
Positional Strategies for Higher-Order

Pushdown Parity Games

Arnaud Carayol1 and Michaela Slaats2

1 IGM–LabInfo, Université Paris-Est & CNRS
arnaud.carayol@univ-mlv.fr

2 RWTH Aachen, Informatik 7, 52056 Aachen, Germany
slaats@automata.rwth-aachen.de

Abstract. Higher-order pushdown systems generalize pushdown sys-
tems by using higher-order stacks, which are nested stacks of stacks. In
this article, we consider parity games defined by higher-order pushdown
systems and provide a k-Exptime algorithm to compute finite represen-
tations of positional winning strategies for both players for games defined
by level-k higher-order pushdown automata. Our result is based on au-
tomata theoretic techniques exploiting the tree structure corresponding
to higher-order stacks and their associated operations.

1 Introduction

Two player games of infinite duration over possibly infinite game graphs (also
called arenas) play an important role in computer science and in particular in
the domain of automatic verification of infinite-state systems (see [14, 19] for
surveys). In such games, the vertices of the game graph are partitioned into two
sets, one for each player. A play consists in moving a token following the edges
of the game graph. The player owning the vertex where the token lies, moves the
token. If at some point a player cannot move the token he loses, otherwise the
play is infinite. The winning condition of the game describes the set of winning
plays for one of the players.

We consider the parity winning condition which plays an important role in the
context of verification. In a parity game, each vertex is assigned an integer from
a finite range and the winning condition is based on the parity of the smallest
integer appearing infinitely often during the play. These games are determined
(i.e. from any node, one of the players has a winning strategy) and can be won
using positional strategies (i.e. strategies that only depend on the current vertex
and not on the whole history of the play) [20]. For these games to be accessible
to automatic treatment, we assume that the arena, though infinite, has a finite
representation. In this article, the arenas will be given by transition graphs of
an extension of pushdown automata. The main algorithmic problems, given the
finite description of such an arena, are to determine who is winning from a
given vertex and to give finite descriptions of the winning regions as well as of
the winning strategies for each player. In the context of automatic verification,

these problems correspond respectively to deciding if the behavior of a system
satisfies a property expressed in modal µ-calculus, to giving a finite description
of the set of states of the system satisfying the property and to synthesizing a
controller for the system against a modal µ-calculus formula [16].

The first class of infinite arenas for which parity games have been studied are
the ones defined by pushdown automata. In [18], Walukiewicz gives an Exptime

algorithm to compute the winner from a given configuration as well as a finite
description of a winning strategy for one player. In [3, 12] the winning region
is shown to be regular when a configuration (q, w) is represented by the word
qw. Furthermore, a finite representation of a positional winning strategy for one
player can easily be derived from [17].

In this article, we consider parity games defined by an extention of push-
down automata called higher-order pushdown automata. Whereas an ordinary
(i.e. level-1) pushdown automaton works with a stack of symbols (i.e. a level-1
stack), a pushdown automaton of level 2 works with a stack of (level-1) stacks.
In addition to pushing a symbol onto and popping a symbol from the top-most
level-1 stack, a level-2 pushdown automaton can duplicate or remove the en-
tire top-most (level-1) stack. Pushdown automata of higher levels are defined
in a similar way. Recently, the infinite structures defined by these automata
have received a lot of attention. In [11], the families of infinite terms defined by
higher-order pushdown automata were shown to correspond to the solutions of
safe higher-order recursion schemes. Subsequently, in [9, 8], the ε-closure of their
configuration graphs were shown to be exactly those constructible from finite
graphs using natural graph transformations (see [15] for a survey).

We consider these infinite structures as arenas for parity games. In [4], Cachat
showed that the winner of a parity game defined by a level-k pushdown automa-
ton starting from a given node can be decided in k-Exptime. We provide for
each player a finite description of the winning region and of a positional winning
strategy. These finite descriptions are based on a notion of regularity for higher-
order stacks introduced independently in [6] and in [10]. A set of level-k stacks is
said to be regular (for operations) if it can be constructed by applying a regular
set of sequences of level-k operations to the empty level-k stack. For usual (level-
1) stacks, this notion corresponds to the regularity for words. For higher levels
it enjoys most of the good properties of the regular sets of words. In particular
these sets form a Boolean algebra and are accepted by a natural model of finite
automata. The finite description obtained in this article is expressed in terms
of this model of finite acceptors. Our construction is based on tree automata
techniques introduced in [17] and already used in [4] to solve these games.

The fact that the notion of regularity by operations can be used to describe
the winning regions and the positional winning strategies was already known
from [6] and [10] respectively. These results are based on the definability in
monadic second-order logic which, though effective, only provide a ck-Exptime

complexity for some constant c ≥ 2.

Outline. Section 2 introduces the necessary notions. The main theorem is stated
in Section 3 with an outline of its proof (developed in Section 4 and 5).

2 Preliminaries

Higher-order pushdown systems. A level-1 stack over a finite alphabet Γ can
be seen as a word of Γ ∗. The empty stack (corresponding to ε) is written []1. We
write Stacks1(Γ) := Γ ∗ for the set of all level-1 stacks over Γ . A level-(k+1) stack
for k ≥ 1 is a non-empty sequence of level-k stacks. The empty stack of level k+1
(written []k+1) is the level-(k+1) stack containing only the empty stack of level
k. The set of all level-(k+1) stacks is defined by Stacksk+1(Γ) := (Stacksk(Γ))+.
A level-(k+1) stack s corresponding to the sequence s1, . . . , sn of level-k stacks
will be written [s1, . . . , sn]k+1 and by convention sn is the top-most level-k stack
of s. We write topk(s) = sn.

We define the following partial functions on higher-order stacks called opera-
tions. The level-1 operations are for each symbol x ∈ Γ the operations pushx and
popx which are respectively defined on level-1 stacks by pushx([s0, . . . , sn]1) =
[s0, . . . , sn, x]1) and popx([s0, . . . , sn, x]1) = [s0, . . . , sn]1.

For each level k+1 ≥ 2, we consider the level-(k+1) operations copyk which copies
the top-most level-k stack and its symmetric operation copyk which removes the
top-most level-k stack if it is equal to its predecessor. Formally, these opera-
tions are respectively defined on level-(k+1) stacks by copyk([s0, . . . , sn]k+1) =
[s0, . . . , sn, sn]k+1 and copyk([s0, . . . , sn, sn]k+1) = [s0, . . . , sn]k+1. In addition,
for each level k, we define a level-k operation written T[]k allowing to test empti-
ness at level k. Formally T[]k(s) is equal to s if s = []k and is undefined otherwise.

An operation ψ of level k is extended to stacks of level ℓ > k using the equation
ψ([s0, . . . , sn]ℓ) = [s0, . . . , ψ(sn)]ℓ.

The set of symmetric operations3 of level k over Γ is defined inductively by
Ops1 ={pushx, popx |x ∈ Γ}∪{T[]1} and Opsk+1 =Opsk∪{copyk, copyk, T[]k+1

}.
Moreover, we denote by Ops∗k the monoid for the composition of partial functions
generated by Opsk.

To obtain a symbolic representation of the operations, we associate to each
operation a symbol called an instruction. At level 1, we define the set of instruc-
tions as Γ1 = Γ ∪ Γ ∪ {⊥1} where Γ is a set disjoint from Γ but in bijection
with Γ and at level k + 1, we take Γk+1 = Γk ∪ {k, k,⊥k+1}. Furthermore, we
define Γ T

k = {⊥ℓ | ℓ ∈ [1, k]} and ΓO
k = Γk \ Γ T

k . We extend the bar notation to
all symbols in ΓO

k by taking x = x. Consider the mapping ϕ from Γk to Opsk

defined by x → pushx, x → popx, k → copyk, k → copyk and ⊥k → T[]k for all
x ∈ Γ, k ∈ N. The mapping ϕ induces a monoid morphism from Γ ∗

k to Ops∗k. In
the following, we will not distinguish between the two monoids and omit ϕ.

Definition 1. A higher-order pushdown system P of level k (k-HOPDS for
short) is defined as a tuple (Q,Σ, Γ,∆) where Q is the finite set of states, Σ is
the input alphabet, Γ is the stack symbol alphabet and ∆ ⊆ Q× Σ × Γk ×Q is
the transition relation.

3 The usual definition of higher-order pushdown automata [11] considers the uncon-
ditional destruction of level-k stacks written popk. The choice of the symmetric
operations and its consequences are discussed in the conclusion.

A configuration is a tuple (p, s) ∈ Q× Stacksk(Γ). We write (p, s)
α
→ (q, s′)

if there exists a transition (p, α, ρ, q) ∈ ∆ such that s′ = ρ(s). A k-HOPDS is

deterministic if for all α ∈ Σ and all configurations c, c′ and c′′, c
α
→c′ and c

α
→c′′

implies c′ = c′′.

Regular sets of higher-order pushdown stacks. The natural notion of reg-
ularity for sets of level-1 stacks is the regularity for words. Indeed the set of
reachable stack contents of a pushdown automaton is regular [2].

Starting from level 2, two notions of regularity have been introduced: regular-
ity for words and regularity for (symmetric) operations. We will use the second
notion and discuss this choice in the conclusion.

The notion of regularity for words was introduced in [1]. A level-k stack is rep-
resented by a well-bracketed word of depth k (e.g. the level-2 stack [[aa]1[abb]1]2
is represented by the word [[aa][aab]]). A set of level-k stacks is regular for words
if the set of words representing it is a regular set of words. For example the set
of level-2 stacks {[[an]1[b

m]1]2 | n,m ≥ 0} is regular for words.

The notion of regularity for (symmetric) operations was introduced indepen-
dently in [6] and [10]. A set of level-k stacks is regular for operations if it can be
obtained by applying a regular subset of Ops∗k to the empty level-k stack []k.
Formally, we define the set of all level-k stacks which are regular for operations
as follows: ORegk(Γ) = Reg(Ops∗k(Γ))([]k) = Reg(Γ ∗

k)([]k) (i.e. S ∈ ORegk(Γ)
if there exists R ∈ Reg(Γ ∗

k) and S = {ρ([]k) | ρ ∈ R}). At level 1, the notion of
regularity for operations coincides with notion of regularity for words. For level
k > 2, every set regular for words is also regular for operations but the converse
does not hold. For instance, the set of level-2 stacks S = {[[an][an]]2 | n ≥ 0} is
regular for operations as S = push∗acopy1([]2) = a∗1([]2) but it is not regular
for words.

For every level k ≥ 1, the set ORegk(Γ) is a Boolean algebra. These closure
properties are due to the fact that a level-k stack s can be uniquely represented
by the smallest sequence of instructions ρ ∈ Γ ∗

k such that s = ρ([]k). This
unique sequence, called the reduced sequence of s, will be written ρs. For instance
the reduce sequence of the level-2 stack [[aab][ab]]2 is aab1b̄āb. Note that the
reduced sequence of a level-1 stack is simply the stack itself. For a stack of level
k + 1 ≥ 2, its reduced sequence cannot contain xx̄, ⊥ℓ nor k̄ for any x ∈ ΓO

k

and ℓ ∈ [1, k+ 1]. In fact, the reduced sequence of a level-k stack s is the unique
sequence ρ ∈ Γ ∗

k such that s = ρ([]k) which does not contain such factors.

The sets in ORegk(Γ) can be characterized by a model of finite automata
tightly linked to the notion of reduced sequences. A reduced automaton of level
1 is simply a finite automaton over Γ . A reduced automaton A of level k+1 ≥ 2
is given by a tuple (Q, I, F,∆) together with a finite set of tests R ⊂ ORegk(Γ)
where Q is the finite set of states, I ⊆ Q and F ⊆ Q are respectively the set of

initial and final states, and ∆ is the finite set of transitions of the form p
γ

−→ q, T

with γ ∈ ΓO
k \ {k̄} and T ⊆ R. Intuitively, the automaton in state p on a stack s

can apply the transition to go to state q on the stack γ(s) if the top-most level-k
stack of γ(s) belongs to T . Furthermore, we impose that the automaton only

follows reduced sequences: if p
γ

−→ p′, T ∈ ∆ and p′
γ′

−→ p′′, T ∈ ∆ then γ′ 6= γ̄.

A run of A is a sequence (q0, s0), . . . , (qn, sn) ∈ (Q× Stacksk+1(Γ))+ where

q0 ∈ I, s0 = []k+1 and for all i ∈ [0, n − 1], there exists a transition qi
γi+1
−→

qi+1, Ti+1 with si+1 = γi+1(si) and the top-most level k stack of si+1 belongs to
T for all T ∈ Ti+1. A run of A accepts a stack s if qn ∈ F and s = sn. Note that
in this case, the reduce sequence of s is γ1 . . . γn.
We will always consider reduced automata whose tests are given by reduced au-
tomata of one level below. The size of the automaton is the size of the transition
relation together with the sum of the reduced automata accepting the set of
tests.

Theorem 1 ([6, 10]). For all k ≥ 1, the sets of level-k stacks regular for op-
erations are exactly those sets accepted by reduced level-k automata. Moreover
ORegk(Γ) forms a Boolean algebra.

Parity games defined by higher-order pushdown systems. A parity game
G played between Player 0 and Player 1 is given by a tuple (V0, V1, E), where Vi

is the set of nodes of Player i for i ∈ {0, 1} and E ⊆ (V0 ∪ V1)× (V0 ∪ V1) is the
edge relation, and Ω : (V0 ∪ V1) → [1, n] is the coloring mapping for some fixed
n ∈ N.

Player 0 and Player 1 play in G by moving a token between vertices. A play
from some initial vertex v0 proceeds as follows: the player owning v0 moves the
token to a vertex v1 such that (v0, v1) ∈ E. Then the player owning v1 chooses
a successor v2 and so on. If at some point one of the players cannot move, he
loses the play. Otherwise, the play is an infinite word π ∈ (V0 ∪ V1)

ω and is won
by Player 0 if the smallest color that is seen infinitely often in π is even.

A strategy for Player i is a partial function ϕi assigning to a partial play
ending in some vertex v ∈ Vi a vertex v′ such that (v, v′) ∈ E. Player i respects
a strategy ϕi during some play π = v0v1v2 · · · if vi+1 = ϕi(v0 · · · vi), for all i ≥ 0
such that vi ∈ Vi. A strategy ϕi for Player i is winning from some position
v ∈ V0 ∪ V1 if every play starting from v where Player i respects ϕi is won by
him. A positional strategy for Player i is a strategy that only depends on the
last vertex of the partial play (i.e. it is a partial function from Vi to V0 ∪ V1).
Finally, a vertex v ∈ V0 ∪ V1 is winning for Player i if he has a winning strategy
from v, and the winning region Wi consists of all winning vertices for Player i.

The positional determinacy theorem for parity games [20] states that from
every vertex either Player 0 or Player 1 has a positional winning strategy. This
assertion can be strengthened by saying that Player i has a global positional
winning strategy ϕi such that ϕi is winning for Player i from all vertices in
Dom(ϕi) and Dom(ϕi) = Wi ∩ Vi (see [13]).

Definition 2. A higher-order pushdown parity game G of level k is given by a
deterministic k-HOPDS P = (Q,Σ, Γ, δ) together with a partition of the states
Q0 ⊎ Q1 and a coloring mapping ΩP : Q → N and is the game (V0, V1, E,Ω)
where: V0 = Q0×Stacksk(Γ), V1 = Q1×Stacksk(Γ), E is the Σ-labeled transition
relation of P and Ω is defined for (p, s) ∈ Q× Stacksk(Γ) by Ω(p, s) := ΩP (p).

The labels in Σ on the transitions do not play any role in the game but
together with the hypothesis of determinism of P , they permit to give a simpler

description of positional strategies. In fact a positional strategy ϕ for Player i
can be described by a partial function from Vi to Σ, or equivalently by a family
(Fα)α∈Σ of subsets of Vi (i.e. Fα := {(p, s) ∈ Vi | ϕ((p, s)) = α}). We say that
a positional strategy defined by a family (Fα)α∈Σ is regular if all these sets are
regular4 for operations.

Tree automata models. Let Σ and W be two finite alphabets which are
respectively a labeling alphabet and a set of directions. A Σ-labeled W -tree t is
a partial function from W ∗ to Σ such that Dom(t) is a non-empty prefix-closed
subset of W ∗. An element of Dom(t) is a node and ε is called the root of t. For
d ∈ W , a node wd ∈ Dom(t) is a d-son of w ∈ Dom(t) and w is the parent of
wd. Let Ξ be a finite alphabet, a Ξ-labeling of a Σ-labeled W -tree t is a Σ×Ξ-
labeled W -tree t′ such that Dom(t) = Dom(t′) and such that for w ∈ Dom(t′),
t′(w) = (t(w), σ) for some σ ∈ Ξ.

We consider two-way alternating parity tree automata which can from a
node of an input tree send several copies to sons of this node but also to its
parent. To navigate through the tree, we consider an extended set of directions
ext(W) := W ⊎ {ε, ↑}. The symbol ↑ means “go to the parent node” and ε

means “stay on the present node”. We take ∀u ∈ W ∗, d ∈ W,u.ε = u and
ud ↑= u. The node ε ↑ is not defined. As we consider non-complete W -trees (i.e.
Dom(t) 6= W ∗), we assume that the labeling of a tree provides the directions to
all sons of a node in the tree: the automaton runs on P(W)×Σ-labeledW -trees t
where for all w ∈ Dom(t), t(w) = (θw, σw) where θw = {d ∈W | wd ∈ Dom(t)}.

Definition 3. A two-way alternating parity tree automaton (2-PTA for short)
running over P(W) ×Σ-labeled W -trees is a tuple A = (Q,∆, I,Ω) where Q is
the finite set of states, ∆ ⊆ Q× (P(W)×Σ)×P(ext(W)×Q) is the transition
relation, I is set of initial states and Ω : Q→ N the coloring mapping.

A transition (q, (θ, σ), {(d1, q1), . . . , (dn, qn)}) ∈ ∆ will be written q, (θ, σ) →
(d1, q1) ∧ . . . ∧ (dn, qn). We will always assume that {d1, . . . , dn} is a subset of
θ∪{↑, ε}. The behavior of a 2-PTA A = (Q,∆, I,ΩA) over a P(W)×Σ-labeled
W -tree t is given by the parity game GA,t = (V0, V1, E) played between two
players called Automaton and Pathfinder. The set V0 of vertices of Automaton
is Dom(t) × Q and the set V1 of vertices of Pathfinder is Dom(t) × ∆. For all
w ∈ Dom(t) and q ∈ Q, there is an edge ((w, q), (w, δ)) ∈ E for all transitions
δ ∈ ∆ of the form q, t(w) → P . Conversely for every transition δ = q, t(w) →
P ∈ ∆, there is an edge ((w, δ), (wdi, qi)) for all (di, qi) ∈ P . The automaton A
accepts the tree t if Automaton wins GA,t from some vertex in {ε} × I.

The classical notion of (one-way) non-deterministic parity tree automata
(PTA) coincide with 2-PTAs with transitions of the form q, (θ, σ) → (d1, q1) ∧
. . . ∧ (dn, qn) where for all i, j ∈ [1, n], di ∈ W and di = dj implies i = j.

4 We represent a configuration (p, s) by the stack pushp(s).

3 Main theorem and outline of the proof

Theorem 2. Given a pushdown parity game of level k, we can construct in k-
Exptime reduced level-k automata describing the winning region and a global
positional winning strategy for each player.

In Section 4, we define for every level k, a tree tk (see e.g. Fig. 1) associated to
the stacks of level k. The branches of tk correspond to the reduced sequences of
the level-k stacks. Starting with a parity game G described by a level-k pushdown
automaton P , we construct a 2-PTA AP running on tk which captures the
game G and whose size is polynomial in the size of P . More precisely, we can
reduce the computation of regular representations of a global positional winning
strategy and of the winning region for each player to the computation of a
regular representation of a global positional winning strategy for the automaton
AP running on tk. Intuitively such a strategy consists for every node u of the
tree and every state q of the automaton to either provide a transition of the
automaton starting with state q which can be applied at node u or a set of
directions and states which refute any transitions of the automaton that can be
applied at node u in state q.

In Section 5, we show how to compute regular global positional winning
strategies for a 2-PTA running on the trees tk. The proof proceeds by induction
on the level of the tree. First based on a construction from [17], we construct
for any two-way alternating parity tree automaton A a non-deterministic one-
way parity tree automaton B accepting the labelings of tk corresponding to
global positional winning strategies of A (see Proposition 3). Second for any non-
deterministic one-way parity tree automaton B running on tk, we construct a
two-way alternating parity tree automaton C running on tk−1 (see Proposition 4)
such that from a global positional strategy of C over tk−1 defined by regular sets
of level-(k−1) stacks, we can construct a strategy (for A) accepted by B defined
by regular sets of level-k stacks.

4 From games to trees

In this section, we introduce the infinite tree tk associated to the stacks of level
k and based on the reduced sequences of these stacks. We show that the problem
of computing a global positional winning strategy of a level-k pushdown parity
game can be reduced in polynomial time to the problem of computing a global
positional winning strategy for an alternating two-way parity tree automaton
running on the tree tk.

As we have seen in Section 2, a level-k stack s is uniquely characterized by
its reduced sequence ρs. Hence the set of reduced sequences of all level-k stacks
is a ΓO

k -tree in which each node corresponds to one and only one level-k stack.
In order to increase the expressivity of tree automata running on these trees,
we label each node by a finite information about the surrounding of the stack
corresponding to this node. The surrounding of a stack s ∈ Stacksk(Γ) is a triple
ℓ(s) = (d,D, e) where:

– d ∈ ΓO
k ∪ {⋄} is the last symbol of ρs if ρs 6= ε and is equal to ⋄ otherwise,

– D is the set {γ ∈ ΓO
k | ∃s′ ∈ Stacksk(Γ), ρs′ = ρsγ},

– e ∈ [0, k] is the maximum of {n ∈ [1, k] | ⊥n(s) = s} ∪ {0}.

Formally, the tree tk is defined for all s ∈ Stacksk(Γ) by tk(ρs) = ℓ(s).
When referring to the nodes of tk, we do not distinguish between the stack and
its reduced sequence. In particular, we said that a Ξ-labeling t of tk is regular if
for all x ∈ Ξ, the set of level-k stacks Sx = {s ∈ Stacksk(Γ) | t(ρs) = (tk(ρs), x)}
is regular for operations. A finite representation of t is then given by a family of
reduced level-k automata (Ax)x∈Ξ . For Γ = {a, b}, the tree t1 is essentially the
full binary tree. The tree t2 (depicted in Figure 1) is not complete nor regular.

[[a][b]]2 [[a][]2]2 [[b][a]]2 [[b][]2]2

[[a][aa]]2 [[a][]]2 [[a][ab]]2 [[a]3]2 [[b][ba]]2 [[b][bb]]2 [[b][]]2 [[b]3]2

[[aa]]2 [[a][a]]2 [[ab]]2 [[ba]]2 [[bb]]2 [[b][b]]2 [[][a]]2 [[][b]]2 [[]3]2

[[a]]2 [[b]]2 [[][]]2

[]2

(b,{a,b,1},0) (1,{a,b,1},1) (a,{a,b,1},0) (1,{a,b,1},1)

(a,{a,b,1},0)(ā,{b,1},1)(b,{a,b,1},0)(1,{a,ā,b,1},0) (a,{a,b,1},0)(b,{a,b,1},0)(b̄,{a,1},1)(1,{a,b,b̄,1},0)

(a,{a,b,1},0)(1,{a,ā,b,1},0)(b,{a,b,1},0) (a,{a,b,1},0)(b,{a,b,1},0)(1,{a,b,b̄,1},0) (a,{a,b,1},0)(b,{a,b,1},0) (1,{a,b,1},1)

(a,{a,b,1},0) (b,{a,b,1},0) (1,{a,b,1},1)

(⋄,{a,b,1},2)

�� @@ �� @@

��� @@
PPPP

���
HHH
PPPP

���
HHH

���
HHH

���
HHH


````````̀

Fig. 1. The tree t2 for Γ = {a, b} where the labels appear in parenthesis below the
corresponding node.

As it was done for (level-1) pushdown parity games in [17], we reduce the de-
cision problem for level-k parity games to the acceptance problem for alternating
two-way parity tree automata running over tk. Intuitively, the non-determinism
of the automaton is used to reflect the choices of Player 0 and the alternation is
used to reflect the choices of Player 1.

Proposition 1. Given a pushdown parity game G of level k, we can construct
a 2-PTA A running on tk such that Player 0 wins G from (q, [ ]k) if and only if
A has an accepting run on tk starting from state q. Furthermore the size of A
is polynomial in the size of the level-k pushdown automaton defining G.

Proof (Sketch). Let G be a parity game defined by a level-k pushdown automaton
P = (QP , Σ, Γ,∆P ) with QP = Q0 ⊎ Q1 and a coloring mapping ΩP . We
construct the 2-PTA A = (QA, ∆A, ΩA) with QA = QP , ΩA = ΩP . To define
∆A, we introduce for a surrounding τ = (d,D, e) and an instruction γ ∈ Γk

the direction [[γ]]τ on tk. It is defined by [[γ]]τ = γ if γ ∈ D, [[γ]]τ =↑ if γ = d,
[[γ]]τ = ε if γ = ⊥j and e ≥ j and [[γ]]τ is undefined otherwise.



For p ∈ Q0, (p, α, γ, q) ∈ ∆P and surrounding τ = (d,D, e) such that [[γ]]τ is
defined, we have: (p, τ) → ([[γ]]τ , q) ∈ ∆A.

For p ∈ Q1, let δ1, . . . , δn be the set of all transitions in ∆P starting in p, i.e.
having the form δi = (p, αi, γi, qi) for all i ∈ [1, n]. For all labelings τ = (d,D, e),
we take: (p, τ) →

∧
i∈[1,n]∧[[γi]]τ def.([[γi]]τ , qi) ∈ ∆A.

Note that the size of A is exponential in the size of Γk. ⊓⊔

The relation between the game G and the 2-PTA A constructed in Propo-
sition 1 can be lifted to strategies. Before stating this correspondence, we show
how to represent a pair of global positional winning strategies ϕaut and ϕpath

in G(A, tk) for Automaton and Pathfinder respectively as a labeling of tk by a
finite amount of information. The labeling set is F0 ×F1 where F0 is the set of
all partial functions from Q to ∆ and F1 is the set of all partial functions from
Q to P(ext(W ) ×Q).
The strategy ϕaut of Automaton at a node w ∈ Dom(t) is given by a partial
function νw

0 from Q to ∆ which when defined on a state q gives the transition
to apply in the configuration (w, q). Formally, for all q ∈ Q, νw

0 (q) = δ iff
ϕaut(w, q) = (w, δ).
The strategy ϕpath of Pathfinder can be given by a partial function νw

1 from Q

to P(ext(W )×Q). For all q ∈ Q, we have two cases depending on who wins the
game from (w, q). If Automaton wins from (w, q) (i.e. there exists a transition
δ = (q, t(w)) → P such that ϕpath(w, δ) is undefined) then νw

1 (q) is undefined.
If Pathfinder wins from (w, q) then for all transitions δ1, . . . , δn starting with
(q, t(w)) (i.e. δj = q, t(w) → Pj), we have ϕpath(w, δj) = (wdji

, qji
) for some

(dji
, pji

) ∈ Pj for all j ∈ [1, n]. In this case, νw
1 (q) is equal to {(dji

, qji
) | j ∈

[1, n]}. Intuitively νw
1 (q) is defined if Pathfinder wins from (w, q) and in this case

it corresponds to a set of directions and states that can refute any transitions of
the automaton that can be applied in this configuration. Note that for any node
w ∈ Dom(t), Dom(νw

0 ) and Dom(νw
1 ) form a partition of Q.

Conversely we say that a F0 ×F1-labeling of tk is a global winning strategy
for A on tk if it induces a pair of global winning strategies for each player.

Proposition 2. Let G be a pushdown parity game of level k and A the alternat-
ing two-way parity tree automaton given by Proposition 1. Given a regular global
positional winning strategy Φ for A on tk, we can compute, for each player,
a regular global positional winning strategy and a regular representation of the
winning region.

5 Computing strategies over tk

In this section, we show how to compute a regular global positional strategy for
a 2-PTA A running on tk. For this we proceed by induction on the level k.

The first step is based on [17] and consists in showing that for any 2-PTA
A running on tk, one can construct a PTA B accepting the F0 ×F1-labelling of
tk representing a global winning strategy for A on tk. In [17], a PTA B is con-
structed that accepts the trees representing a positional strategy for Automaton



winning from a given state of A (see [3] for a detailed presentation of the con-
struction). The following proposition simply adapts the construction to make it
symmetric between Automaton and Pathfinder.

Proposition 3. Given a 2-PTA A running on tk, we can construct a PTA B
accepting the trees representing global positional winning strategies of A. Fur-
thermore, the size of B is exponential in the size of A but the number of colors
of A is linear in the number of colors of B.

Using Proposition 3, we have reduced our initial problem to computing a
regular Ξ-labeling of tk+1 accepted by a given PTA B. In the next step, we
reduce this problem to the computation of a global winning strategy for a 2-
PTA C running on tk.

The construction is based on the fact that B does not use the ↑ direction and
hence when running on tk+1 only take directions in ΓO

k ∪ {k}. From the point
of view of the operations on the stacks, B does not perform the copyk operation
and hence can only access the top-most level-k stack. Intuitively, we can simulate
the same behavior at one level below by replacing the direction k by ε: we use
alternation instead of performing the copyk operation. The construction is a bit
more technical as we need to relate the surroundings in tk+1 which belong to a
node corresponding to a level-(k + 1) stack s to the surroundings in tk of the
node corresponding to the level-k stack topk(s).

Proposition 4. Given a PTA B accepting at least one Ξ-labeling of tk+1, we
can construct a 2-PTA C running on tk such that given a regular global positional
strategy for C on tk, we can construct a regular Ξ-labeling of tk+1 accepted by
B. Furthermore, the size of C is polynomial in the size of B.

Proof. Let B = (QB, ∆B, IB , ΩB) be a PTA accepting Ξ-labelings of tk+1.
We can assume w.l.o.g that B runs on tk+1 and guesses the Ξ-labeling (i.e.
QB = Q′

B × Ξ). Furthermore, we can assume that the surroundings appearing
in transitions of B really occur in tk+1.

We define the 2-PTA C = (QC , ∆C , IC , ΩC) with QC = QB × ΓO
k ∪ {k, ⋄},

IC = IB ×{⋄} and ΩC(p, d) = ΩB(p) for all d ∈ ΓO
k ∪{k, ⋄}. For each transition

δ := q, (d,D, e) → (γ1, q1) ∧ . . . ∧ (γn, qn) ∈ ∆B and for each d′ ∈ ΓO
k ∪ {⋄}, we

add the following transition to ∆C :

δ↓d′ := (q, d), (d′, D′, e′) → (γ′1, (q1, γ1)) ∧ . . . ∧ (γ′n, (qn, γn))

when

1. d = ⋄ ⇒ d′ = ⋄ and d′ 6= ⋄∧d′ 6= d⇒ d′ ∈ D and D′ = (D∪{d})\{k, d′, k},
e′ = min{e, k}

2. for all i ∈ [1, n], γ′i is equal to ε if γi = k, to ↑ if γi = d′ and to γi otherwise.

Intuitively, the automaton C simulates the actions of B on the top-most level-
k stack. This is enough to capture the whole behavior of C as B never performs
the copyk operation. Condition 1 relates the surroundings (d,D, e) in tk+1 of a



node correspond to a level-(k + 1) stack s to the surroundings (d′, D′, e′) in tk

of the node corresponding to the level-k stack topk(s). Condition 2 reflects the
fact that the copyk operation does not modify the top-most level-k stack (i.e the
direction k is replace by ε).

An important property for the transitions of the 2-PTA C is that for every
δ ∈ ∆C , there exists a unique transition δ↑ ∈ ∆B and a unique d′ ∈ ΓO

k ∪{⋄} such
that δ = (δ↑)↓d′ . Moreover, if the labels of δ and δ↑ are respectively (d′, D′, e′)

and (d,D, e), we have D = (D′ ∪ {d′, k}) \ {d}. This property allows us to
lift a regular positional strategy for C on tk to a regular positional strategy of
B on tk+1. Consequently, we can compute a regular Ξ-labeling accepted by B
following the regular global positional strategy for B. ⊓⊔

By an induction on the levels combining Proposition 3 and Proposition 4, we
reduce the initial problem to the problem of computing a winning strategy in a
finite parity game which is k-fold exponential in the size of original automaton.
Indeed only the first step provides an exponential blow-up in the number of
states but the number of colors remains linear. The computation of a winning
strategy on finite parity games is only exponential in the number of colors [20].
Hence, we obtain a k-Exptime procedure.

Theorem 3. Given a 2-PTA A running on tk+1, we can compute in k-Exptime

a regular global positional strategy for A on tk+1.

6 Conclusion

We have presented a k-Exptime algorithm to provide a finite representation
of the winning regions and global positional winning strategies in higher-order
pushdown parity games of level k. Note that deciding the winner of these games
is already k-Exptime hard [5]. Our results can be extended to richer graph
structures based on higher-order pushdown automata such as for example rooted
higher-order pushdown parity games (where the game graph is restricted to the
configurations reachable from a given configuration) and their ε-closure (see [8]).

One of the key feature of our approach is the use of the symmetric destruction
of level-k stacks copyk instead of the usual unconditional destruction popk. This
choice is motivated by the closure properties of the notion of regularity induced
by the set of symmetric operations as well as the tree structure it induces. The
game graphs obtained when considering popk instead of copyk can be obtained
as ε-closure of rooted higher-order pushdown parity games (see [6]) and hence
can be treated in our framework.

In [7], it was shown that when considering higher-order pushdown parity
games defined using the unconditional destruction popk instead of the symmetric
destruction copyk considered in this article, the winning region is regular by
words. This result is stronger than the one obtainable by our approach as we
can only prove that the winning region is regular for operations. It is important
to note that when considering the symmetric version this result no longer holds.
The proof of [7] also provides a finite description of a winning strategy from a



given vertex for one of the players based on a higher-order pushdown automaton
reading the moves of the play and outputting the next move. It is unknown if
the notion of regularity by words can be used to describe positional winning
strategies for higher-order pushdown parity games.

Acknowledgments. The authors thank Olivier Serre, Wolfgang Thomas and
an anonymous referee for their numerous helpfull comments.

References

1. A. Bouajjani and A. Meyer. Symbolic reachability analysis of higher-order context-
free processes. In Proc. FSTTCS’04, LNCS, pages 135–147, 2004.

2. J. Büchi. Regular canonical systems. Arch. Math. Logik Grundlag., 6:91–111, 1964.
3. T. Cachat. Symbolic strategy synthesis for games on pushdown graphs. In Proc.

ICALP’02, volume 2380 of LNCS, pages 704–715, 2002.
4. T. Cachat. Higher-order-pushdown automata, the Caucal hierarchy of graphs and

parity games. In Proc. ICALP’03, volume 2719 of LNCS, pages 556–569, 2003.
5. T. Cachat and I. Walukiewicz. The complexity of games on higher order pushdown

automata. Electronic version, May 2007.
6. A. Carayol. Regular sets of higher-order pushdown stacks. In Proc. MFCS’05,

volume 3618 of LNCS, pages 168–179, 2005.
7. A. Carayol, M. Hague, A. Meyer, C.-H. L. Ong, and O. Serre. Winning regions of

higher-order pushdown games. To appear in Proc. LICS’08, 2008.
8. A. Carayol and S. Wöhrle. The Caucal hierarchy of infinite graphs in terms of

logic and higher-order pushdown automata. In Proc. FSTTCS’03, volume 2914 of
LNCS, pages 112–123, 2003.

9. D. Caucal. On infinite graphs having a decidable monadic theory. In Proc.

MFCS’02, volume 2420 of LNCS, pages 165–176, 2002.
10. S. Fratani. Automates piles de piles . . . de piles. PhD thesis, Universit Bordeaux

1, 2005.
11. T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown trees are easy.

In 5th FoSSaCS, volume 2303 of LNCS, pages 205–222, 2002.
12. O. Serre. Note on winning positions on pushdown games with omega-regular con-

ditions. IPL, 85(6):285–291, 2003.
13. W. Thomas. Languages, automata, and logic. In Handbook of Formal Languages,

volume 3, pages 389–455. Springer, 1997.
14. W. Thomas. Infinite games and verification. In Proc. CAV’02, volume 2404 of

LNCS, pages 58–64, 2002.
15. W. Thomas. Constructing infinite graphs with a decidable MSO-theory. In Proc.

of MFCS’03, volume 2747 of LNCS, pages 113–124, 2003.
16. W. Thomas. On the synthesis of strategies in infinite games. In Proc. STACS05,

volume 900 of LNCS, pages 1–13, 2005.
17. M. Y. Vardi. Reasoning about the past with two-way automata. In Proc.

ICALP’98, volume 1443 of LNCS, pages 628–641, 1998.
18. I. Walukiewicz. Pushdown processes: Games and model checking. In Proc. CAV’96,

volume 1102 of LNCS, pages 62–74, 1996.
19. I. Walukiewicz. A landscape with games in the background. In Proc. LICS’04,

pages 356–366. IEE, 2004.
20. W. Zielonka. Infinite games on finitely coloured graphs with applications to au-

tomata on infinite trees. TCS, 200:135–183, 1998.


