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Abstract. It is a well-known result that the set of reachable stack con-
tents in a pushdown automaton is a regular set of words. We consider the
more general case of higher-order pushdown automata and investigate,
with a particular stress on effectiveness and complexity, the natural no-
tion of regularity for higher-order stacks: a set of level k stacks is regular
if it is obtained by a regular sequence of level k operations. We prove
that any regular set of level k stacks admits a normalized representation
and we use it to show that the regular sets of a given level form an effec-
tive Boolean algebra. In fact, this notion of regularity coincides with the
notion of monadic second order definability over the canonical structure
associated to level k stacks. Finally, we consider the link between regu-
lar sets of stacks and families of infinite graphs defined by higher-order
pushdown systems.

Introduction

Higher-order pushdown automata (hopdas for short) were introduced as a gen-
eralization of pushdown automata [Aho69,Gre70,Mas76]. Whereas a pushdown
automaton works on a stack of symbols, a pushdown automaton of level 2 (or
2-hopda) works with a stack of level 1 stacks. In addition to the ability to push
and to pop a symbol on the top-most level 1 stack, a 2-hopda can copy or remove
the entire top-most level 1 stack. The k-hopdas are similarly defined for all level
k and have been extensively studied as language recognizers [Dam82,Eng83].

Recently, the infinite structures defined by hopdas have received a lot of
attention. First, in [KNU02,Cau02], the families of infinite terms defined by k-
hopdas were shown to correspond to the solutions of safe higher-order recursive
schemes. This study was later extended to the transition graphs of k-hopdas in
[CW03]. Several characterizations of this hierarchy of families of infinite graphs
were obtained. In particular, it was shown to coincide with a hierarchy defined
using graph transformations by Caucal in [Cau96b] (see [Tho03] for a survey on
this hierarchy).

The transition graphs of hopdas are defined in [CW03] by ε-closure of the
reachability graphs. The vertices of the reachability graph of an hopda are the
configurations reachable by the automaton from the initial configuration, and
the edges represent the transition rules of the hopda. A major drawback of this
definition is that it does not provide a direct description of the relations defining
the edges of the transition graphs.



At level 1, the set of edges of the transition graph of a pushdown automaton can
be given by prefix-recognizable relations [Cau96a,Cau03]. This characterization
essentially uses the fact that the set of stack contents reachable by a pushdown
automaton is regular. At level 2, due to the introduction of the copy operation,
the set of words representing the stacks of stacks reachable by a 2-hopda is not
a regular set of words. Hence, in order to obtain an internal representation of
the transition graphs of k-hopdas, it is necessary to define a notion of regularity
for sets of stacks of level k (k-stacks for short).

In this article, we study the notion of regularity for k-stacks induced by k-
hopdas: a set of k-stacks is regular if it is obtained by a regular sequence of level k

operations applied to the empty k-stack. In Section 2, we study the algebraic and
algorithmic properties of this notion. We define a normal form for regular sets of
k-stacks and use it to prove that they are closed under complementation. From
the algorithmic point of view, the complexity of the normalization algorithm
presented in Section 2.3 is a lower bound. We also show that the k-regular sets
correspond to the sets definable by monadic second order logic over the canonical
infinite structure associated with k-stacks. Finally, in Section 3, we use the notion
of k-regularity to define an internal representation of the transition graphs of k-
hopdas.

A complete version of this work including proofs can be found in [Car05].

1 Preliminary Definitions

1.1 Regular parts of a monoid

A monoid is given by a set M together with an associative internal product
operation written · that admits a neutral element 1M . The product operation is
extended to subsets of M by P · Q = {p · q | p ∈ P and q ∈ Q}. For any subset
N of M , Nn is defined by N0 = {1M} and Nn+1 = N · Nn . The iteration of
N written N∗ is equal to ∪i∈NN i. Similarly, N+ is defined as ∪i>0N

i. The set
of regular parts of a monoid M noted Reg(M) is the smallest set containing the
finite subsets of M and closed under union, product and iteration.

A common example of monoid is the set of words over a finite alphabet Γ .
A finite sequence of symbols (also called letters) in Γ is a word and the set of
all words is written Γ ∗. The empty word is noted ε.

1.2 Infinite graphs and transformations

Infinite graphs. Given a finite set Σ of edge labels and a countable set V , a
Σ-labeled graph G is a subset of V ×Σ × V . An element (s, a, t) of G is an edge

of source s, target t and label a, and is written s
a

−→
G

t or simply s
a

−→ t if G

is understood. The set of all sources and targets of a graph is its support VG. A
sequence of edges s1

a1−→ t1, . . . , sk
ak−→ tk with ∀i ∈ [2, k], si = ti−1 is a path

starting from s1. We write s1
u

=⇒ tk, where u = a1 . . . ak is the corresponding
path label.



The unfolding Unf(G, r) of a Σ-labeled graph G from a vertex r ∈ VG is the

Σ-labeled tree T satisfying for any a ∈ Σ that π
a

−→ π′ ∈ T if and only if π and
π′ are two paths in G starting from r and π′ = π s

a
−→ t.

Inverse mappings. Let Σ̄ be a set of symbols disjoint from but in bijection
with Σ. For any x ∈ Σ, we write x̄ the corresponding symbol in Σ̄. We extend
every Σ-labeled graph G to a (Σ ∪ Σ̄)-labeled graph Ḡ by adding reverse edges

(i.e. Ḡ = G ∪ {s
x̄

−→ t | t
x

−→ s ∈ G}). Let Γ be a set of edge labels, a rational

mapping is a mapping h : Γ → Reg((Σ ∪ Σ̄)∗) which associates to every symbol
from Γ a regular subset of (Σ ∪ Σ̄)∗. If h(a) is finite for every a ∈ Γ , we also
speak of a finite mapping. We apply a rational mapping h to a Σ-labeled graph

G by the inverse to obtain a Γ -labeled graph h−1(G) = {s
a

−→ t | s
h(a)
=⇒

Ḡ
t}.

Monadic second order logic. We define the monadic second-order logic (MSO
for short) over Σ-labeled graphs as usual (see e.g. [EF95]). For any monadic
second order formula ϕ(x1, . . . , xn) whose free-variables are first-order variables
in {x1, . . . , xn} and for any vertices u1, . . . , un ∈ VG, we write G |= ϕ(u1, . . . , un)
the fact that the graph G satisfies the formula ϕ when xi is interpreted as ui for
all i ∈ [1, n].

1.3 Higher-order stacks and operations

Stacks. A stack over a finite alphabet Γ is a word over Γ . We write Stacks1(Γ ) =
Γ ∗ for the set of all stacks of level 1 and note [ ]1 the empty level 1 stack ε. For
all k > 1, a level k stack over Γ (or simply a k-stack) is a non-empty sequence
of (k − 1)-stacks over Γ . We write Stacksk(Γ ) = (Stacksk−1(Γ ))

+
the set of all

k-stacks or simply Stacksk if Γ is understood. The empty stack of level k is the
k-stack containing only the empty (k − 1)-stack and is written [ ]k. The stack
[ [ AB ] [ ABC ] [ BA ] ]2 designates a 2-stack whose top most 1-stack is [ BA ]1.
The set of all stacks over Γ is written Stacks(Γ ) =

⋃
k∈N

Stacksk(Γ ).

Operations. An operation on higher-order stacks is a (partial) function from
Stacks(Γ ) to Stacks(Γ ) which preserves the level of the stack (i.e. the image of
a k-stack is a k-stack). The level |ρ| of an operation ρ is the smallest k such that
Dom(ρ) ∩ Stacksk 6= ∅. The only operation for which the level is not defined is
the empty function ∅. Note that for any two functions f and g, f · g designates
the mapping associating to x the value g(f(x)).

The operations, we consider, respect the access mode of higher-order stacks
that is to say, in a level k + 1 stack only the top most level k stack can be
accessed. It implies that for any level k operation ρ and for all k′ > k, we have:
ρ([w1, . . . , wn]k′) = [w1 . . . ρ(wn)]k′ . Hence, it is only necessary to define a level
k operation on Stacksk, its definition for level of stacks greater than k is implicit.

The operations of level 1 for stacks over Γ are the well known pushx and
popx for all x ∈ Γ . The operations added at level k + 1 are the copy of the
top most k-stack written copyk and the inverse operation which is usually the
destruction of the top most k-stack written popk. We consider a more symmetric



operation copyk that only destroys the top most k-stack if it is equal to previous
one1. These operations are formally defined by:

pushx([ x1 . . . xn ]1) = [ x1 . . . xnx ]1
popx([ x1 . . . xnx ]1) = [ x1 . . . xn ]1
copyk([ w1 . . . wn ]k+1) = [ w1 . . . wnwn ]k+1

popk([ w1 . . . wn+1 ]k+1) = [ w1 . . . wn ]k+1

copyk([ w1 . . . wnwn ]k+1) = [ w1 . . . wn ]k+1

In addition for each level k, we consider an operation written Ek to test
whether the top most k-stack is empty (i.e Ek([ ]k) = [ ]k and is undefined
otherwise). This operation is usually avoided by considering a bottom symbol
in the definition of the stacks but we wish to remain as general as possible.
Moreover, we write idk the identity seen as a level k operation.

We define Ops1 = {pushx, popx | x ∈ Γ} ∪ {E1}. and Opsk+1 = Opsk ∪
{copyk, copyk, Ek+1}. The set Ops∗k = {ρ | |ρ| = k, ρ = ρ1 · · · ρn for ρ1, . . . , ρn ∈
Opsk} ∪ {∅} is a monoid for composition of functions with neutral element idk.

Instructions. In order to work in a symbolic manner, we associate to each
operation in Opsk a symbol in an alphabet Γk called an instruction. Let Γ be a
finite alphabet disjoint from but in bijection with Γ , we write x̄ the letter of Γ̄

corresponding to x ∈ Γ . The set of instructions of level k written Γk is defined by:
Γ1 = Γ ∪ Γ̄ ∪ {⊥1} and Γk+1 = Γk ∪ {⊥k+1, k, k̄}. We write Γ t

k = {⊥1, . . . ,⊥k}
and Γ o

k = Γk − Γ t
k. For all sequence w ∈ Γ ∗

k , we designate by Last(w) (resp.
First(w)) the last (resp. first) element of Γ o

k appearing in w.

We define a morphism2 of monoid O from Γ ∗
k to Ops∗k associating to any

sequence of instruction w ∈ Γ ∗
k the corresponding operation O(w) ∈ Ops∗k as

follows: O(ε) = idk,O(x) = pushx and O(x̄) = popx for all x ∈ Γ , O(i) =
copyi, O(̄i) = copyi, and O(⊥i) = Ei for all i ∈ [1, k]. The morphism O is
extended to Γ ∗

k in the canonical way. For example, the sequence of instruc-
tions m = abb̄a1ā is evaluated to O(m) = pushapushbpopbpushacopy1popa =
pushapushacopy1popa. For any subset R of Γ ∗

k , we write O(R) the corresponding
set of operations in Ops∗k and S(R) = O(R)([ ]k) the corresponding set of stacks
in Stacksk(Γ ).

For each k-stack s, there exists a minimal sequence of instructions w ∈ Γ ∗
k

such that S(w) = s. It is easy to see that if k = 1, w belongs to Γ ∗ and if k > 1,
w does not contain k̄. In fact, a sequence of instructions w ∈ (Γ o

k ∪ {k})∗ (such
that S(w) 6= ∅ ) is the minimal sequence of some level k + 1 stack if and only if
it does not contain xx̄, ll̄ or l̄l for any x ∈ Γ ∪ Γ or any l < k. A sequence of
instructions that does not contain such sub-sequences will be called loop-free. A
k-stack s is a prefix of a k-stack s′ (written s v s′) if the minimal sequence of s

is a prefix of the minimal sequence of s′.

1 It is already known from [CW03] that hopdas defined using copy
k

recognize the
same languages as the ones defined using pop

k
(see. Proposition 3.1).

2 The definition is such that we always obtain a level k operation. So strictly speaking,
there should be one evaluation mapping for each level.



Higher-order pushdown automata. An higher-order pushdown automaton
P over Stacksk(Γ ) (k-hopda for short) with Σ as an input alphabet is a tuple
(Q, i, F, δ) where Q is a finite set of states, i is the initial state, F is the set
of final states and δ ⊂ Q × Σ ∪ {ε} × Γ ∗

k × Q. The set of configurations of
P noted CP is Q × Stacksk(Γ ). For each x ∈ Σ ∪ {ε}, P induces a transition

relation
x

−→⊂ CP × CP defined by (p, w)
x

−→ (q, w′) if (p, x, ρ, q) belongs to δ

and w′ = O(ρ)(w). For any word u ∈ Σ∗, we write c
u

=⇒ c′ if there exists a

sequence c
x1−→ c1 . . . cn−1

xn−→ c′ and u = x1 . . . xn. A word u ∈ Σ∗ is accepted

by P if (i, [ ]k)
u

=⇒ (f, w) for some f ∈ F .

2 Regular set of higher-order stacks

We consider the notion of regularity for sets of higher-order stacks that naturally
extends what is known at level 1. A set of k-stack is k-regular if it is the set
of stacks appearing in the reachable final configurations of a k-hopda. In other
terms, a k-regular set is obtained by applying a regular set of operations in Ops∗k
to the empty stack of level k. The set of all k-regular subsets of Stacksk(Γ ) is
written Regk(Γ ) = Reg(Ops∗k(Γ ))([ ]k) = S(Reg(Γ ∗

k )).
A normal form for k-regular sets is presented in Section 2.1 and it is proved

in Section 2.2 that every k-regular set admits a normalized representation. Com-
plexity related issues are dealt with in Section 2.3. Finally, Section 2.4 establishes
that k-regular sets correspond to MSO-definable sets in the canonical infinite
structure associated to k-stacks.

2.1 Normal forms

A regular set of instructions is not per se a useful representation of a set of
stacks. We therefore define a normal form that gives a forward representation of
the set of stacks in the sense that the set of instructions produced are loop-free.

At level 1, such a normal form is easily achieved: the set of minimal sequences
of a 1-regular set is also regular [Büc64]. Hence, any 1-regular set admits a
normalized representation in Norm1 = Reg(Γ ∗). At level 2, a loop-free set of
instruction does not contains 1̄. As illustrated by the following example, it is not
possible to describe all sets in Reg(Γ ∗

2 ) without 1̄.

Example 2.1. The regular set of instructions R = {a, b}∗1{ā, b̄}∗b̄1(āā)+b̄ba∗1̄
represents the set of stacks S(R) = {[ [ wba2nbw′ ][ wba2n ] ]2 | w ∈ Γ ∗, w′ ∈
Γ ∗ and n ≥ 0}. It can be proved that R is not equivalent to any set in
Reg( (Γ1 ∪ {1})∗ ). The problem is that the set 1(āā)+b̄ba∗1̄ correspond to the
operation id2|A where A = {[w1 . . . wn ]2 | wn ∈ Γ ∗b(aa)+} which tests, in a
non-destructive manner, that the top-most 1-stack belongs to A.

Hence, in order to give a forward presentation of sets in Reg(Γ ∗
k ), we need

to introduce k-regular tests as a new operation. Theorem 2.1 will prove that we
do not need additional operations. For any set Q of k-stacks, idk|Q designates



the identity function restricted to the set of k′-stack whose top-most k-stack is
in Q for all k′ > k.

Definition 2.1 (Regular tests of level k). Let Tk be an countable set of sym-

bols with one symbol written TR for each R ∈ Reg(Γk). We extend the evaluation

mapping to (Γk ∪ Tk)∗ by defining O(TR) = idk|S(R).

A subset R of Reg((Γk ∪Tk)∗) is loop-free is the set of obtained by removing
the tests from R is.

In order to normalize a 2-regular set of stacks, it is necessary to give a normal
form for sets of operations in O(Reg((Γk ∪Tk)∗)). At level 1, a normal form was
obtained in [Cau96a,Cau03]. It is proved that any R ∈ Reg((Γ1 ∪ T1)

∗), there

exists a finite union R′ = ∪i∈I Ui ·TWi
·Vi where Ui ∈ Reg(Γ

∗
), Vi, Wi ∈ Reg(Γ ∗)

for some finite set I with Last(Ui) ∩ First(Vi) = ∅3 such that O(R) = O(R′).
We write Rew1 the set all R ∈ Reg((Γ1 ∪ T1)

∗) than can be expressed as such a
finite union.

We now define Normk and Rewk for level k > 1 as a straightforward extension
of what is known at level 1:

– Normk+1 is the set of all finite union of elements in Normk ·Reg((k Rewk)∗),

– Popk+1 and Pushk+1 designate respectively the sets Rewk ·Reg((k̄ Rewk)∗)
and Rewk ·Reg((k Rewk)∗),

– Rewk+1 is the set of all finite unions of sets of the form U · TW · V where
W ∈ Normk+1, U ∈ Popk+1 and V ∈ Pushk+1 with Last(U) ∩ First(V ) = ∅

and Last(W ) ∩ (Last(U) ∪ First(V )) = ∅.

An equivalent characterization of the sets in Normk+1 is through finite au-
tomata A = (Q, i, F, δ) labeled by a finite subset Normk ∪ k · Rewk such the
only edges labeled by an element of Normk are starting from the initial state
i and such that no transition comes back to i. We will call such an automa-
ton a (k + 1)-automaton. It is obvious that L(A) belongs to Normk+1 and that
conversely, all R ∈ Normk is accepted by a k-automaton. By a slight abuse of
language, we will say that a set R of k-stacks is accepted by A if R = S(L(A)).

The interest of this notion is that a deterministic version can be defined : a
(k+1)-automaton labeled by {N1, . . . , Nn} ⊂ Normk and {R1, . . . , Rm} ⊂ Rewk

is deterministic if S(Ni)∩S(Nj) = ∅ for i 6= j, O(Ri)∩O(Rj) = ∅ for i 6= j and
A is deterministic. In a deterministic k-automaton, if two k-stacks are produced
by two different executions (not necessarily successful) then they are different.

Proposition 2.1. For all level k, any set in S(Normk) can be accepted by

a deterministic k-automaton. Moreover, S(Normk) and O(Rewk) are effective

Boolean algebras4.

3 This corresponds to the right-irreducible prefix-recognizable relations in [Cau03].
4 This result was already obtained in [Cau96a] for O(Rew1).



2.2 Normalization

In this part, we prove by induction on the level k that for any set in R ∈ Reg(Γ ∗
k ),

there exists a set N ∈ Normk such that S(R) = S(N).

Characterization of loop languages Let B = (Q, i, F, δ) be an automaton
labeled by Γk+1. For any two states p and q ∈ Q, the automaton B loops
on a (k + 1)-stack w starting in p and ending in q if there exists a sequence

(p, w)
x1−→
B

(p1, w1) . . .
xn−→
B

(pn, wn) such that q = pn, wn = w and for all

i ∈ [1, n], w v wi.
It follows from the definition that ”looping” behavior of an automaton only

depends on the top-most k-stack. Hence, we define the loop language Lp,q to be
the set of k-stacks such that w ∈ Lp,q if and only if for any (k + 1)-stack w′

with top-most k-stack w, B loops on w starting in p and ending in q. The loop
languages allow us to define a loop-free equivalent of L(A).

Proposition 2.2. For any automaton A labeled by Γk, L(A) is equivalent to a

loop-free set in Reg((Γk ∪ {TLp,q
| p, q ∈ Q})∗).

The loop languages are regular In order to simulate the copyk+1 and
copyk+1 operations on a level k stack, we use alternation to simultaneously
perform the computation taking place on different copies of the stack.

Definition 2.2. An alternating automaton A over Γk is a tuple (Q, i, ∆) where

Q is a finite set of states, i is the initial state and ∆ ⊂ Q×Γ t
k ∪ {ε}× 2Q×Γ o

k is

the set of transitions.

A transition (p, t, {(q1, a1), . . . , (qn, an)}) ∈ ∆ is written p, t −→ (q1, a1) ∧
. . . ∧ (qn, an). An execution of A is a finite tree T with vertices VT whose edges
are labeled by Γk and whose vertices are labeled by Q × Stacksk(Γ ). We write
c the labeling mapping from VT to Q × Stacksk(Γ ). An execution satisfies the
following conditions:

– x
a

−→ y ∈ T implies c(x) = (q, w) and c(y) = (p, w′) and w′ = O(a)(w).

– for all x ∈ VT with children y1, . . . , yn (i.e x
a1−→ y1, . . . , x

an−→ yn), if
c(yi) = (qi, wi) then there exists q, t −→ (q1, a1) ∧ . . . ∧ (qn, an) ∈ ∆ such
that O(t)(w) is defined5.

An execution T of A is accepting a stack w if the root of T is labeled by (i, w).
We write S(A) ⊂ Stacksk(Γ ) the set of stacks accepted by A.

The following lemma states that the loop languages defined in the previous
part are accepted by alternating automata labeled by Γk.

Lemma 2.1. For any automaton B labeled by Γk+1, there exists an alternating

automaton labeled by Γk accepting Lp,q.

5 The set of final states is implicitly given by transitions of the form q, t −→ ∅



In order to prove that the language accepted by an alternating automaton
over Γk is k-regular, we define a normal form for alternating automata in which
at most one execution can be sent for a given instruction in Γ o

k and such that
no execution contains two vertices labeled by the same stack. More formally,
a normalized alternating automaton over Γk is an alternating automaton with
transitions of the form q, t −→ (q1, b1) ∧ . . . (qn, bn) with bi 6= bj for i 6= j for

which no execution tree T contains x
aā
−→

T
y for a ∈ Γ o

k . The following proposition

establishes that any alternating automaton can be transformed into an equivalent
normalized alternating automaton.

Proposition 2.3. For any alternating automaton A labeled by Γk, an equiv-

alent normalized alternating automaton B labeled by Γk can be constructed in

O(2p(|B|)) for some polynomial p.

We can now establish that the languages accepted by alternating automata
labeled by Γk are k-regular languages.

Proposition 2.4. The sets of k-stacks accepted by alternating automaton la-

beled by Γk are k-regular sets.

Proof (Sketch). First, we establish that the languages accepted by normalized
alternating automaton over Γk+1 are loop-free languages in Reg((Γ o

k ∪{k}∪T A
k )∗)

where T A
k designates the tests by languages accepted by alternating automaton

over Γk. The result follows by induction on the level k combining the above
property and Proposition 2.3.

ut
Normalization result. We proceed by induction on the level k of stacks. It
follows from the Proposition 2.2, Lemma 2.1 and Proposition 2.4, that any set of
instructions in R ∈ Reg(Γ ∗

k ) is equivalent to a loop-free subset of Reg((Γk∪Tk)∗).

Proposition 2.5. For all loop-free set R in Reg((Γk∪Tk)∗) with tests languages

in S(Normk), there exists a R′ ∈ Normk such that S(R) = S(R′).

Note that to achieve this normalization we need to determinize the languages
appearing in the tests. However, if the languages appearing in the tests are
already determinize the transformation is polynomial. The normalization result
is obtained by a straightforward induction.

Theorem 2.1 (Normalization). Every k-regular set can be accepted by a k-

automaton. Hence, Regk = S(Reg(Γ ∗
k )) = S(Reg(Normk)) is an effective Boolean

algebra.

2.3 Complexity and lower bounds

In order to evaluate the complexity of the normalization algorithm, we need a
notation for towers of exponentials. We define 2↑0 (n) = n and 2 ↑k+1 (n) =

22↑k(n).



The complexity of the algorithm obtained in the previous section when ap-
plied to a k-regular set of stacks is O(2↑2k+1(p(n))) where p is a polynomial. This
complexity can be improved by transforming directly an alternating automaton
over Γk into a deterministic k-automaton.

Theorem 2.2 (Lower bound).

1. For any alternating automaton A labeled by Γk, there exists a deterministic

k-automaton accepting S(A) which can be computed in time O(2↑k (p(n)))
for some polynomial p.

2. For any automaton A labeled by Γk, there exists a k-automaton accepting

S(A) which can be computed in time O((2↑k−1(p(n))))

It is easy to see that normalization can be used to test the emptiness of
a regular set of k-stacks. In fact, for any set R ∈ Reg(Γ ∗

k ), the normalized
representation of R · Γ ∗

k · ⊥k contains [ ]k if and only if S(R) is not empty.
Therefore, the normalization can be used to test the emptiness of the language
accepted by a k-hopda (i.e it is equivalent to the emptiness of the set of reachable
final configurations).

In [Eng83], the author proves that O(2↑k−1(p(n))) is a lower bound for the
emptiness problem of k-hopda. It follows the complexity of the normalization
algorithm obtained in Theorem 2.2 is a lower bound.

2.4 MSO-definability over ∆
n

2

In this part, we fix Γ = {a, b}. The canonical infinite structure associated to
words in Γ ∗ is the infinite binary tree ∆2. A set X ⊂ VG (resp. Y ⊂ VG × VG)
is MSO-definable in G if there exists a formula ϕ(x) (resp. ϕ(x, y)) such that
X (resp. Y ) is the set of u ∈ VG (resp. (u, v) ∈ VG × VG) such that G |= ϕ(u)
(resp. G |= ϕ(u, v)). It is well known that the MSO-definable sets in ∆2 are the
regular sets of words. Moreover, Blumensath [Blu01] proved that the relations
MSO-definable in ∆2 are the prefix-recognizable relations (i.e O(Rew1)).

In order to investigate the notion of MSO-definable set of k-stacks, we con-
sider the canonical structure ∆k

2 associated to k-stacks (see Figure 1). The graph
∆k

2 is labeled by Σk = {a, b, 1, . . . , k}, its set of vertices is Stacksk(Γ ) and

it edges are defined by: w
i

−→ w′ if w′ = O(i)(w) for i ∈ Σk. For instance,
the set of k-stacks whose top-most 1-stack is empty is defined by the formula

ϕ(x) = ¬(∃y.y
a

−→ x) ∧ ¬(∃y.y
b

−→ x).

Proposition 2.6. The set of k-stacks MSO-definable in ∆k
2 are the k-regular

sets and the sets of relations MSO-definable in ∆k
2 are the relation in O(Rewk).

3 Higher-order pushdown graphs

In this section, we consider infinite graphs associated to hopdas and we show
how the notion of k-regularity can be used to study their structure.
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Fig. 1. The canonical structure associated to level 2 stacks.

3.1 Reachability graphs

The most natural way to associate an infinite graph to a k-hopda is to consider
its reachability graph: the set of vertices is the set of configurations reachable
from the initial configuration and the edges are given by the k-hopda. Due
to the restriction by reachability, it is possible to encode in the stack a finite
information corresponding to rational tests. The idea behind this encoding is
taken from [Cau02] and was used in [CW03] to simulate the copyk operation
using popk.

Proposition 3.1. The reachability graphs of k-hopdas enriched with k-regular

tests and the reachability graphs of the k-hopda are definable only with the popk

operation instead of copyk up to isomorphism.

From a structural point of view however, this approach is limited as the
graphs obtained are necessarily directly connected. For instance, ∆k

2 is not the
reachability graph of any hopda.

3.2 Configuration and transition graphs

The configuration graph of a k-hopda P is obtained by restricting the transition
relation induced by P to a k-regular set of configurations R:

{w
x

−→ w′ | x ∈ Σ ∪ {ε}, w
x

−→
P

w′ and w, w′ ∈ R}

As the set of k-stacks reachable from the initial configuration is a k-regular
set, the reachability graph is a particular case of configuration graph. The fol-
lowing property gives a structural characterization of configurations graphs.

Proposition 3.2. The configuration graphs of k-hopdas are the graphs obtained

by a k-fold iteration of unfolding and finite inverse mapping starting from a finite

graph.



The transition graphs are defined as the ε-closure of the configuration graphs:

{w
x

−→ w′ | x ∈ Σ, w
x

=⇒
P

w′ and w, w′ ∈ R}

for some k-regular set of configurations R. The following proposition summarizes
various equivalent characterization of the transition graphs of k-hopda.

Proposition 3.3 ([CW03]). The family of transition graphs of k-hopdas is

equal up-to isomorphism to the families of:

– graphs whose edges are defined by relations in O(Rewk),
– graphs obtained by a k-fold iteration of unfolding and inverse rational map-

ping starting from a finite graph,

– graphs MSO-definable in ∆k
2 .

Conclusion

We define a natural notion of regularity for higher-order pushdown stacks shares
some of the most important properties of regular sets of words. In fact, we
proved that they can be accepted by a deterministic machine and form an ef-
fective Boolean algebra. Furthermore, in the same way as regular set of words
corresponds to the MSO-definable sets of words over the infinite binary tree,
regular sets of k-stacks correspond to the MSO-definable sets over the canonical
infinite structure associated to k-stacks. From the algorithmic point of view, we
provided a normalization algorithm whose complexity is in fact a lower bound.
To demonstrate the usefulness of this notion to work with hopdas, we used it to
give a simple characterization of transitions graphs of hopdas similar to prefix-
recognizable graphs for level 1.

From the model checking point of view, this notion could be used to extend
the work done on pushdown automaton [BEM97] or on sub-families of hopdas
[BM04]. From the structural point of view, it would be interesting to obtain an
internal characterization of the transition graphs of k-hopdas of bounded degree.
At level 1, the prefix recognizable graphs of bounded degree correspond to the
configuration graphs of pushdown automata. It would be interesting to know
how this property extends to higher-order.
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