
On the representation of McCarthy’s amb

in the π-calculus

Arnaud Carayol a,b Daniel Hirschkoff b Davide Sangiorgi c

aIRISA, Campus de Beaulieu, 35042 Rennes, France

bLIP, ENS Lyon, 46 allée d’Italie, 69364 Lyon Cedex 7, France

c Dipartimento di Scienze dell’Informazione, Universita di Bologna, Via di Mura

Anteo Zamboni 7, 40127 Bologna, Italy

Abstract

We study the encoding of λ[], the call by name λ-calculus enriched with McCarthy’s
amb operator, into the π-calculus. Semantically, amb is a challenging operator, for
the fairness constraints that it expresses. We prove that, under a certain inter-
pretation of divergence in the λ-calculus (weak divergence), a faithful encoding is
impossible. However, with a different interpretation of divergence (strong diver-

gence), the encoding is possible, and for this case we derive results and coinductive
proof methods to reason about λ[] that are similar to those for the encoding of pure
λ-calculi. We then use these methods to derive the most important laws concerning
amb. We take bisimilarity as behavioural equivalence on the π-calculus, which sheds
some light on the relationship between fairness and bisimilarity.

1 Introduction

The operator of ambiguous choice, amb, was first introduced in [McC63], to
describe a form of composition of (partial) functions that is liable to return one
among several results. [McC63] describes amb by giving its main properties.
The two most important properties have to do with fairness. One property says
that amb is bottom-avoiding, meaning that the composition of a function with
a function that is undefined should return the result of the former function.
The other important property says that amb behaves as a non-deterministic
choice whenever the results computed by the functions being composed are

Email addresses: Arnaud.Carayol@irisa.fr (Arnaud Carayol),
Daniel.Hirschkoff@ens-lyon.fr (Daniel Hirschkoff),
Davide.Sangiorgi@cs.unibo.it (Davide Sangiorgi).

Preprint submitted to Theoretical Computer Science 10 September 2017

both defined: either of them may be returned, in an unpredictable way. The
usefulness for an operator having the properties of amb has come to light for
the specification of systems, in particular operating systems, essentially be-
cause a form of fair non-determinism is required to merge incoming messages
(see [Hen82,Tur90], and also [HO90], that studies amb and other nondeter-
ministic operators with respect to this issue). The main reason, however, for
our interest in amb is that, semantically, 40 years later, amb remains a very
challenging operator [Las98,Mor98,LM99,Pit01,FK02].

The difficulties introduced by amb are clear in λ[], the call-by-name λ-calculus
enriched with the binary operator 8 that is a ‘realisation’ of McCarthy’s amb.
The two standard approaches to obtain semantics and analysis techniques for
λ-calculi are the denotational and the operational ones. The former is based
on domain theory; in the latter, applicative bisimilarity [Abr90] is exploited
to reason about contextual equivalence. It would be very hard and tedious
to prove the laws using a direct application of the definition of contextual
equivalence, due to its heavy quantification on contexts. The problem for de-
notational analyses is that amb is not continuous (see [Mor98] for a discussion).
The operational approach has been followed by Moran, Lassen and Pitcher,
in a series of works [Las98,Mor98,LM99,Pit01]. The question of proving con-
gruence of applicative bisimilarity (or a similar coinductively defined relation,
that coincides with or at least gives a good approximation of contextual equiv-
alence) is however still open for λ[]. The usual technique for proving congruence
of applicative bisimilarity in λ-calculi is Howe’s [How96], but this technique
does not seem to work in presence of amb (see [LM99]). Therefore, to prove
a set of characteristic laws of amb, some ‘partial’ proof techniques have been
developed, in particular in [Mor98,LM99] (these techniques are partial in the
sense that, taken separately, none of them can be used to derive all the laws
– see also Section 4).

In the present paper, we explore an alternative way to give the semantics of
λ[], via an encoding into the (asynchronous) π-calculus. There were various
reasons for carrying out this study. The first reason is the quest for proof
methods to reason about languages like λ[] that contain operators expressing
fairness constraints. The problem of encoding the λ-calculus (as well as parallel
and nondeterministic extensions of it) into the π-calculus has been extensively
studied – see e.g. [Mil90,San92,BL00,SW01]. In the case of the call-by-name
λ-calculus, for example, the π-calculus semantics induces an equivalence on
λ-terms that coincides with the classical Lévy-Longo Tree semantics [SW01],
which shows an agreement between the π-calculus semantics and standard
denotational analyses of the call-by-name λ-calculus. Moreover, bisimulation
is the canonical equivalence in the π-calculus, and comes with a well-developed
theory, as well as powerful proof techniques that alleviate the task of building
bisimulation proofs. One can therefore hope that working in the π-calculus

2

can help in defining useful bisimulation-based techniques for λ[].

A second motivation for this study is expressiveness. The π-calculus has been
shown to be a very powerful formalism. We want to understand whether, and
under which conditions, the π-calculus can encode an operator as sophisticated
as amb. We are not aware of other attempts at providing π-calculus encodings
of operators that express fairness constraints.

Another motivation is the question of fairness in the π-calculus. While the
standard SOS rules of the π-calculus make no reference to fairness, the use
of bisimulation or of similar semantical equivalences introduces this kind of
property. The definition of a semantics for a fair operator like amb is a way
to gain a better understanding of this issue. To illustrate this point, consider
the π-calculus term τω | a, where τω represents a process that can perform
infinitely many internal actions, a is an output at channel a without value
exchange, and ‘|’ is the operator of parallel composition. Under bisimulation
equivalence, as opposed to, say, testing equivalence, this process is deemed
the same as the process a. One way of interpreting this equality is to say
that bisimilarity ignores divergence. However, another way of looking at the
equality is to say that bisimilarity encompasses some fairness: under a fair
implementation of parallel composition, the left component τω cannot always
prevail, hence eventually the action a on the right-hand side will be executed. It
is precisely this second – and usually neglected – interpretation of bisimilarity
that we are addressing, trying to understand its significance on a non-trivial
concrete example.

When studying non-deterministic operators like amb, contextual equivalence
is defined by observing the ability for two terms, in any context, to exhibit
convergences and divergences. Two kinds of divergence can be distinguished
(see e.g. [NC95]): a computation in which convergence is impossible is a strong
divergence, while a weak divergence corresponds to an infinite computation
along which the possibility to converge to a value is never lost. Both forms
of divergence arise in λ[]: first notice that Ω, the usual always diverging term,
is strongly divergent. To give an example of a weak divergence, we use the
operator of internal choice, ⊕, that can be encoded in λ[] as follows:

M ⊕ N
def
= (KM 8KN) I ,

K and I being the usual combinators for selection and identity. By definition
of λ[], M ⊕ N can nondeterministically evolve to M or N . Now consider the
term

T
def
= Fix λx. (x⊕ I)

(where Fix is defined as AA, with A
def
= λxy. y (x x y)). Because of the

‘erratic’ nature of internal choice, T exhibits a weak divergence, along which
convergence to I is repeatedly discarded. In the operational studies of amb in
the literature, strong and weak divergences are not distinguished.

3

In this paper, we prove that if we do not distinguish between the two kinds
of divergences, there exists no faithful encoding of λ[] into the π-calculus. By
‘faithful’, we mean that the encoding should be sound and should mimic the
behaviour of λ[] terms, at least as far as divergence and reduction to values
is concerned. This basically means that when taking weak divergences into
account, encoding λ[] in the π-calculus is not possible. This result holds for
the π-calculus as well as for any extension of π-calculus with finitary operators.

We consequently adopt a contextual equivalence in which only strong di-
vergences are observed, and weak divergences are neglected. This restriction
makes sense from the semantical point of view because the difference between
strong and weak divergence does not affect the characteristic laws of amb: we
refer here to a set of laws that capture amb’s essential properties (these laws
are studied for example in [Mor98] — as mentioned above, the original spec-
ification of amb [McC63] is given in a rather informal way by mentioning a
set of behavioural properties). We also show that neglecting weak divergences
makes sense from an operational point of view. This is achieved by defining
an operational semantics for amb in which weakly divergent behaviours have
a null probability. The intuition is that weak divergences are ’unlikely’ to hap-
pen, and can therefore be neglected (a similar argument is already present
in [NC95] in a slightly different setting).

Under the strong interpretation of divergence, we show that the encoding
of λ[] into the π-calculus is possible, and we derive results and coinductive
proof methods to reason about λ[] that are similar to those that have been
developed for the encodings of pure λ-calculi (see [SW01]). We then use these
methods to derive the characteristic laws of McCarthy’s amb. Using π-calculus-
specific proof techniques, the proofs for some of these laws are very simple,
in particular those of the two key properties of amb, the bottom-avoidance
law M 8Ω ∼=M M , and the law V 8V ′ ∼=M V ⊕ V ′ (where V and V ′ are
λ-abstractions). We also study the extension of λ[] with local call-by-value,
again showing an encoding into the π-calculus and then using the encoding to
derive algebraic laws in the source calculus.

A preliminary version of this work was presented in EXPRESS’03 [CHS03].
This presentation includes full proofs, that were not given in [CHS03], as well
as some new material (in particular in 2.1.3 and 3.3.2).

Outline. We present λ[] and the π-calculus, and establish some preliminary
results we need about these calculi in Section 2. In Section 3, we analyse the
setting in which we study McCarthy’s amb, and we give some results about
this framework that motivate the study in the next section. In Section 4, we
introduce our π-calculus encodings of λ[], and present a number of applica-
tions and developments. We conclude and discuss further research directions

4

in Section 5.

2 Calculi

This section contains background material. It does also contain some novel re-
sults: a new semantics for λ[] and some new up-to proof techniques for coupled
simulation.

2.1 The λ-calculus with Ambiguous Choice

2.1.1 Definition of λ[]

We recall here the definition of λ[], the call-by-name λ-calculus extended with
amb.

We suppose we have an infinite set of variables, ranged over with x, y,
Terms of λ[], ranged over with M,N, . . . , are given by the following grammar:

M
def
= x | λx.M | M1M2 | M1 8M2 .

Bound and free variables are defined as usual, and we will sometimes write
λx1 . . . xk.M for λx1.λxk.M . A closed term is a term that contains no
free variable. Substitution (written M [N/x]) and α-conversion are defined as
usual, and we will work up-to α-conversion. Closed values, ranged over with
V, V ′, . . . , are abstractions. A context, ranged over with C,C ′, . . . is a term
containing occurrences of a hole, written [·], in it. Given a context C, C[M]
denotes the term obtained by replacing the hole with a term M in C. Given
M , C is closing if C[M] is closed, this terminology being extended to the case
where C is closing for several terms.

The following λ[] terms will be useful below:

I
def
= λx. x Ω

def
= (λx. x x) (λx. x x)

K
def
= λx y. x Fix

def
= AA where A

def
= λx y. y (xx y) .

2.1.2 Lassen and Moran’s operational semantics for λ[]

In [LM99], the operational semantics of λ[] is defined on decorated λ[] terms.
These are λ[] terms in which every occurrence of an amb is of the formM k8k

′

N ,
where k and k′ are natural numbers. [LM99] also defines an operation, written

5

Beta (λx. M) N ֌ M [N/x] ValL V m+18n N ֌ V

Lazy
M ֌ M ′

M N ֌ M ′ N
RedL

M ֌ M ′

M m+18n N ֌ M ′ m8n N

Sched M 080N ֌ M m8nN if m > 0 and n > 0

Fig. 1. Operational semantics for decorated λ[] terms

·♯, that decorates all ambs in a term with counters set to zero. A decorated
term M is initialised if M = M ♯

0 for some non-decorated term M0.

Definition 1 (Notations for relations) If R is a binary relation over ele-
ments of a set S, R−1 denotes the inverse of R, while R+ and R∗ denote the
transitive (resp. transitive and reflexive) closures of R. Composition of two
relations R and S is written RS, and Rn, for n ≥ 1, stands for the result
of composing n times relation R with itself. T R means that there exists T ′

such that T RT ′, and T Rω stands for the existence of an infinite sequence of
elements of S, T0 = T, T1, . . . such that for all i, Ti RTi+1 (and similarly for
TRn in the case of finite computations).

Definition 2 () Relation֌, defined on decorated λ[] terms, is given by the
rules of Fig. 1 (symmetrical versions of rules ValL and RedL are omitted).

֌ induces a relation on pure λ[] terms by setting M N
def
= M ♯ ֌+ N ♯.

We define, for any n ≥ 1, n (resp. <n) by M n N
def
= M ♯ ֌n N ♯

(resp. M <n N
def
= M ♯ ֌k N ♯ for some 0 < k < n).

Intuitively, the natural integers decorating amb compositions can be seen as
counters that are used to schedule the execution of the terms being composed:
in M k8k′ N , term M (resp. N) has the ‘right’ to perform k (resp. k′) reduction
steps. In order to avoid one of the two components to reduce ad infinitum
without letting the other one proceed, a synchronisation happens when (and
only when) both counters reach 0, at which time these are updated using
non-null values (rule Sched).

To our knowledge, all existing operational semantics for λ[] exploit a form of
resource such as these decorations to ‘program’ amb’s behaviour by the means
of a scheduler. We propose in 2.1.3 a reduction relation that works directly
on unannotated λ[] terms and that coincides with (Proposition 6). We first
establish the following preliminary results about֌ and , that will be useful
for this characterisation.

Lemma 3 For any decorated terms P and Q,

(1) if P ♯ ֌+ (λx.N) then (λx.N) is initialised;

6

(2) if P ♯ ֌+ (λx.N)M then (λx.N)M is initialised.

Proof. We simultaneously prove both properties by induction on the length
n of P ♯ ֌+ (λx.N) and P ♯ ֌+ (λx.N)M .

Suppose first n = 1. In both cases, P ♯ = (λx.K)K ′ and Q = K[K ′/x]. As K
and K ′ are initialised, so is Q.

Suppose now n > 1. We first consider the case where P ♯ ֌n λx.N . Let
(Mi)i∈[0,n] be a sequence of terms such that M0 = P ♯ and Mn = λx.N and for
all i ∈ [0, n− 1], Mi֌Mi+1. We distinguish two cases:

• If for some j ∈ [1, n− 1], Mj is a β-redex then M0
<n Mj and Mj Mn.

By applying part 2 of the induction hypothesis to M0
<n Mj , we obtain

that Mj is initialised. Then we can apply part 1 of the induction hypothesis
to Mj Mn to conclude.

• If none of the (Mi)i∈[1,n−1] is a β-redex then P = P1 8P2 and either P1 =
λx.N , or P2 = λx.N , or P1

<n λx.N , or P2
<n λx.N . By applying if

necessary the induction hypothesis, we can conclude in all cases that λx.N
is initialised.

The case P ♯ ֌n (λx.N)M is similar to the previous one. ✷

Lemma 4 Suppose P n Q for some n ≥ 2. Then:

- if P = P1 8P2 then
• either Q = Q1 8Q2, P1

<n Q1 and P2
<n Q2,

• or Q = λx.M and we have either P1
<n Q, or P2

<n Q, or P1 = Q,
or P2 = Q;

- if P = MN then
• either M n M ′ and Q = M ′N ,
• or there exists R such that P <n R and R <n Q.

Proof. Let (Pi)i∈[0,n] be a sequence of terms such that P0 = P ♯, Pn = Q♯ and
for all i ∈ [0, n − 1], Pi ֌ Pi+1. In the following, αi will stand for the name
of the last inference rule used to infer Pi֌ Pi+1. All the cases of this lemma
are obtained by examining the sequence (αi)i∈[0,n−1].

• Suppose that P = P1 8P2. All the αis are of type Red,Val or Sched.
· If none of the αis is of type Val then for each i, Pi = P 1

i 8P 2
i . Moreover,

we have the following equalities: P 1
0 = P1,P

2
0 = P2 and for all i ∈ [0, n−1]

and j ∈ {1, 2}, either P j
i = P j

i+1 or P j
i ֌ P j

i+1. It is straightforward to
check that P 1

0 ֌
nL P 1

n and P 2
0 ֌

nR P 2
n , where nL (resp. nR) is equal

to the number of αis of type RedL (resp. RedR). We claim that nL and

7

Beta (λx. M) N ։ M [N/x]

Lazy
M ։ M ′

M N ։ M ′ N
Trans

M ։ M ′ M ′ ։ M ′′

M ։ M ′′

Par
M ։ M ′ N ։ N ′

M 8N ։ M ′ 8N ′ ValL

M ։ V or M = V

M 8N ։ V

Fig. 2. Operational semantics for λ[]

nR belong to [1, n − 1]. Suppose that nL is null. As P0 is initialised, α0

is of type Sched and P1 = P 1
0

n+18m+1 P 2
0 . As nL = 0, we would have

Pn = P 1
0

n+18k P 2
n which contradicts the fact that Pn is initialised. As P j

0

and P j
n are initialised, we can conclude that P j

0
<n P j

n for j ∈ {1, 2}.
· If one of the αis is of an instance of rule Val then it must be αn−1 and
hence Q = λx.M . Using a similar method as above, we can establish that
either P1

<n Q, or P2
<n Q, or P1 = Q, or P2 = Q.

• Now suppose that P = MN .
· If one of the αis is an instance of rule Beta, then let j be the smallest
j such that αj = Beta. If j = 0 then we take R = P1 and P 1 R and

R n−1 Q. If j > 0 then according to Lem. 3, Pj = P ♯
j , P0

<n Pj and
Pj

<n Pn.
· If none of the αis is an instance of rule Beta then all the αis are instances
of the rule Lazy. For all i ∈ [0, n − 1], Pi = Mi N and Mi ֌ Mi+1. We
have P0 = M0 N , Pn = Mn N and M0

n Mn. ✷

2.1.3 A characterisation of

Before analysing the properties of computation in λ[], we start by characterising
 using a simpler reduction relation, written ։.

Definition 5 (։) Relation ։ is given by the rules of Figure 2, where the
symmetrical version of ValL is omitted.

Note that ։ is defined directly on λ[] terms. In defining ։, we capture the
transitive, non-reflexive closure of the underlying reduction relation. In rule
Par both components of an amb are allowed to evolve. Rules ValL, ValR
make the choice between components of an amb, when one of the branches
converges.

Proposition 6 ։= .

Proof. We prove both inclusions.

8

V1 ⊕ (V2 ⊕ V3)

V1

V2 V3

(V1 ⊕ (V2 ⊕ V3)) 8 V4

V1 V2 V3 V4

Fig. 3. Derivations trees of V1 ⊕ (V2 ⊕ V3) and V1 ⊕ (V2 ⊕ V3) 8V4 for ։

- From left to right: we prove by induction on the derivation tree of P ։ Q
and by case analysis on the last rule being used that P ։ Q implies P Q.
We only present the most interesting case, when the last rule being used

is Par, to infer P1 8P2 ։ Q1 8Q2. By applying the induction hypothesis
to the premises P1 ։ Q1 and P2 ։ Q2, we have P1 Q1 and P2 Q2.
Let n1 and n2 be the strictly positive integers such that P1

n1 Q1 and
P2

n2 Q2. It is straightforward to check that:

P ♯ = P ♯
1
080 P ♯

2 ֌Sched P ♯
1
n18n2 P ♯

2 ֌
n1 Q♯

1
08n2 P ♯

2 ֌
n2 Q♯

1
080Q♯

2 = Q♯ .

Rule Sched can be used because n1 and n2 are non zero.
- From right to left: we prove by induction on the length of the derivation
P Q that P Q implies P ։ Q.
n = 1. In this case, we have P ♯ ֌ Q♯. By a straightforward induction on
the structure of P , we can prove that P ♯ = (λx.M)N1 . . . Nk for some
k ≥ 1 and Q♯ = M [x/N1]N2 . . . Nk (if k ≥ 2) or Q♯ = M [x/N1] (if k = 1).
In all cases, we have P ։ Q.

n ≥ 2. We proceed by case analysis on the structure of P and we distinguish
the same cases as in Lemma 4. All cases are trivial. ✷

2.1.4 Discussion about amb’s properties

Let us make some observations about the operational semantics defined by
։. If we consider the terms given on Figure 3 (where the Vis are values), we
see that, according to ։, amb composition makes trees degenerate and loose
their branching structure. Thus, in some sense, ։ misses some choices along
λ[] computations. This lack of precision can be seen as a drawback for defining
a bisimulation-based equivalence for λ[], since such an equivalence usually ex-
ploits an accurate analysis of the decisions that are made along computation.
Indeed, bisimulation equivalences are known to be more discriminating than
trace equivalence, intuitively because they are based on trees and not on sin-
gle executions (traces). In fact, on all terms of the form M 8 V , ։ defines a
big step semantics: such a term can only converge (immediately) to a value.
Relation։, together with the induced notions of convergence and divergence,
thus appears to be too imprecise to allow one to derive a suitable notion of

9

bisimulation. We shall return on this observation below.

amb vs. other operators. The setting provided by ։ allows us to com-
pare amb with other existing parallel or nondeterministic operators, and to
illustrate amb’s expressiveness. The simplest form of choice is given by ⊕, the
operator of internal choice. It can be defined in λ[] by

M ⊕N
def
= (KM 8KN) I .

We have that M ⊕ N ։ M and M ⊕ N ։ N , which corresponds to the
expected behaviour of internal choice, i.e., every branch of ⊕ may be selected,
independently from other considerations.

Countable choice may be implemented in λ[] as a term that can nondetermin-
istically reduce to λx1 . . . xn. I, for any n ≥ 0. The simplest way to achieve
this is by extending λ[] with a form of local call by value, brought by the tra-
ditional let. . . in construction (see 4.5 for a discussion on local call by value).
The corresponding term is then the following:

R
def
= Fixλz. ((let x=z in λy.x) 8 I) .

We remark that R ։ (let x=R in λy.x) 8 I, and R obviously cannot diverge
(as a consequence of the definition of amb). We can then show by induction
that R ։ λx1 . . . xn. I for any n ≥ 0. We shall see a similar construction in
the proof of Theorem 19. The term used in that proof shows that the definition
of R could be adapted to a calculus without let. . . in construct, but we have
preferred this presentation here for the sake of clarity.

The specification of the parallel or construct is based on a property of bottom
avoidance, saying that if one of the two branches converges to the value true,
then the whole term converges to true. In the case where the two branches
converge to false, then the whole term does so, and otherwise the computa-
tion diverges. Considering that the possible outcomes of the computation of
a boolean are true, false, or a divergence, there is no point in giving prop-
erties about fairness in the specification of parallel or. The following defini-
tion implements an operator having the requested properties in λ[], given an
if. . . then. . . else construct for case analysis on booleans:

M porN
def
= (if M then true else N) 8 (if N then true else Ω) .

This suggests that among existing concurrent and non-deterministic operators,
amb is very expressive.

10

2.1.5 Observational equivalence in λ[]

We now use ։ to define observational equivalence as in [LM99], by analysing
the possibility for two terms to converge and to diverge.

Definition 7 (⇓ and ⇑) A term M is convergent, written M ⇓, if there ex-
ists a value V s.t. M ։ V or M = V . M is divergent, written M ⇑, if
M ։ω.

Definition 8 (Observational equivalence, using weak divergence)
Two terms M and N are observationally equivalent, written M ∼=M N , iff
for any closing context C:

(C[M] ⇓ ⇐⇒ C[N] ⇓) and (C[M] ⇑ ⇐⇒ C[N] ⇑) .

2.2 The Asynchronous π-calculus

We suppose that we have an infinite set of names, also called channels, over
which we range with small letters: a, b, . . . , x, y, For the sake of the Asyn-
chronous π-calculus (in short, Aπ) encoding of Section 4, we shall translate a
λ[] variable using a π-calculus name, and we suppose that there is an injection
from variables to names so that we can keep letter x to refer to the encoding
of a variable x. (Possibly empty) name tuples are ranged over with x̃, ỹ,
Aπ terms, to which we shall refer simply as processes, are ranged over using
P,Q, . . . , and are defined as follows:

P
def
= 0

∣∣∣ P1|P2

∣∣∣ !P
∣∣∣ νx P

∣∣∣ x(ỹ).P
∣∣∣ x̄〈ỹ〉 .

0 is the inactive process, and | is parallel composition. The replicated process
!P represents an unbounded number of copies of P put in parallel. The restric-
tion operator ν declares a name which is private to a process. x̄〈ỹ〉 stands for
the output particle resulting from the (asynchronous) emission of tuple ỹ on
channel x, while x(ỹ).P is an input process listening on channel x, in which ỹ
are parameters to be instantiated upon communication. We sometimes write
νx, y P for νx νy P . Bound names in processes are defined by saying that
the input and restriction operators are binding. Contexts in Aπ are defined
along the lines of λ[] contexts.

The operational semantics for Aπ is defined by judgements of the form P
µ
−→

P ′, meaning that P is liable to evolve to P ′ by performing action µ. Actions
are defined as follows (bound names in actions are defined by saying that
restriction is binding):

µ
def
= a(x̃)

∣∣∣ νx̃ ā〈ỹ〉x̃⊆ỹ

∣∣∣ τ .

11

Out ā〈x̃〉
ā〈x̃〉
−−→ 0 In a(x̃).P

a(x̃)
−−→ P

Res
P

µ
−→ P ′

νa P
µ
−→ νa P ′ a 6∈ n(µ) Open

P
νd̃ ā〈b̃〉
−−−−→ P ′

νc P
νc,d̃ ā〈b̃〉
−−−−−→ P ′

c ∈ b̃ \ d̃ and a 6= c

Rep
P | !P

µ
−→ P ′

!P
µ
−→ P ′ ParL

P
µ
−→ P ′

P | Q
µ
−→ P ′ | Q

bn(µ) ∩ fn(Q) = ∅

CloseL

P
a(c̃)
−−→ P ′ Q

νd̃ ā〈b̃〉
−−−−→ Q′

P | Q
τ
−→ νd̃ (P ′{b̃/c̃} | Q′)

d̃ ∩ fn(P) = ∅

Fig. 4. Asynchronous π-calculus – operational semantics

In a bound output action νx̃ ā〈ỹ〉, x̃ represents a set of names, i.e. we work
modulo rearrangement of names. Similarly, a condition of the form x̃ ⊆ ỹ
should be understood as the inclusion between the corresponding name sets.

The rules for the labelled transition system are presented on Fig. 2.2 (sym-
metrical versions of rules ParL and CloseL are omitted). We furthermore

introduce the following notations: ⇒
def
= (

τ
−→)∗,

µ̂
−→

def
=

τ
−→ or = if µ = τ ,

µ̂
−→

def
=

µ
−→ otherwise, and

µ̂
=⇒

def
= ⇒

µ̂
−→⇒.

Structural congruence, ≡, is introduced to capture some basic structural prop-
erties of processes. It is defined by the following rules:

P |Q ≡ Q|P P |(Q|R) ≡ (P |Q)|R P |0 ≡ P νa 0 ≡ 0

νa νb P ≡ νb νa P P |νa Q ≡ νa (P |Q) if a /∈ fn(P)

!P ≡ !P |P !!P ≡ !P !(P |Q) ≡ !P | !Q !0 ≡ 0

Structural congruence is needed in the statement of the following result, which
will be useful for a proof below:

Proposition 9 (
τ
−→/≡ is finitely branching, [SW01]) Given a process P ,

there is, up to structural congruence, a finite number of processes P ′ such that
P

τ
−→ P ′.

12

2.2.1 Behavioural equivalences and preorders

We shall use a rather wide spectrum of equivalences and preorders in Aπ,
according to the needs of our proofs about λ[]. We define these below.

Definition 10 (Behavioural equivalences and preorders, ≈,⇆,.)

- A relation R on processes is a weak simulation if P RQ and P
µ
−→ P ′ imply

that there exists Q′ such that Q
µ̂

=⇒ Q′ and P ′RQ′.
- A weak bisimulation is a symmetric weak simulation. Weak bisimilarity,

written ≈, is the greatest weak bisimulation.
- A coupled bisimulation is a pair of simulations (S1,S

−1
2) such that:

• P S1 Q then there exists Q′ s.t. Q ⇒ Q′ and P S2Q
′;

• P S2 Q then there exists P ′ s.t. P ⇒ P ′ and P ′ S1Q.

Two processes P and Q are coupled bisimilar, written P ⇆ Q, if there
exists a coupled bisimulation (S1,S

−1
2) such that P S1 Q and P S2Q.

- A relation R is an expansion if P RQ entails:

• if P
µ
−→ P ′, then there exists Q′ s.t. Q

µ̂
=⇒ Q′ and P ′RQ′;

• if Q
µ
−→ Q′, then there exists P ′ s.t. P

µ̂
−→ P ′ and P ′RQ′.

The greatest expansion relation is written ., and & stands for (.)−1.

Definition 11 (∼=π) Given a name p, P ⇓p stands for P ⇒
νx̃ p̄〈ỹ〉
−−−−→ for some

x̃ and ỹ. P and Q are observationally equivalent, written P ∼=π Q, iff

(for all C and p, C[P] ⇓p ⇔ C[Q] ⇓p) and (P ⇒≈ 0 ⇔ Q ⇒≈ 0) .

The definition of ∼=π follows the pattern of ∼=M in λ[] (Definition 8, see also Def-
inition 22 below). In Aπ, observables are output particles, and visible (strong)
divergences, arising from terms that are compelled to diverge, equate such
terms with 0.

Proposition 12 (Congruence of ≈, [SW01]) ≈ is a congruence in Aπ.

We have ≈⊆⇆. Moreover, ≈⊆∼=π and⇆⊆∼=π, and we shall use both ≈ and
⇆ to establish properties of∼=π. This task will be made easy by the use of up-to
techniques, essentially up to context and up to expansion. Such techniques are
well-known for ≈ (see [SW01]). We establish similar results for ⇆, which is a
coarser equivalence (to our knowledge, the results about up-to techniques for
coupled bisimulation are not proved elsewhere, albeit they are not surprising).

13

2.2.2 Results about coupled bisimilarity

Our treatment of coupled bisimulation follows [NP96]. However, our definition
is slightly different. We work in a polyadic version of Aπ whereas Nestmann
and Pierce consider the monadic version. Moreover, our definition of ⇆ is
based on the notion of weak simulation and not on the notion of weak asyn-
chronous simulation as in [NP96].

Following the lines of [NP96], we can prove the congruence of coupled bisim-
ulation as defined in Def. 10.

Proposition 13 In Aπ, ⇆ is a congruence.

Proof. Along the lines of the proof of Prop. 2.4.4 in [NP96]. This proof relies
on the fact that in monadic Aπ, a weak asynchronous simulation is a congru-
ence. We can easily state the counterpart of this result in our setting: in the
polyadic Aπ, a weak simulation is a congruence (see [SW01]). ✷

In order to simplify the proofs involving coupled bisimulation, we develop an
up to expansion technique for ⇆. We start by recalling the up to expansion
technique for weak simulation.

Definition 14 (Weak simulation up to expansion) A weak simulation up
to expansion is a relation R such that for any processes P, P ′, Q, if P R Q

and P
µ
−→ P ′, then there exists Q′ such that Q

µ̂
=⇒ Q′ and P ′ & R . Q′.

Proposition 15 If Q weakly simulates P up to expansion then Q weakly
simulates P .

Proof. Let R be a weak simulation up to expansion such that P RQ. We

check that S
def
= & R . is a weak simulation.

The proof is a simple diagram chasing displayed on Figure 5.

P1 & P ′
1 R Q′

1 . Q1

µ−→ µ̂−→

µ̂
=
⇒ µ̂

=
⇒

P2 & P ′
2 & R . Q′

2 . Q2

Fig. 5. Diagram for S

Let P1, Q1 and P2 be processes such that P1 S Q1 and P1
µ
−→ P2. We know from

the definition of S that there exist P ′
1 and Q′

1 such that P1 & P ′
1, Q1 & Q′

1

14

and P ′
1RQ′

1. As P1 & P ′
1 and P1

µ
−→ P2, we have by definition of & that there

exists P ′
2 such that P ′

1
µ̂
−→ P ′

2 and P2 & P ′
2. From Def. 14 and since P ′

1RQ′
1

and P ′
1

µ̂
−→ P ′

2, there exists Q′
2 such that Q′

1
µ̂

=⇒ Q′
2 and P ′

2 & R . Q′
2. As

Q′
1 . Q1 and Q′

1
µ̂

=⇒ Q′
2, there exists Q2 such that Q1

µ̂
=⇒ Q2 and Q′

2 . Q2.
Using the transitivity of &, we deduce that P2 S Q2. ✷

The following result, which is quite similar to Proposition 15, will be useful
below (the definition of weak bisimulation up to expansion should be clear):

Proposition 16 (Weak bisimulation up to expansion, [SM92]) IfR is
a weak bisimulation up to expansion, then R is contained in weak bisimilarity.

Definition 17 (Mutual simulation up to expansion) A mutual simula-
tion up to expansion is a pair (S1,S2) where S1 and S−1

2 are weak simulations
up to expansion such that:

• if P S1 Q then Q ⇒& Q′ and P & S2 Q′;
• if P S2 Q′ then P ⇒& P ′ and P ′ S1 . Q′.

Proposition 18 If P and Q are mutually similar up to expansion, then P ⇆
Q.

Proof. We prove that (D1,D2) = (& S1 . , & S2 .) is a mutual simulation.

From the proof of Prop. 15, we know that D1 and D2 are weak simulations.
We just need to show that (D1,D2) satisfies the coupling conditions. Again
the proof is a simple diagram chasing summed up by Fig. 6.

P1 & P ′
1 S1 Q′

1 . Q1

⇓ ⇓

P1 & P ′
1 & S2 . Q′

2 . Q2

Fig. 6. Diagram for (D1,D2)

Let P1 and Q1 be two processes such that P1D1Q1. We want to prove that
there exists a process Q2 such that Q1 ⇒ Q2 and P1D2Q2. As P D1Q, there
exist P ′

1 and Q′
1 such that P1 & P ′

1 S1 Q
′
1 . Q1. Using the coupling condition

for S1, we obtain Q′
2 such that Q′

1 ⇒ Q′
2 and P ′

1 & S2 . Q′
1. As Q1 & Q′

1 and
Q′

1 ⇒ Q′
2, we get Q2 such that Q1 ⇒ Q2 and Q2 & Q′

2. Using the transitivity
of &, we get P1 & S2 . Q2, which is by definition P1D2Q2. ✷

15

3 Analysing the method

3.1 No divergence-faithful encoding

Our first result shows that the setting we have introduced in Subsection 2.2
is in some sense not amenable to an analysis in the π-calculus.

Theorem 19 (No divergence-faithful encoding) Let ≎ be an equivalence
relation on π-calculus terms containing structural congruence. There does not
exist an encoding [[·]] of λ[] in Aπ such that, for any closed term M :

(i) [[M]] ≎ [[N]] ⇒ M ∼=M N (soundness w.r.t. ∼=M);

(ii) [[M]]
τ
−→

ω
⇔ M ։ω (divergence faithfulness);

(iii) M ։ V ⇒ [[M]]
τ
−→

+
≎ [[V]] (value preservation).

Proof. We reason by absurd and we suppose that there exists such an encod-
ing named [[·]].

Let us consider a term Z such that the set of values reachable from M is
{λx1 . . . xn. x1 | n > 1 } and such that Z cannot diverge. We can easily prove

that Z
def
= Fix λz. (I 8 (λx. z (λy. x)) satisfies these conditions. We study T/≡,

the quotient w.r.t. ≡ of the reduction tree T of [[Z]] in the π-calculus, and we
prove that T/≡ has infinitely many nodes.

For each n > 1, we know from property (iii) that there exists a node Tn

in T such that Tn ≎ [[λx1 . . . xn. x1]]. From property (i), we can deduce that
for all m,n > 1, if m 6= n then [[λx1 . . . xm. x1]] 6≎ [[λx1 . . . xn. x1]]. In fact,
λx1 . . . xm. x1 6∼=M λx1 . . . xn. x1 implies that [[λx1 . . . xm. x1]] 6≎ [[λx1 . . . xn. x1]].
From this, and since ≡⊂≎, we can deduce that for all m 6= n, Tn 6≡ Tm. So,
finally T/≡ has infinitely many nodes.

According to Proposition 9, T/≡ is finitely branching, and we have proved
that it has infinitely many nodes. Using König’s lemma, we can deduce that
T has an infinite branch. This means that [[Z]] →ω and, from property (ii),
this would imply that Z may diverge. This is in contradiction with the fact
that Z cannot diverge. ✷

Remark 20 The previous result holds in any finitary (i.e. preserving Propo-
sition 9) extension of Aπ. To our knowledge, all extensions of the π-calculus
considered in the literature are finitely branching, except for the operator of
infinite sum.

16

Infinite sums could be used to implement the counters introduced by [LM99].
However, the resulting encoding would be intractable. Since finitary operators
are not the main focus of our work, we do not study conditions on the format
of the rules that ensure the ‘finitary property’ for an operator.

3.2 Distinguishing between strong and weak divergences

As illustrated in Section 1, working with bisimulation in Aπ leads us to dis-
tinguish between strong and weak divergences, that are defined as follows:

Definition 21 (Strong and weak divergences) Let M be a λ[] term.
- M is strongly divergent, written M ↿, whenever M can evolve into a term
that cannot converge;
- M is weakly divergent if M exhibits an infinite computation along which it
never loses the possibility to converge.

A divergent term is either strongly or weakly divergent, or both, as is T ⊕ Ω,

where T
def
= Fix λx. (x⊕I) is the λ[] term defined in Section 1. This distinction

between strong and weak divergences already appears in [NC95]; we analyse
its meaning below. Note that the notions of weak and strong divergences
defined in Definition 21 depend on the derivation relation we consider. In
Proposition 24, we will implicitly employ the same kind of construction based
on another reduction relation (we will otherwise refer to relation ։ when
mentioning weak and strong divergences).

We now adapt Definition 8 to focus on strong divergences.

Definition 22 (Behavioural equivalence on λ[], ∼=λ) For any M,N , we
have M ∼=λ N iff for any closing context C:

(C[M] ⇓ ⇔ C[N] ⇓) and (C[M]↿ ⇔ C[N]↿) .

We can observe that ∼=λ and ∼=M (Def. 8) are incomparable: as ∼=M is sensitive
to weak divergences, it separates terms that are equated by∼=λ, hence ∼=λ 6⊆∼=M.
Conversely, ∼=λ 6⊇∼=M because ∼=M identifies weak and strong divergences. We
have for instance:

I
∼=λ

6∼=M

Fix λx. (x⊕ I)
6∼=λ

∼=M

Ω ⊕ I .

This means in particular that the method we develop in this paper cannot be
used to reason about λ[] as introduced in [LM99].

17

3.3 The relevance of strong divergences

As will be seen in Subsection 4.2, the desired properties for amb indeed hold
in our setting, so that we may say that our presentation of λ[] which focuses
on strong divergences agrees with amb’s specification. Before presenting the
π-calculus’ point of view on λ[], we examine the consequences brought by the
observation of only strong divergences within λ[]. We start by analysing ∼=λ

and its influence on the notion of divergence.

3.3.1 Robustness of strong divergences

Reasoning with ∼=λ brings de facto a form of fairness. To illustrate this claim,
we introduce a non fair operational semantics for amb:

Definition 23 (→֒) Relation →֒ is defined by the following rules (rules Beta,
Lazy, and symmetrical versions of rules AmbL and ImmL are omitted):

ImmL V 8N →֒ V AmbL

M →֒ M ′

M 8N →֒ M ′ 8N

It can be remarked that →֒ describes an operator similar to Boudol’s [Bou94],
where parallel composition has no fairness property. We have:

Proposition 24 (Fair and non fair operational semantics) Relations։
and →֒ induce the same notions of convergence and strong divergence.

Before going on with the proof, we establish some preliminary results on
strongly divergent terms.

Definition 25 A strongly divergent term M is said to strongly diverge at
distance k for →֒ if for some term R, M →֒k R and R cannot converge.

Lemma 26 We write Val (M) for the set of values that are reachable from M .
Consider a term M of the form M = (P1 8P2) N1 . . . Nn. If M may strongly
diverge at distance k > 0 for →֒, then

- either P1N1 . . . Nn and P2N1 . . . Nn may strongly diverge at distance at most
k for →֒,

- or V N1 . . . Nn is strongly divergent at distance strictly less than k for →֒
where V ∈ Val (P1) ∪ Val (P2).

Proof. By definition of the distance k, there exists a sequence of terms
(Mi)i∈[0,k] such that Mk cannot converge and Mi →֒ Mi+1 for all i ∈ [0, k− 1].

18

We distinguish two cases.

• If for all i ∈ [0, n], Mi = (P 1
i 8P 2

i) N1 . . . Nn, then we have P 1
0 →֒≤k P 1

k

et P 2
0 →֒≤k P 2

k . As Mk = P 1
k 8P 2

k N1 . . . Nn cannot converge, it is also the
case for P 1

kN1 . . . Nn and P 2
kN1 . . . Nn. So, P1N1 . . . Nn and P2N1 . . . Nn may

strongly diverge in the sense of →֒ at distance at most k.
• If for some j ∈ [0, n], Mj is not of the form (P 1

i 8P 2
i) N1 . . . Nn then we

call j0 the smallest such integer. We have Mj0 = V N1 . . . Nn where V ∈
Val (P1) ∪ Val (P2). As Mj0 →֒<k Mk, V N1 . . . Nn may strongly diverge at
distance less than k. ✷

Lemma 27 ։⊆ →֒+.

Proof. We prove that for all P and Q, if P ։ Q then P →֒+ Q by induction
on the derivation tree of P ։ Q. ✷

Proof of Proposition 24 By Lemma 27, we remark that we only need to
prove that for any term M and value V :

(1) M →֒+ V implies M ։ V ,
(2) If M may strongly diverge for →֒, then M may strongly diverge for ։.

(1) We prove by induction on n that M →֒n V implies M ։ V and M →֒n

(V N) implies M ։ (V N).
- Case n = 1. Immediate
- Case n > 1. Let us consider the sequence (Mi)i∈[0,n] associated toM →֒n

V .
If for some j, Mj is a β-redex, we distinguish two cases. If j = 0
then M0 = (λx.K ′)K and M0 →֒Beta M1 thus M0 ։ M1 and by
induction hypothesis applied to M1 →֒n−1 Mn, we can conclude. If
j > 0 then M0 →֒<n Mj and Mj →֒<n Mn, and we conclude by
applying the induction hypothesis.

If none of the Mis is a β-redex, then all the Mis are of the form
Pi 8Qi. We have either P0 →֒<n V , or Q0 →֒<n V , or P0 = V , or
Q0 = V , and we easily conclude.

Let us consider the sequence (Mi)i∈[0,n] associated to M →֒n (V N).
If for some j, Mj is a β-redex, we distinguish two cases. If j = 0
then M0 = (λx.K ′)K and M0 →֒Beta M1, thus M0 ։ M1 and, by
applying the induction hypothesis toM1 →֒n−1 Mn, we can conclude.
If j > 0 then M0 →֒<n Mj and Mj →֒<n Mn and we conclude by
applying the induction hypothesis.

If none of the Mis is a β-redex, then all the Mis are of the form
PiN . All rules applied are of type Lazy and therefore P0 →֒n V . We

19

already proved that this implies P0 ։ V , and hence P0N ։ V N .
(2) We reason by absurd and we suppose that there exists a term M such

that M ↿ for →֒ but not for ։. Let k0 be the smallest integer such that
there exists a term M such that M ↿ for →֒ at distance k0 but not for
։. Let M0 be the smallest term (w.r.t. the number of symbols used in
its syntax) that may strongly diverge at distance k0 for →֒ but cannot
strongly diverge for ։.
From the previous proof, we know that k0 > 0. M0 cannot be a β-

redex because if (λx.K)N may strongly diverge at distance k > 0, then
K[N/x] may strongly diverge at distance k−1, and this would contradict
the definition of k0. Thus M0 = (P1 8P2) N1 . . . Nn, and, by Lemma 26,
we have:
either P1N1 . . . Nn and P2N1 . . . Nn strongly diverge at distance at most
k0: this contradicts the definition of M0.

or there exists a value V ∈ Val (P1)∪Val (P2) such that V N1 . . . Nn may
diverge at distance less than k0. From the previous proof, we know that
M ։ V N1 . . . Nn. As M cannot strongly diverge in the sense of։, it is
also the case for V N1 . . . Nn. This contradicts the definition of k0. ✷

This shows that all divergences added by →֒ w.r.t.։ are weak, and hence that
from the point of view of ∼=λ, relation ։ or relation →֒ can indifferently be
used, fairness ‘at an operational level’ being somehow irrelevant in our setting.

3.3.2 An operational semantics that neglects weak divergences

Proposition 24 suggests that the characteristic properties of amb are guaran-
teed at the level of behavioural equivalence. It is thus natural to analyse the
distinction between strong and weak divergences operationally, in order to see
whether this distinction can be grasped at the level of execution.

We show in a rather general setting that it is possible to provide an oper-
ational semantics in which weak divergences always have a null probability,
whereas convergences and strong divergences occur with a non-null probabil-
ity. This suggests that the focus on strong divergences can be achieved (at
least theoretically) by means of a particular evaluation strategy.

A probability measure for sets of computations

We now define a framework to compute probabilities over an arbitrary finitely
branching relation →, defined over a set of terms M̃ .

Definition 28 A computation is a sequence (ci)i∈I with either I = N or I =
[0, n] such that for all i ∈ I \ {0}, ci−1 → ci. When c0 = m, we refer to a

20

computation starting from m. A computation is maximal if it is infinite or if
it ends with a term that has no successor. A finite computation c is a prefix
of a computation c′ if c′ = cw for some possibly empty computation w.

From now on, we fix a term m0 ∈ M̃ and we write C (resp. C+) for the set
of all computations (resp. maximal computations) starting from m0. If not
stated otherwise, all computations are assumed to start from m0.

Definition 29 (Intervals of C+) For all finite computation x ∈ C, the in-
terval rooted in x, written Ix, is the set {c ∈ C+ | x is a prefix of c}. We also
define the set of all intervals of C+, written I, as follows:

I
def
= {∅} ∪ {Ix, | x ∈ C, x finite} .

The set I of all intervals of C+ enjoys some closure properties, that are ex-
pressed using the following definition:

Definition 30 (Semi-ring) A semi-ring on a set Ω is a subset S of the power
set 2Ω of Ω, with the following properties:

(1) ∅ ∈ S;
(2) for all A,B ∈ S, A ∩B ∈ S;
(3) for all A,B ∈ S, there exists a finite sequence (Ai)i∈[1,n] of pairwise dis-

joint elements of S such that A \B = ∪n
i=1Ai.

Proposition 31 The set I is a semi-ring on C+.

Proof. (1) holds by definition, so we only have to check properties (2) and
(3). Before proceeding, we remark that for any two intervals Ix and Iy, if x is
a prefix of y, then Iy is included in Ix, and that if x and y are incomparable
(for the prefix relation) then Ix and Iy are disjoint.

(2) Let A and B be two intervals in I. It follows from the previous remark
that A ∩ B is equal to either ∅, A or B. In all cases, A ∩ B belongs to I.

(3) Given two intervals Ix and Iy in I, we want to express Ix \ Iy as a finite
union of intervals. If Ix and Iy are disjoint or if Ix is included in Iy, it is
immediate.
So we only need to consider the case where x is a prefix of y (i.e., Iy ⊂ Ix).

We call D the set of computations of the form zb ∈ C such that b ∈ M̃ , x
is a prefix of z, z is a prefix of y, zb is not a prefix of y and z 6= y. As the
relation is finitely branching, D is finite. It is straightforward to show that
a computation belongs to Ix \ Iy if and only if it has a prefix in D. Hence
Ix \ Iy is equal to the finite union ∪d∈D Id. ✷

21

We now introduce the notion of probability measure, and define a ‘natural’
probability measure on I.

Definition 32 (Probability measure) A probability measure µ on a subset
S of 2Ω, which contains ∅ and Ω, is a mapping from S to [0, 1] such that:

• µ(Ω) = 1;
• for any sequence (Ai)i∈N of pairwise disjoint elements of S, if ∪i∈N Ai belongs

to S then µ(∪i∈N Ai) =
∑

i∈N µ(Ai).

We assume that a computation c starting from m0 is randomly chosen as
follows: if the kth term of the computation ck is irreducible, then the process
stops, otherwise the (k + 1)th term is drawn from the set of successors of
ck (all successors have an equal probability to be chosen). The probability of
obtaining a computation in the interval Ic, where c = c0 . . . cn with n ≥ 1, is
given by

P (Ic) =
∏

i∈[0,n−1]

1

|c→i |
,

where |m→| stands for the cardinality of the set of successors of m. We also
set P(Im0

) = 1 and P(∅) = 0.

Proposition 33 P is a probability measure on I.

Proof. Since C+ = Im0
, P(C+) = P(Im0

) = 1 and it is obvious that for any
interval I, P(I) belongs to [0, 1]. It remains to show that if an interval Ix is
equal to ∪i∈N Ai for some sequence (Ai)i∈N of pairwise disjoint elements of I
then P(Ix) =

∑
i∈N P(Ai).

- We first prove that there are only finitely many non-empty Ais.
Suppose by absurd that there are infinitely many non-empty Ais. We

construct an increasing sequence (ci)i∈N of finite computations in C such
that c0 = x and for all i ∈ N, the set Ni = {j ∈ N | Aj 6= ∅ and Aj ⊂ Ici} is
infinite.
The property holds for c0 = x. Given ci, we construct ci+1. As the relation→
is finitely branching, the set S = {s ∈ C | s = cib and b ∈ M̃} is finite and
non-empty. For all s ∈ S, we call Ms the set {j ∈ N | Aj 6= ∅ and Aj ⊂ Is}.
As Ni is equal to the finite union ∪s∈S Ms, there exists at least one s0 ∈ S
such that Ms0 is infinite. We take ci+1 equal to s0.
Let c be the limit of (ci)i∈N, we claim that c does not belong to ∪i∈N Ai.
In fact, if c belongs to some Ai0 then it implies that for some j, Icj = Ai0 .
As all the Ais are pairwise disjoint, this would contradict the fact that Icj
contains infinitely many non-empty Ais.
We thus have a c which belongs to Ix but not to ∪i∈N Ai: this contradicts
the fact that Ix = ∪i∈N Ai.

22

- It remains to prove that if Ix = ∪i∈[1,n] Iai where the Iais are pairwise disjoint
intervals, then P(Ix) =

∑n
i=1P(Iai).

We proceed by induction on n. The case n = 1 is immediate. Suppose
that the property holds for some n ≥ 1, we prove it for n + 1. Let x0

be the smallest computation such that x is a prefix of x0 and x0 ends
with a term m ∈ M̃ having more than one successor. The computation x0

exists because Ix contains at least two disjoint intervals. Moreover, we have
Ix = Ix0

and, therefore, Ix0
= ∪i∈[1,n+1]Ai. Let S be the set of computations

defined by S
def
= {s ∈ C | s = x0b and b ∈ M̃}. By definition of x0,

S contains at least two elements and Ix = ∪s∈S Is. For all s ∈ S, let us
call Rs the set {i ∈ [1, n + 1] | Ai ⊂ Is}. As Ix = ∪i∈[1,n+1] Ai, for all
s ∈ S, Is = ∪i∈Rs

Ai with |Rs| ≤ n. Therefore, by induction hypothesis,
P(Is) =

∑
i∈Rs

P(Ai). We finally have P(Ix) = P(Ix0
) =

∑
s∈S P(Is) =∑

s∈S
∑

i∈Rs
P(Ai) =

∑
i∈[1,n+1] P(Ai). ✷

We want to measure the set of convergent (that is, maximal and finite) compu-
tations V , the set of strongly divergent computations S, and the set of weakly
divergent computations W . In general, these sets do not belong to I. We are
therefore led to consider the closure under countable union and complement
of I, given by the following definition:

Definition 34 (σ-algebra) Given a subset S of 2Ω, the σ-algebra generated
by S, written σ(S), is the smallest set containing S and closed under countable
union and complement.

The following classical theorem says that there exists a unique extension of P
to σ(I). In the following, we do not distinguish between P and its extension.

Theorem 35 (Caratheodory’s extension, [Bil95]) Let S be a semi-ring
on Ω and µ a probability measure on S, there exists a unique probability mea-
sure µ′ on σ(S) extending µ.

It is fairly easy to check that V, S and W belong to σ(I):

- As for each convergent computation v, we have Iv = {v}, and since V is
a countable set, V is equal to the countable union ∪v∈V Iv, and therefore
V ∈ σ(I).

- Let X be the set of all finite computations c = c0 . . . cn in C such that cn
cannot converge and cn−1 (if it exists, i.e., when n > 0) can. It is straight-
forward to prove that X is countable and that a computation is strongly
divergent if and only if it has a prefix in X . Hence, S coincides with the
countable union ∪x∈X Ix and therefore S ∈ σ(I).

- If the computation never reaches an irreducible term nor a term that cannot
converge, then it is a weak divergence. Hence, W is equal to C+ \ (V ∪ S)

23

and therefore W ∈ σ(I).

Remark 36 Since V and S can always be expressed as unions of intervals, if
V (resp. S) is non-empty then P(V) > 0 (resp. P(S) > 0), because V (resp.
S) contains at least one non-empty interval.

Moreover, as C+ is equal to the disjoint union V ∪ S ∪ W , we have P(V) +
P(S) + P(W) = 1. As the following example shows, the probability of weak
divergences is in general non-null.

Example 37 Let M̃ be the set of words over natural numbers {a1 . . . an | ai ∈
[0, 2i − 1], n ∈ N} ∪ {ε}. Consider the relation # on M̃ defined by ε # 0,
ε# 1 and for all wx and wxy in M̃ with x < 2|w|+1−1, wx# wxy (where |w|
stands for the length of the word w). The graph of # starting from ε is given
in Figure 7. There is no strong divergence starting from ε, hence P(S) = 0

ε

10

00 01 02 03

020 027

Fig. 7. An example where weak divergences occur with a non null probability.

(at each node in the tree, one can reach a blocked state in one step of #). The
probability of convergence is given by:

P(V) =
+∞∑

i=1

1

2i

i−1∏

k=1

(
1−

1

2i

)
= 1−

+∞∏

i=1

(
1−

1

2i

)

︸ ︷︷ ︸
P(W)>0

(the last equality can be proved by induction). Therefore, the probability of
exhibiting a weak divergence starting from ε is non-null.

Weak divergence avoiding execution

We now define a relation ⇒ based on → which induces the same notions
of convergence and strong divergence as →. Moreover, ⇒ is such that weak

24

divergences have a null probability: for any starting term m0 ∈ M̃ , P(W) = 0.

Definition 38 (Weak divergence avoiding execution, ⇒) Given a set of

terms M̃ and a finitely branching relation→, the relation⇒⊆
(
2M̃ × {+,−}

)
×

(
2M̃ × {+,−}

)
(where 2M̃ stands for the power set of M̃) is defined by the

following rules, for Ñ ∈ 2M̃ :

• If Ñ does not contain values then (Ñ ,−) ⇒ (Ñ ′,−) where Ñ ′ is equal to
{n′ | n ∈ Ñ and n → n′}.

• If Ñ contains only reducible terms, then (Ñ,+)⇒ ({r},−) where r ∈ Ñ .
• If Ñ can be written as the disjoint union Ṽ ∪ R̃ for a set of values Ṽ and

a set of reducible terms R̃, then there are two transitions: (Ñ ,−)⇒ (Ṽ ,+)
and (Ñ,−)⇒ (R̃,+).

• If Ṽ is a set of values not reduced to a singleton, then (Ṽ ,+) ⇒ ({v},+)
where v ∈ Ṽ .

Intuitively, when starting from ({m},+), relation ⇒ describes a particular
strategy for the exploration of possible computations (for →) issued from
m. The polarities +,− are introduced to ‘program’ an equiprobable choice
between reaching a value or choosing not yet reduced branches in the third
clause of the definition above. This way, the probability of weak divergences is
brought to zero (since weak divergences lead to infinitely many such choices).

Example 39 The relation ⇒ corresponding to the derivation # of Exam-
ple 37 is given in Figure 8. The resulting probability of exhibiting a weak di-
vergence is thus P(W) = 1−

∑+∞
i=1

1
2i

= 0.

The following proposition states that ⇒ somehow preserves the behaviour
expressed by →, as far as convergences and strong divergences are concerned.

Proposition 40 For any term m ∈ M̃ :

(1) For any value v ∈ M̃ , m →∗ v if and only if ({m},+)⇒∗ ({v},+).
(2) The term m may strongly diverge w.r.t → if and only if ({m},+) may

strongly diverge w.r.t ⇒.
(3) If ({m},+) may strongly diverge w.r.t⇒, then the probability of exhibiting

a strongly divergent computation w.r.t ⇒ (i.e. P(S)) is non null.

Proof.

(1) A straightforward induction establishes that for all subsets Ñ and Ñ ′ of
M̃ and for all ǫ, ǫ′ ∈ {−,+} such that (Ñ, ǫ) ⇒+ (Ñ ′, ǫ′), we have that
for all n ∈ Ñ and n′ ∈ Ñ ′, n →+ n′. Conversely, if n →+ n′, then there
exists Ñ ′ ⊂ M̃ such that n′ ∈ Ñ ′ and ({n},+) ⇒+ (Ñ ′,−). It follows

25

({ ε },+)

({ ε },−)

({ 0, 1 },−)

({ 1 },+)({ 0 },+)

({ 0 },−)

({ 00, 01, 02, 03 },−)

({ 00, 01, 02 },+) ({ 03 },+)

Fig. 8. The relation ⇒ based on the derivation of Example 37.

that m may converge to v w.r.t → if and only if ({m},+) may converge
to ({v},+) w.r.t ⇒.

(2) If m may strongly diverge w.r.t →, there exists a strongly divergent term
m′ ∈ Ñ such that m →+ m′. There exists Ñ ⊂ M̃ and m′ ∈ Ñ such that
({m},+) ⇒ (Ñ,−). If Ñ contains only strongly divergent terms, then
({m},+) is strongly divergent. Otherwise, Ñ contains terms that may
converge. Hence, there exists Ñ ′ ⊂ M̃ such that (Ñ,−) ⇒∗ (Ñ ′,−) and
Ñ ′ contains a value v and a term m′′ ∈ M̃ satisfying m′ →∗ m′′. It follows
that (Ñ ′,−) ⇒ ({m′′},−). As m′′ is strongly divergent (being a reduct
of m′, which is strongly divergent) and ({m},+)⇒ ({m′′},+), ({m},+)
is strongly divergent.
If ({m},+) may strongly diverge w.r.t. ⇒, then there exists Ñ ⊂ M̃

which contains only strongly divergent terms such that ({m},+) ⇒
(Ñ,+). Hence, there exists a strongly divergent term m′ ∈ Ñ such that
m →∗ m′.

(3) This follows from Remark 36. ✷

We now show that ⇒ annihilates the probability of weak divergences:

Proposition 41 For all m ∈ M̃ , the probability P(W) of weak divergences
starting from ({m },+) is equal to zero.

Proof. If ({m },+) cannot weakly diverge then the set W is empty and
P(W) = P(∅) = 0.

26

Suppose now that ({m },+) may weakly diverge. Unless stated otherwise, we
suppose that all computations start with ({m },+). Let c = c0 ⇒ . . . ⇒ ck
be a computation of ⇒; the depth of c is the number of positive polarities
decorating the states in c minus one. Let Wn be the set of all computations
of the form c = c0 . . . cncn+1 such that cn has a positive polarity, and cn+1 can
converge and has a negative polarity. It is easy to check that the (Iw)w∈Wn

are
pairwise disjoint and that W ⊂

⋃
w∈Wn

Iw.

We prove by induction on n that for all n ≥ 1, P(
⋃

w∈Wn
Iw) ≤

1
2n
.

- For n = 1, it is enough to remark that there exists a computation c such
that for all w ∈ W1, w = cb for some b ∈ M̃ . Moreover P(Ic) =

1
2
since all

elements of c = c1 . . . cn have only one successor except for cn−1, that has
two. As

⋃
w∈Wn

Iw ⊂ Ic, we have P(
⋃

w∈Wn
Iw) ≤

1
2
.

- Suppose that the property holds for n ≥ 1; we prove it for n + 1. Each
x ∈ Wn+1 admits a unique prefix in Wn. For each w ∈ Wn, we call Sw the
set of elements from Wn+1 admitting w as a prefix. We have

⋃
x∈Sw

Ix ⊂ Iw.
By a reasoning similar to the case n = 1, we can prove that for all w ∈
Wn, P(

⋃
x∈Sw

Ix) ≤
1
2
Iw. Therefore, P(

⋃
x∈Wn+1

Ix) =
∑

w∈Wn
P(

⋃
x∈Sw

Ix) ≤
1
2

∑
w∈Wn

Iw ≤ 1
2n+1 .

Since for all n, W ⊂
⋃

w∈Wn
Iw, we have

P(W) ≤ lim
n→+∞

P (Wn) = 0 ,

and, finally, the probability of exhibiting a weak divergence starting from
({m },+) is null. ✷

Since →֒ is finitely branching, Propositions 40 and 41 show that there is a
way to execute λ[] terms so that weak divergences are unlikely to happen (and
without introducing pathological behaviours).

This ends our presentation of λ[] and of the approach we shall adopt in the
remainder of the paper.

4 Pi-calculus at work

We now turn to the π-calculus analysis of λ[]. We start by presenting the
corresponding translation.

27

[[λx.M]]p
def
= νl (p̄〈l〉 | l(x, q).[[M]]q) [[x]]p

def
= νp′ (x̄〈p′〉 | p′ _ p)

[[M N]]p
def
= νq

(
[[M]]q | q(l).

(
νx

(
l̄〈x, p〉 | !x(r).[[N]]r

)))

[[M8N]]p
def
= νp′ ([[M]]p′ | [[N]]p′ | p′ _ p) where q _ p

def
= q(x).p̄〈x〉

Fig. 9. Encoding of λ[] in the π-calculus

4.1 Encoding and soundness

Our encoding of λ[] in Aπ, written [[]], is defined on Figure 9, and follows
the usual encodings of the λ-calculus for the operators of application and
abstraction. A λ[]-term M is mapped to a process [[M]]p, p being a channel
where the value of (the encoding of) M will be passed (cf. the clause for
abstraction).

To take 8 into account, we run the encodings ofM andN in parallel at a freshly
created location q, and let the (ephemeral) link process q _ p forward any
successfully terminated evaluation on p. Once q _ p has been triggered by one
of the components, the other component is isolated from the context, either
because it tries to interact on the private channel q, or because it diverges.
Modulo ∼=π, this corresponds to what we expect from amb.

Note the extra indirection p′ _ p in the encoding of variables. A similar
indirection is needed in the encoding of call-by-value into (untyped) π-calculus,
and can be removed using capability types [SW01]. We do not know how to
avoid the indirection in the encoding of Figure 9 using types or other means.

Example 42 We illustrate the encoding on a simple example: consider the λ[]

term λx y. (x8y), that builds the amb composition of two terms. Its π-calculus
encoding is given by:

[[λx y. (x8y)]]p =

νl, l′
(
p̄〈l〉 | l(x, q).

(
q̄〈l′〉 | l′(y, r). (νn (x̄〈n〉 | ȳ〈n〉 | n(z).r̄〈z〉))

))

Channels l and l′ are the ports where the encoded λ[] function receives its ar-
guments (these will be referred to using the channels instantiating x and y,
respectively). Subterm νn (x̄〈n〉 | ȳ〈n〉 | n(z).r̄〈z〉) is the most informative for
our purposes: it shows that amb is programmed via channel n, a resource that
is used concurrently by the two agents that receive n. The important obser-
vation is that n is linear, in the sense that there is only one input at n —
in the encoding, only the output capability on n is passed, so that processes
receiving n are not allowed to perform an input on this channel. This way, the

28

first agent that interacts at n consumes the input and prevents the other one
from proceeding.

We now turn to the soundness proof for [[]], which is adapted from [San00].
The main property we need for this is given by Lemma 47, for which we first
establish some auxiliary results in the π-calculus, that will allow us to prove
operational correspondence for the encoding.

Lemma 43 For any name x and any processes P , P1, P2 and Q such that x
only appears as output object in P , P1 and P2 and x 6∈ fn(Q):

(1) νx (P1 | P2 | !x(q).Q) ∼ νx (P1 | !x(q).Q) | νx (P2 | !x(q).Q);
(2) For any context C such that x 6∈ fn(C),

νx (C[P] | !x(q).Q) ∼ C[νx (P | !x(q).Q)] .

Proof.

(1) See Lemma 3.14 in [San00].
(2) By structural induction on C and using Lemma 3.14 in [San00]. ✷

Lemma 44 (Validity of β-reduction) For anyM and N , [[(λx.M) N]]q &
[[M [N/x]]]q .

Proof. By remarking that the process [[(λx. M) N]]p deterministically reduces
to (ν x, l) ([[M]]p | !x(q).[[N]]q), we obtain:

[[(λx. M) N]]p & (ν x) ([[M]]p | !x(q).[[N]]q) . (1)

We then prove by induction on M that:

νx ([[M]]p | !x(q).[[N]]q) & [[M [N/x]]]p . (2)

We only consider the case where M = P1 8P2 (the other cases are treated
in [San00]). In this case, (2) becomes:

νq νx ([[P1]]q | [[P2]]q | q _ p | !x(n).[[N]]n)︸ ︷︷ ︸
E

& [[P1[N/x] 8 P2[N/x]]]p . (2’)

According to Lemma 43, we have:

E ∼ νx ([[P1]]q | !x(n).[[N]]n) | νx ([[P2]]q | !x(n).[[N]]n) | q _ p .

By applying the induction hypothesis to P1 and P2, we obtain:

E & [[P1[N/x]]]q | [[P2[N/x]]]q | q _ p .

29

Using the fact that & is a congruence, we can establish (2’) from the above
equation. Finally, combining (1) and (2), we obtain the desired result. ✷

We now prove a one step operational correspondence property.

Proposition 45 For any closed terms M and N ,

(1) if M →֒ N then [[M]]q
τ
−→

⋆
& [[N]]q;

(2) if [[M]]q
τ
−→ P then there exists N such that M →֒⋆ N and P & [[N]]q.

Proof.

(1) By induction on the derivation tree of M →֒ N .
(2) By induction on the structure of M . ✷

From Proposition 45, we can easily derive operational correspondence.

Proposition 46 (Operational correspondence) For any closed terms M
and N ,

(1) if M →֒+ N then [[M]]q
τ
−→

+
& [[N]]q;

(2) if [[M]]q
τ
−→

+
P then there exists N such that M →֒⋆ N and P & [[N]]q.

Proof.

(1) By induction on the length of M →֒+ N and using Prop. 45.

(2) By induction on the length of [[M]]q
τ
−→

+
P and using Prop. 45. ✷

From Proposition 46, we derive soundness of our encoding.

Lemma 47 (Soundness lemma) For all closed term M ,

(M ⇓ ⇔ [[M]]p ⇒
νl p̄〈l〉
−−−→) and (M ↿ ⇔ [[M]]p ⇒≈ 0) .

From this result, and using the compositionality of our encoding, we deduce:

Theorem 48 (Soundness) For all terms M and N , [[M]]p ∼=π [[N]]p implies
M ∼=λ N .

30

M 8N ∼=λ N 8M (M 8N) 8P ∼=λ M 8 (N 8P)

(λx.M)N ∼=λ M [N/x] M 8Ω ∼=λ M V ⊕ V ′ ∼=λ V 8 V ′

(M ⊕N)⊕ P ∼=λ M ⊕ (N ⊕ P) M 8M ∼=λ M for M closed

Fig. 10. Some properties of amb

Proof. Suppose that [[M]]p ∼=π [[N]]p. As [[·]] is compositional, for any closing
λ[]context C[] there exists a π-calculus context Cq,p

π [·] such that [[C[M]]]q =
Cq

π[[[M]]p] and [[C[N]]]q = Cq
π[[[N]]p]. As ∼=π is a congruence, we have for any

closing context C, [[C[M]]]p ∼=π [[C[N]]]p. From the definition of ∼=π, we have:

([[C[M]]]p ⇒
νl p̄〈l〉
−−−→ ⇔ [[C[N]]]p ⇒

νl p̄〈l〉
−−−→)

and ([[C[M]]]p ⇒≈ 0 ⇔ [[C[N]]]p ⇒≈ 0) .

Using Lemma 47, we obtain that C[M]⇓ ⇔ C[N]⇓ and C[M] ↿ ⇔ C[N] ↿.
Finally, M ∼=λ N . ✷

4.2 Deriving characteristic properties of amb

4.2.1 Some laws

Figure 10 presents a set of laws regarding amb that we have been able to
establish. The proofs of these results are all based on the same method: we
compute the Aπ encoding of the two λ[]-terms being compared, construct a
(weak or coupled) bisimulation to show (possibly using up-to techniques and
algebraic laws for Aπ) that these processes are related by ∼=π, and conclude
using Theorem 48.

We give an illustration of our method for the bottom avoidance property
M 8Ω ∼=λ M , one of the key fairness properties of amb. We first need a
technical result:

Lemma 49 For any M and p, [[M]]p ≈ νq ([[M]]q | q _ p).

Proof. See [MS98].

31

This is now how we show that for any term M , M 8Ω ∼=λ M :

[[M 8Ω]]p
def
= νq ([[M]]q | [[Ω]]q | q _ p)

≈ νq ([[M]]q | q _ p) because [[Ω]]q ≈ 0

≈ [[M]]p using Lemma 49

The proofs of the other laws illustrate several variations on the method we
just showed. Some of these require the introduction of new notions, presented
below, and we therefore defer the explanation of these to the end of this
subsection, where we also discuss how these laws compare to the existing work
about λ[]. It has to be stressed however that in exploiting these techniques,
the general framework remains the same, which shows the uniformity of our
approach.

4.3 Derived techniques

We present here three techniques that can in some cases simplify the proofs
when reasoning about Aπ processes resulting from the encoding of λ[] terms.

4.3.1 A relaxed encoding

The encoding we have presented uses a link process to embed the choice made
by amb once a component has converged. A similar mechanism is at work in
the encoding of application (cf. Fig. 9), where name q is used linearly to make
the connection between a function and its argument. We may in certain cases
use an alternative encoding, written [[]]′, in which we exploit this observation
and translate 8 simply as parallel composition in Aπ. [[]]′ is defined like [[]],
except for the following clause:

[[M 8N]]′q
def
= [[M]]′q | [[N]]′q .

We can prove the following law, that captures the behaviour discussed above:

[[(M 8N) P]]′p ≈

νq, q′
(
[[M]]′q′ | [[N]]′q′ | q

′ _ q | q(l).
(
νx

(
l̄〈x, p〉 | !x(r).[[P]]′r

)))
.

The evaluation strategy we implement through this encoding can be described
by a slight modification of relation →֒ (Definition 23), in which rule Imm would
be replaced by:

Imm (V 8N) M →֒ V M .

32

Obviously, encoding [[]]′ is not in general operationally faithful w.r.t. the defini-
tion of amb, since the translation of a term having amb as topmost constructor
behaves like the parallel execution of the two components, with a total absence
of choice. Still, when applicable, [[]]′ defines a sound proof technique:

Proposition 50 For any terms M,N , and for any p, if [[M]]′p
∼=π [[N]]′p, then

M ∼=λ N .

The proof of this result goes as for Theorem 48.

Due to its simplicity, encoding [[]]′ sometimes leads to much simpler proofs,
e.g. when establishing commutativity and associativity of amb, that follow
directly from the corresponding properties of | for ≡.

4.3.2 ‘Kleene equivalence’

We can also use the π-calculus encoding to derive proof techniques similar
to those used in the literature to establish the laws of λ[] [Mor98,LM99]. We
start by introducing a technique that is similar to the ‘Kleene equivalence’
technique of [LM99].

Definition 51 (≍) For two λ[] terms M and N , M ≍ N iff

(i) if M →֒+ V , there exists V ′ s.t. N →֒+ V ′ and, for any p, [[V]]p ⇆ [[V ′]]p;
(ii) M ↿ iff N ↿.

Proposition 52 (Soundness of ≍) For any M and N , M ≍ N implies
M ∼=λ N .

Proof. Let M and N be two terms such that M ≍ N , and let p be a π-
calculus name. We call

(
V M
i

)
i∈IM

(resp.
(
V N
i

)
i∈IN

) the values reachable from

M (resp. N). By hypothesis, there exists a function φM from IM to IN such
that [[V M

i]]p ⇆ [[V N
φM (i)]]p. Given i, let us call (Mi

1,M
i
2) the corresponding

coupled bisimulation. We define φN and the (N i
1,N

i
2)s along the same lines.

We want to prove that [[M]]p ⇆ [[N]]p. We apply Prop. 18 to show that (S1,S2)
is a coupled bisimilarity up to expansion, S1 and S2 being defined as follows:

33

S1
def
= {(0, 0)} (1)

∪
⋃

i∈IM Mi
1 (2)

∪
⋃

i∈IN N i
1 (3)

∪ {([[R]]p, [[N]]p) | M →֒∗ R} (4)

∪
{(

[[V M
i]]p, [[K]]p

)
| i ∈ IM and N →֒∗ K →֒∗ V N

φM (i)

}
(5)

S2
def
= {(0, 0)}

∪
⋃

i∈IM Mi
2

∪
⋃

i∈IN N i
2

∪ {([[M]]p, [[R]]p) | N →֒∗ R}

∪
{(

[[K]]p, [[V
N
i]]p

)
| i ∈ IN and M →֒∗ K →֒∗ V M

φN (i)

}

We now study relations S1 and S2, in order to establish that [[M]]p ⇆ [[N]]p.

S1 is a weak simulation up to expansion. Let P and Q be two processes
such that P S1 Q. If this follows from clause (2) or (3), the simulation prop-
erty immediately follows from the fact that the Mi

1s and the N i
1s are sim-

ulations. The result is also immediate in case (1).

Suppose now that, according to clause (4), P = [[R]]p, Q = [[N]]p, and
M →֒∗ R. If P

τ
−→ P ′ then by operational correspondence there exists R′

such that R →֒∗ R′ and P ′ & [[R′]]p. We may then take Q′ = Q, and since
the pair ([[R′]]p, [[N]]p) belongs to S1, we can conclude.

If P
νx p̄(x)
−−−−→ P ′, then for some i ∈ IM , P = [[V M

i]]p (only the encoding
of a value can perform a free output). By operational correspondence, as
N →֒∗ V N

φM (i), we have Q ⇒& [[V N
φM (i)]]p. Since ([[V M

i]]p, [[V
N
φM (i)]]p) belongs to

Mi
1 and Mi

1 is a weak simulation, there exists Q′ such that P ′Mi
1Q

′ and

[[V N
φM (i)]]p

νx p̄〈x〉
=⇒ Q′. Now Q ⇒& [[V N

φM (i)]]p and [[V N
φM (i)]]p

νx p̄〈x〉
=⇒ Q′ entail that

Q
νx p̄〈x〉
=⇒ & Q′. We thus have Q

νx p̄〈x〉
=⇒ & Q′ and P ′ S1 , Q

′, which is enough to
conclude.
Clause (5) can be treated similarly.

S1 satisfies the coupling condition with S2. Let P and Q be two pro-
cesses such that P S1Q. As above, clauses (1), (2) and (3) are immediate.
Let us now examine clause (4): Q = [[N]]p, P = [[R]]p and M →֒∗ R.

If P & 0, then M may strongly diverge. By definition of ≍, it is also the
case for N . Therefore, using operational correspondence, Q = [[N]]p ⇒&
0. As 0S2 0, we can conclude.

If P 6& 0, then there exists i ∈ IM such that R →֒∗ V M
i . We know that

34

N →֒+ V N
φM (i) and by operational correspondence, [[N]]p ⇒& [[V N

φM (i)]]p.

We are through with this case, since RS2 [[V
N
φM (i)]]p.

We now examine clause (5): P = [[V M
i]]p and Q = [[K]]p where N →֒∗

K →֒∗ V N
φM (i). From operational correspondence, we know that Q ⇒&

[[V N
φM (i)]]p. By definition of Mi

2, [[V
M
i]]p Mi

2 [[V
N
φM (i)]]p, which allows us to con-

clude since Mi
2 ⊆ S2.

The definitions of S1 and S2 being symmetric, the properties we have just
established for S1 hold for S2, and (S1,S2) is a coupled bisimulation up to
expansion, and hence, finally, [[M]]p ⇆ [[N]]p. ✷

Aside the use of the π-calculus, the main difference with ‘Kleene equivalence’
as in [LM99] is that, in clause (i), the latter uses syntactic equality to compare
V and V ′, while we can rely on behavioural equivalences (since ≈⊆⇆, we
can also use ≈ to compare [[V]]p and [[V ′]]p when treating clause (i) above).
As an illustration of this difference, Proposition 52 allows us to show that
λx. (x 8Ω) ∼=λ I, which cannot be proved using the technique of [LM99]. More

interestingly, perhaps, if we let C
def
= λxy. (xxx), and define Ξ′ as C C, the law

Ξ ∼=λ Ξ′ can be proved using [[]] together with ≈, and cannot be proved using
Kleene equivalence. Note that these equalities are not really ‘characteristic
amb laws’ – their role is rather to illustrate our point in contrasting the proof
techniques.

4.3.3 Unique solution of inequations

The second method defined in [LM99] is based on an adaptation of cost equiv-
alence (written

·
=, see [San95]) to the setting of λ[], and introduces a unique

fixpoint induction principle, expressed by the following inference rule:

M
·
=

√
C[M] N

·
=

√
C[N]

M
·
= N

where C is a λ[] context.

Here
√
M (“tick M”) is a term which makes one step of reduction before

behaving like M . Cost equivalence is a very fine-grained relation, and this
method involves an accurate insertion of ‘ticks’ in processes, which intuitively
amounts to transform a weak bisimulation into a cost-sensitive one. In Aπ, we
may reason using coarser equivalences, thanks the following principle (we say
that a context C is guarded when the hole always occurs under at least one
prefix in C):

Proposition 53 (Unique solution of inequations) Let C be a guarded Aπ
context. For any P,Q, if P & C[P] and Q & C[Q], then P ≈ Q.

35

Proof. We are going to show that:

S = {(D[M], D[N]) | D is an garded context}

is a weak bisimulation up to expansion.

Let D be a guarded context, if D[M]
µ
−→ Q then there exists a context D′

(not necessarily guarded) such that Q = D′[M]. As & is a congruence on Aπ,
D′[M] & D′[C[M]]. The context D′′[·] = D′[C[·]] is guarded and we have

D[M]
µ
−→ & D′′[M].

Reasoning along the same lines with D[N], we obtain D[N]
µ
−→ & D′′[N].

According to Proposition 16, we have that S ⊂≈. In particular, it holds that
νc (c̄〈〉 | c().M) ≈ νc (c̄〈〉 | c().N). This easily implies M ≈ N . ✷

To our knowledge, this proof method is new in the setting of the π-calculus.
It may be used to reason about functions defined by a fixpoint operator,
since it allows one to consider one-step unfoldings of the corresponding terms,
and validate a form of induction principle. This kind of reasoning is at work
in [LM99] on several examples, that can all be revisited in our setting. The fact
that we adopt weaker equivalences than in [LM99] suggests that Proposition 53
provides a more powerful proof principle.

We now explain how the laws of Figure 10 are established, using in each case
the technique that gives the simplest proof.

• (M 8N) 8P ∼=λ M 8 (N 8P) and M 8N ∼=λ N 8M .
We know that ≡ validates the corresponding laws for the ‘relaxed’ encod-

ing of these terms. This is enough to conclude using Proposition 50.
• (λx.M)N ∼=λ M [N/x].

This law is obtained by combining Lemma 44 and Theorem 48.
• I ∼=λ Fix (λx. (I 8x)) ∼=λ Fix (λx. (I ⊕ x)).

We easily verify that I ≍ Fix (λx. (I 8 x)) ≍ Fix (λx. (I ⊕ x)). We con-
clude using Proposition 52.

• M 8M ∼=λ M , for M closed.
We verify that M 8M ≍ M and we conclude using Prop. 52.

• (M ⊕N)⊕ P ∼=λ M ⊕ (N ⊕ P).
For this proof, we are compelled to reason with ⇆ (and not ≈), because

of the presence of ‘partially committed states’ in the execution of choices.

We comment on the laws we prove and compare our setting with related
works. As mentioned in Section 1, amb has been originally introduced to
reason over partial functions. In that setting, the distinction between strong
and weak divergences does not really make sense, and the characteristic laws

36

of amb are thus just M 8Ω = M (bottom avoidance), V 8V ′ = V ⊕ V ′, and
M 8N = N 8M (to express the fact that no branch of an amb has priority
w.r.t. the other).

When we move to the more accurate description given by λ[], and refer to
the fair operational semantics proposed by Lassen and Moran in [LM99] (cf.
Definition 2), we can express more precise properties about computation using
amb. In particular, we can consider that a law like Fix (λx.(x 8 I)) = I belongs
to amb’s specification in that framework. This is also the case for Fix (λx.(x⊕
I)) = I ⊕ Ω.

While we can prove the former law in our framework, the latter stresses the
difference between our approach and the setting of [LM99]. When focusing
on strong divergences, we have Fix (λx.(x ⊕ I)) = I (and, of course, I 6=
I ⊕ Ω), intuitively because by neglecting weak divergences, we impose more
fairness than [LM99]’s operational semantics. Our semantics, while remaining
operationally sound w.r.t. the existing descriptions of λ[], can be deemed as
‘avoiding more divergences’ than Lassen and Moran’s.

4.4 Full abstraction.

The method we exploit in the π-calculus is not fully abstract with respect to
∼=λ. To understand why, we discuss the treatment of open terms in our setting.

From this point of view, the law M 8M ∼=λ M in Figure 10 deserves further
attention. It says that amb is somehow insensitive to the replication of M ,
a kind of property that usually does not hold for bisimulation. This is the
reason why we have been able to establish this result for M closed only.
Indeed, when M reduces to a term having a variable x in head position,
the encodings of M and M 8M are able to make respectively one and two
emissions on x, and are thus separated by (weak or coupled) bisimulation. We
have not been able to find an extension of our methods in order to tackle this
question in a simple way. However, note that this problem is related to the
difficulty of handling multiplicities using bisimulation, which is well-known,
rather than to the specific treatment of open terms (as a matter of fact, the
two resulting Aπ processes do not even simulate each other). In [Mor98,LM99],
open terms are dealt with by applying closing substitutions, while we exploit
the compositionality of our techniques, which allows us for instance to compare
directly M and N when we have to test equivalence between λx.M and λx.N .

Due to this problem with the analysis of open terms, our method is not fully-
abstract with respect to ∼=λ. We can however derive a partial full-abstraction
result (partial in the sense that we only compare pure λ-terms – see Theo-
rem 55 below), for the ‘open’ version of applicative bisimilarity (see [SW01,

37

[[λx.M]]p
def
= νl (p̄〈l〉 | !l(x, q).[[M]]q)

[[let x=M in N]]p
def
= νq ([[M]]q | q(v).([[N]]p | !x(r).r̄〈v〉))

Fig. 11. π-calculus encoding of λ[] with local call-by-value

Part VI]). This relation, written ∼=op
λ , is defined by extending relation ։ to

open terms, and by saying that a term having a free variable in head position is
stuck (for example, x 8Ω cannot diverge). In the following definition, we keep
the same notation ։ for the extended version of the operational semantics.

Definition 54 (Open applicative bisimilarity) ∼=op

λ is the largest symmet-
ric relation on λ[] such that, whenever M ∼=op

λ N ,

(i) M ։ λx.M ′ implies N ։ λx.N ′ with M ′ ∼=op

λ N ′;
(ii) M ։ xM1 . . .Mn with n ≥ 0 implies N ։ xN1 . . . Nn and Mi

∼=
op

λ Ni

for all 1 ≤ i ≤ n.

Theorem 55 (Partial full abstraction) Let M,N be two λ[] terms with no
occurrence of 8, and let p be a name. Then

[[M]]p ≈ [[N]]p iff M ∼=
op

λ N .

Proof. Along the lines of [SW01]. ✷

It can be noted that for the λ-calculus extended with internal choice, the
problem of full abstraction on the whole calculus (i.e., whether the π-calculus
encoding is fully abstract w.r.t. open applicative bisimilarity) is still open. The
same question in λ[] seems at least as difficult.

4.5 Local call by value

An important enrichment of λ[] is that with the familiar let. . . in construction,
that introduces a form of local call by value in the language. The corresponding
additional reduction rule is:

Let
M →֒ V

let x=M in N →֒ N [V/x]

The encoding of the resulting calculus is obtained by a modification of the
encoding presented above, as shown on Figure 4.5 (clauses that are left un-
changed are not mentioned). The translation of a let. . . in construct consists

38

in the evaluation of the locally declared term, followed by the evaluation of
the term after the ‘in’ in which the bound variable is replaced by the com-
puted value. We also add persistence, using replication, in the encoding of
abstractions, since in presence of let. . . in, several copies of a function may be
triggered along a computation.

The correspondence proved in Proposition 24 between ։ and →֒ is still valid
with the addition of rule Let to the calculus. We can therefore use our encod-
ing to reason about ։ in the calculus extended with local call-by-value. The
results presented in previous sections also hold on λ[] with let. In particular,
soundness becomes:

Theorem 56 For any terms M,N of λ[] enriched with local call-by-value, and
for any name p, [[M]]p ∼=π [[N]]p implies M ∼=λ N .

Again, using simple bisimulation reasoning, we are able to derive the following
example laws for λ[] with let:

let x=V in M ∼=λ (λx.M) V let x=M in x 8 x ∼=λ M for M closed

let x=Ω in M ∼=λ Ω let x=M in N ∼=λ N if M ⇓ and x 6∈ fn(N)

5 Conclusion

In the present work, we have distinguished strong and weak divergences, and
shown that only strong divergences should be considered in order to define a
semantics for λ[] using the π-calculus. We think that both resulting semantics
– the one where both strong and weak divergences are observed, and the one
where only strong divergences are relevant – are interesting. However, one may
argue that in languages with operators like amb, a general fairness requirement
that a computation should not ‘always miss a reachable value’ – obtained by
taking only strong divergences into account – appears more reasonable (for
instance, a computation starting from the term T in Section 1 should not
keep discarding the value I).

Existing extensions of the λ-calculus with parallel operators include [DCdP98]
and [Bou94]. These works are concerned with ‘parallel’, rather than ‘choice’
operators, and do not address the issues related to fairness brought up in
the study of amb. Indeed, semantically, the operators of [DCdP98,Bou94] are
much simpler than amb (their encoding into the π-calculus is straightforward,
see [SW01]).

Some of the laws we have established express amb’s fairness in Aπ, and are
derived in our setting by exploiting bisimulation. It would be interesting to go

39

further in this direction in order to gain a better understanding of the fairness
brought by bisimulation. A way to do this is to study the π-calculus semantics
of other fair operators, like e.g. fair merge, which is more expressive than
amb [PS88,FK02]. This operator computes the merge of two (finite or infinite)
lists in a fair fashion, also in the case when the lists contain divergences. It is
possible to adapt an argument of [PS88] to prove that one cannot represent
fair merge into the π-calculus at an operational level. An interesting question
is the definability of fair merge modulo bisimulation, i.e., at a behavioural
level.

Acknowledgements.We would like to thank Mariangiola Dezani, Emmanuel
Jeandel and Pascal Koiran for useful discussions. The help of anonymous ref-
erees is also acknowledged.

References

[Abr90] S. Abramsky. The lazy lambda calculus. In D.A. Turner, editor, Research
Topics in Functional Programming, pages 65–116. Addison-Wesley, 1990.

[Bil95] P. Billingsley. Probability and Measure. J. Wiley & Sons, 1995.

[BL00] G. Boudol and C. Laneve. Lambda-calculus, multiplicities and the pi-
calculus. In Proof, Language, and Interaction, Essays in Honour of Robin

Milner. MIT Press, 2000.

[Bou94] G. Boudol. Lambda-calculi for (strict) parallel functions. In Information

and Computation, volume 108, pages 51–127, 1994.

[CHS03] A. Carayol, D. Hirschkoff, and D. Sangiorgi. On the representation of
McCarthy’s amb in the π-calculus. In Proc. EXPRESS’03, volume 96 of
Electronic Notes in Theoretical Computer Sciences, pages 73–89. Elsevier,
2003.

[DCdP98] M. Dezani-Ciancaglini, U. de’Liguoro, and A. Piperno. A filter model for
concurrent λ-calculus. SIAM J. Comput., 27(5):1376–1419, 1998.

[FK02] M. Fernandez and L. Khalil. Interaction Nets with McCarthy’s amb.
In Proc. EXPRESS’02, volume 68(2) of Electronic Notes in Theoretical

Computer Science. Elsevier, 2002.

[Hen82] P. Henderson. Purely functional operating systems. In Functional

Programming and its Applications, pages 177–192. Cambridge Univ.
Press, 1982.

[HO90] J. Hughes and J. O’Donnell. Expressing and reasoning about non-
deterministic functional programs. In Proc. Glasgow 1989 Workshop

on Functional Programming, Workshops in Computing. Springer Verlag,
1990.

40

[How96] D. J. Howe. Proving congruence of bisimulation in functional
programming languages. Information and Computation, 124(2):103–112,
1996.

[Las98] S. Lassen. Relational reasoning about functions and nondeterminism.
PhD thesis, Aarhus University, 1998.

[LM99] S. Lassen and A. Moran. Unique fixed point induction for McCarthy’s
Amb. In Proc. of MFCS’99, volume 1672 of Lecture Notes in Computer

Science, pages 198–208. Springer Verlag, 1999.

[McC63] J. McCarthy. A basis for a mathematical theory of computation.
In Computer Programming and Formal Systems, pages 33–70. North-
Holland, 1963.

[Mil90] R. Milner. Functions as processes. Technical Report 1154, INRIA Sophia
Antipolis, 1990.

[Mor98] A. Moran. Call-by-name, Call-by-need, and McCarthy’s Amb. PhD thesis,
Chalmers Univ. of Technology and Univ. of Gothenburg, 1998.

[MS98] M. Merro and D. Sangiorgi. On asynchrony in name-passing calculi. In
Proc. ICALP’98, volume 1443 of Lecture Notes in Computer Science,
pages 856–867. Springer Verlag, 1998.

[NC95] V. Natarajan and R. Cleaveland. Divergence and fair testing. In Proc.

ICALP 95, volume 944 of Lecture Notes in Computer Science, pages 648–
659. Springer Verlag, 1995.

[NP96] U. Nestmann and B. Pierce. Decoding choice encodings. In International

Conference on Concurrency Theory, pages 179–194, 1996.

[Pit01] C. Pitcher. Functional programming and erratic non-determinism. PhD
thesis, Oxford University, 2001.

[PS88] P. Panangaden and V. Shanbhogue. McCarthy’s amb cannot implement
fair merge. In Proc. of FST-TCS, volume 338 of Lecture Notes in

Computer Science, pages 348–363. Springer Verlag, 1988.

[San92] D. Sangiorgi. The lazy lambda calculus in a concurrency scenario. In
Proc. 7th LICS Conf., pages 102–109. IEEE Computer Society Press,
1992.

[San95] D. Sands. A näıve time analysis and its theory of cost equivalence. Journal
of Logic and Computation, 5(4):495–541, 1995.

[San00] D. Sangiorgi. Lazy functions and mobile processes. In Proof, Language,

and Interaction, Essays in Honour of Robin Milner. MIT Press, 2000.

[SM92] D. Sangiorgi and R. Milner. The problem of “Weak Bisimulation up
to”. In Proc. CONCUR ’92, volume 630 of Lecture Notes in Computer

Science, pages 32–46. Springer Verlag, 1992.

41

[SW01] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile

Processes. Cambridge University Press, 2001.

[Tur90] D. Turner. An approach to functional operating systems. In Research

Topics in Functional Programming. Addison Wesley, 1990.

42

