its image under ν2 and simulates the

126126

previous automaton. This image can be inferred as the only

information needed (i.e. R) is precisely what is computed

by the automaton and the information is available following

the n-links in our model of automata.

Example 5. Assume we are playing a two-colour parity

game. Let

s = [[[α]] [[][αβ γ]] [[][αβ γ]]],

R = {r | (r, [[[α]]]) is winning for Éloı̈se in Grk} and
−→
R =

(R,R). Then

ν2(s) = [[[α]] [[][αβ (γ,
−→
R)]] [[][αβ (γ,

−→
R)]]].

3) The last step is to construct an (n − 1)-CPDA game

from which one can reconstruct the winning region in Glf .

This can be done using the concept of abstract pushdown

games developed in [4] and noting that order-n games that

have no n-links are a special class of such games. Then

using induction hypothesis and extending the results in [4]

one concludes that the winning regions are regular in Glf .

Since the class of n-CPDA graphs is closed under Carte-

sian product with finite structures, Theorem 4 directly leads

to a characterisation of µ-calculus definable sets over those

graphs.

Corollary 1. The µ-calculus definable sets over CPDA-

graphs are regular.

Proof (Sketch): Take a CPDA-graphG and a µ-calculus

formula ϕ. From ϕ, it is well known (see for instance [1])

how to construct a finite rooted graph Gϕ and a parity game

G over the synchronized product of G and Gϕ such that,

for any vertex v in G the formula ϕ holds at v iff Éloı̈se

wins in G from (v, r) where r is the root of Gϕ. As the

class of CPDA graphs is closed under Cartesian product

with finite graphs, G is a CPDA parity game. Hence to

decide whether ϕ holds in a configuration v it suffices to

simulate on (v, r) the automaton (constructed in Theorem

4) accepting the (regular) winning region for Éloı̈se in G.

This easily implies that the set of vertices where ϕ holds in

G is itself regular.

V. MODAL µ-CALCULUS AND MSO REFLECTIONS

Our first task is to prove Theorem 2.

Proof of Theorem 2: We concentrate on (ii) as it implies

(i) (cf. Remark 1). Fix an order-n recursion scheme S =
〈Σ,N ,R, I 〉 and let t be its value tree. Let ϕ be a µ-

calculus formula. Using Theorem 1, we can construct an

n-CPDA A = 〈A ∪ {ε},Γ, Q, δ, q0, F 〉 and a mapping ρ :
Q→ Σ such that t is the tree generated by A and ρ.

Let U be the unfolding of G(A) from its initial configu-

ration and Uε be the ε-closure of U . A node π of Uε is a

path in G(A) starting from the initial configuration of A and

ending in some configuration (qπ, sπ). By definition, there

exists an ismorphism h from Uε to Dom(t) such that for all

nodes π of Uε, t(h(π)) = ρ(qπ).
Assume that for every state q of A, we have a predicate

pq that holds at a node π of Uε iff q = qπ. Then the formula

ϕ can be translated to a formula ϕ′ on Uε (i.e. h(||Uε||ϕ′) =
||t||ϕ) as follows: for each a ∈ Σ, replace every occurrence

of the predicate pa in ϕ by the disjunction
∨

q∈Q,ρ(q)=a pq.

In turn ϕ′ can be translated to a formula ϕε on U
(i.e. h(||Uε||ϕ′) = ||U ||ϕε

). Take the formula ϕε obtained

by replacing in ϕ every sub-formula of the form ⋄aψ by

⋄a(µX.[(ψ ∧ ¬(⋄ε true)) ∨ ⋄εX]), i.e. replace the assertion

“take an a-edge to a vertex where ψ holds” by the assertion

“take an a-edge to some vertex from which one can reach,

via a finite sequence of ε-edges, a vertex where ψ holds and

which is not the source vertex of an ε-labelled edge”.

As unfolding preserves µ-calculus definable properties,

we have that π ∈ ||Uε||ϕ′ iff π ∈ ||U ||ϕε
iff (qπ , sπ) ∈

||G(A)||ϕε
. Using Corollary 1 we know that the set of con-

figurations of G(A) that satisfy ϕε is regular, i.e. ||G(A)||ϕε

is accepted by some automaton B.

Using Theorem 3, we construct a new n-CPDA A′ with

a set Q′ of state together with a set F ⊆ Q′ and a mapping

χ : Q′ → Q such that:

• restricted to the reachable configurations, the respective

ε-closures of G(A) and G(A′) are isomorphic

• for any configuration (q, s) of A′, the corresponding

configuration of A has state χ(q) and belongs to L(B)
if and only if q ∈ F .

It follows at once that the tree tϕ is defined by A′ with the

mapping ρ′ defined as follows: for all q ∈ Q′, ρ′(q) := ρ(q)
if q 6∈ F , and ρ′(q) := ρ(q) otherwise. �

Remark 3. There are two natural questions concerning

complexity. The first one concerns the algorithm in Theorem

2: it is n time exponential in both the size of the scheme and

the size of the formula. This is because we need to solve an

order-n CPDA parity game built by taking a product of an

order-n CPDA equi-expressive with S (thanks to Theorem 1

its size is polynomial in the one of S) with a finite transition

system of polynomial size in that of ϕ. The second issue

concerning complexity is how the size of the new scheme

(obtained in the second point of Theorem 2) relates to that

of S and ϕ. For similar reasons, it is n time exponential in

the size of S and ϕ.

It is natural to ask if trees generated by HORS are

reflective w.r.t. MSO. (Modal µ-calculus and MSO are

equivalent for expressing properties of a deterministic tree

at the root, but not other nodes; see e.g. [10]. Indeed one

would need backwards modalities to express all of MSO in

µ-calculus.) Consider the following property (definable in

MSO but not in µ-calculus) on nodes u of a tree: “u is the

right son of an f -labelled node, and there is a path from u
to an a-labelled node which contains an odd occurrences of

g-labelled nodes”. Returning to the scheme of Example 1

127127

one would expect the following answer to the global model-

checking problem for the corresponding MSO formula:






I → F g a
F ϕx → f (F g (ϕx)) (g x)
F ϕx → f (F g (ϕx)) (g x)

f

f

f

.

.

.
g

g

g

a

g

g

a

g

a

Corollary 2 (MSO Reflection). Let t be a Σ-labelled tree

generated by an order-n recursion scheme S, and ϕ(x) be

an MSO-formula.

(i) There is an algorithm that transforms (S, ϕ) to an

order-n CPDA A such that L(A) = ||t||ϕ.

(ii) There is an algorithm that transforms (S, ϕ) to an

order-n recursion scheme that generates tϕ.

Proof (Sketch): As before, we concentrate on (ii) which

implies (i). Using the well-known equivalence between MSO

and automata (see [20]), the question of whether a node u
of t satisfies ϕ(x) can be reduced to whether a given parity

tree automaton B accepts the tree tu that is obtained from t
by marking the node u (and no other node).

In order to construct tϕ, we first annotate t with informa-

tion on the behaviour of B on the subtrees of t. We mark

t by µ-calculus definable sets to obtain an enriched tree

denoted t̄. With each pair (q, d) ∈ Q×Dir(Σ), we associate

a formula ψq,d such that t, u |= ψq,d iff the d-son of u exists

and B has an accepting run on t[u d] starting from q (here

t[v] is the subtree of t rooted at v). By Theorem 2, t̄ can be

generated by an n-CPDA.

Let Σ′ be the alphabet of t̄. For every node u, one can

decide, using the annotations on t̄ and considering only the

path from the root to u, whether B accepts tu. Precisely,

there is a regular L ⊆ (Σ′∪Dir(Σ′))∗ such that a node u of

t satisfies ϕ iff the word obtained by reading in t̄ the labels

and directions from the root to the node u belongs to L.

Finally an n-CPDA generating tϕ is obtained by taking a

synchronised product between an n-CPDA accepting t̄ and

a finite deterministic automaton recognising L.

Remark 4. In a Σ-labelled tree, a node u may be identified

with the word obtained by reading the node-labels and

directions along the unique path from the root to u. Call

this word path(u) ∈ (Σ ∪ Dir(Σ))∗. Let R be a class of

generators of Σ-labelled trees, and B be a finite-state word

automaton over the alphabet Σ ∪ Dir(Σ). Let R ∈ R and

we write [[R]] for the tree defined by R. We say that RB is

a B-reflection of R just if (i) Dom(R) = Dom(RB), and

(ii) suppose a node u of [[R]] has label f , then the label

of node u of [[RB]] is f if B accepts path(u), and it is f
otherwise. We say that R is reflective w.r.t. regular paths just

if there is an algorithm that transforms a given pair (R,B)
to RB. The proof of Corollary 2 can be trivially adapted to

obtain the following (more general) result.

Theorem 5. Let R be a class of generators of Σ-labelled

trees. If R is reflective w.r.t. modal µ-calculus and w.r.t. reg-

ular paths, then it is also reflective w.r.t. MSO.

A natural extension of this result is to use MSO to

define new edges in the structure and not simply to mark

certain nodes. This corresponds to the well-know mechanism

of MSO-interpretations [6]. Furthermore to obtain trees,

we unfold the obtained graph from one of its nodes. As

MSO-interpretations and unfolding are graph transforma-

tions which preserve the decidability of MSO, we obtain

a tree with a decidable MSO-theory. Combining these two

transformations provides a very powerful mechanism for

constructing infinite graphs with a decidable MSO-theory.

If we only use MSO-interpretations followed by unfolding

to produce trees starting from the class of finite trees, we

obtain the class of value trees of safe recursive schemes [13],

[5]. This class of trees is conjectured to be a proper subclass

of the value trees of recursion schemes.

We present here a definition of MSO-interpretations which

is tailored to our setting. An MSO-interpretation over Σ-

labelled trees is given by a domain formula ϕδ(x), a formula

ϕσ(x) for each σ ∈ Σ and a formula ϕd(x, y) for each

direction d ∈ Dir(Σ). When applied to a Σ-labelled tree

t, I produces a graph, denoted I(t), whose vertices are the

vertices of t satisfying ϕδ(x). A vertex u of I(t) is coloured

by σ iff u satisfies ϕσ(x) in t. Similarly there exists an edge

labelled by d ∈ Dir(Σ) from a vertex u to a vertex v iff the

pair (u, v) satisfies the formula ϕd(x, y) in t.

We say that I is well-formed if for all Σ-labelled trees t,
every vertex u of I(t) is coloured by exactly one σ ∈ Σ
and has exactly one out-going edge for each direction

in Dir(σ). Here we restrict our attention to well-formed

interpretations,4 which ensures that after unfolding of the

interpreted graph, we obtain a deterministic tree respecting

the arities of Σ.

Consider the MSO-interpretation I which removes all

nodes below a node labelled by g. All colours are preserved

except for g which is renamed to g. Finally all edges are

preserved and a loop labelled by g is added to every node

previously coloured by g. It is easily seen that I is a well-

formed interpretation. By applying I to the tree t of the

example above and then unfolding it from its root, we obtain

the tree on the right which is generated by the scheme on

the left:

4Given an MSO-interpretation I , we can decide if it is well-form. In
fact, we can construct an MSO-formula ϕI which holds on the complete
binary tree iff I is well-formed [17].

128128





I → F g (g a)
G → g G

F ϕx → f (F g (ϕx))G
F ϕx → f (F g (ϕx))x

f

f

f

.

.

.
g

g

g

.

.

.

g

g

a

g

g

g

.

.

.

More generally, we have the following result.

Corollary 3. Let t be a Σ-labelled tree given by an order-

n recursion scheme S and let I be a well-formed MSO-

interpretation. The unfolding of I(t) from any vertex u can

be generated by an order-(n+ 1) recursion scheme.

Remark 5. A natural question is whether every tree gener-

ated by order-(n + 1) recursion scheme can be obtained

by unfolding a well-formed MSO-interpretation of a tree

generated by an order-n recursion scheme. This is for in-

stance true when considering the subfamily of safe recursion

schemes [12], [5]. A positive answer for general recursion

schemes would imply safe schemes of any given order are as

expressive (for generating trees) as unsafe ones of the same

level. This can be established by induction on the order

with the base case following from the definition of safety.

However already at order 2, unsafe recursion schemes are

widely conjecture to generate more trees then safe ones (see

for instance the so-called Urzyczyn language in [15]).

Conclusions and Further Directions: Using a construc-

tive notion of logical reflection, we have shown: (i) The

global model checking problem may be approached fruit-

fully from a new, internal angle. (ii) The class of trees

generated by HORS is robust: it is closed under both modal

µ-calculus and MSO reflections, and the operation à la

Caucal of MSO-interpretation followed by tree unfolding.

We believe that our results on reflection is relevant to

verification and program transformation; demonstrating that

it is so is our most pressing future work.

REFERENCES

[1] J. Bradfield and C. Stirling. Modal logics and mu-calculi.
In Handbook of Process Algebra, pages 293–332. Elsevier,
North-Holland, 2001.

[2] C. Broadbent, A. Carayol, C.-H. L. Ong, and O. Serre.
Recursion schemes and logical reflection. Preprint, 2010.
www.liafa.jussieu.fr/∼serre.

[3] C. Broadbent and C.-H. L. Ong. On global model checking
trees generated by higher-order recursion schemes. In Proc.
of FoSSaCS 2009, pages 107–121, 2009.

[4] A. Carayol, M. Hague, A. Meyer, C.-H. L. Ong, and O. Serre.
Winning regions of higher-order pushdown games. In Proc.
of LICS’08, pages 193–204. IEEE, 2008.

[5] D. Caucal. On infinite terms having a decidable monadic
theory. In Proc. of MFCS’02, pages 165–176, 2002.

[6] B. Courcelle. Monadic second-order definable graph trans-
ductions: A survey. TCS, 126(1):53–75, 1994.

[7] B. Courcelle. The monadic second-order logic of graphs IX:
machines and their behaviours. TCS, 151:125–162, 1995.

[8] E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus and
determinacy. In Proc. of FoCS’91, pages 368–377.

[9] M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre.
Collapsible pushdown automata and recursion schemes. In
Proc. of LICS’08, pages 452–461. IEEE, 2008.

[10] D. Janin and I. Walukiewicz. On the expressive completeness
of the propositional mu-calculus with respect to monadic
second order logic. In Proc. of Concur’96, pp. 263–277.
1996.

[11] A. Kartzow. Collapsible pushdown graphs of level 2 are tree-
automatic. In Proc. of STACS 2010, pp. 501-512. 2010.

[12] T. Knapik, D. Niwiński, and P. Urzyczyn. Higher-order
pushdown trees are easy. In Proc. of FoSSaCS02, pp 205–222.

[13] T. Knapik, D. Niwiński, P. Urzyczyn, and I. Walukiewicz.
Unsafe grammars and panic automata. In Proc. of ICALP’05,
volume 3580 of LNCS, pages 1450–1461. Springer, 2005.

[14] D.A. Martin. Borel determinacy. Annals of Mathematics,
102(363-371), 1975.

[15] J. de Miranda. Structures generated by higher-order grammars
and the safety constraint. Ph.D. dissertation, University of
Oxford, 2006.

[16] C.-H. L. Ong. On model-checking trees generated by higher-
order recursion schemes. In Proc. of LICS’06, pages 81–90.

[17] M. O. Rabin. Decidability of second-order theories and
automata on infinite trees. Trans. AMS, 141:1–35, 1969.

[18] O. Serre Note on winning positions on pushdown games with
omega-regular winning conditions. IPL, 85:285-291, 2003.

[19] C. Stirling. Dependency tree automata. In Proc. of FoS-
SaCS09, pp 92–106.

[20] Wolfgang Thomas. Languages, automata, and logic. In
Handbook of Formal Language Theory, volume III, pages
389–455. Springer, 1997.

[21] M. Y. Vardi and N. Piterman. Global model-checking of
infinite-state systems. In Proc. of CAV 2004, pages 387–400.

129129

