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We study finite automata running over infinite binary trees. A run of such an automaton over
an input tree is a tree labeled by control states of the automaton: the labelling is built in a
top-down fashion and should be consistent with the transitions of the automaton. A branch in
a run is accepting if the !-word obtained by reading the states along the branch satisfies some
acceptance condition (typically an !-regular condition such as a Büchi or a parity condition).
Finally, a tree is accepted by the automaton if there exists a run over this tree in which every
branch is accepting.

In this paper, we consider two relaxations of this definition introducing a qualitative aspect.
First, we relax the notion of accepting run by allowing a negligible set (in the sense of measure

theory) of non-accepting branches. In this qualitative setting, a tree is accepted by the automaton
if there exists a run over this tree in which almost every branch is accepting. This leads to a new
class of tree languages, qualitative tree languages. This class enjoys many good properties: closure
under union and intersection (but not under complement), emptiness is decidable in polynomial
time. A dual class, positive tree languages, is defined by requiring that an accepting run contains
a non-negligeable set of branches.

The second relaxation, is to replace the existential quantification (a tree is accepted if there
exists some accepting run over the input tree) by a probabilistic quantification (a tree is accepted
if almost every run over the input tree is accepting). For the run, we may use either classical
acceptance or qualitative acceptance. In particular, for the latter, we exhibit a tight connection
with partial observation Markov decision processes. Moreover, if we additionally restrict to the
Büchi condition, we show that it leads to a class of probabilistic automata on infinite trees enjoying
a decidable emptiness problem. To our knowledge, this is the first positive result for a class of
probabilistic automaton over infinite trees.

Categories and Subject Descriptors: F.4.3 [Mathematical Logic and Formal Languages]:
Formal Languages—Classes defined by grammars or automata; Decision problems; F.1.1 [Com-
putation by Abstract Devices]: Models of Computation—Automata

General Terms: Theory, Automata, Games
Additional Key Words and Phrases: Finite Automata on Infinite Trees, Measure Theory, (Partial
Observation) Markov Decision Processes, Probabilistic Automata

1. INTRODUCTION

Roughly speaking a finite automaton on infinite trees is a finite memory machine
that takes as input an infinite node-labelled binary tree and processes it in a top-
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down fashion as follows. It starts at the root of the tree in its initial state, and
picks (possibly nondeterministically) two successor states, one per son, according to
the current control state, the letter at the current node and the transition relation.
Then the computation proceeds in parallel from both sons, and so on. Hence a run
of the automaton on an input tree is a labelling of this tree by control states of
the automaton, that should satisfy the local constrains imposed by the transition
relation. A branch in a run is accepting if the !-word obtained by reading the
states along the branch satisfies some acceptance condition (typically an !-regular
condition such as a Büchi or a parity condition). Finally, a tree is accepted by the
automaton if there exists a run over this tree in which every branch is accepting.
An !-regular tree language is a tree language accepted by some tree automaton
equipped with a parity condition.

Finite automata on infinite trees were originally introduced by Rabin in [Rabin
1969] to prove the decidability of the monadic second order logic (MSOL) over
the full binary tree. Indeed, Rabin proved that for any MSOL formula, one can
construct a tree automaton that accepts a non empty language if and only if the
original formula holds at the root of the full binary tree. These automata were
also successfully used by Rabin in [Rabin 1972] to solve Church’s synthesis problem
[Church 1962], which ask for constructing a circuit based on a formal specifica-
tion (typically a expressed in monadic second order logic) describing the desired
input/output behaviour. His approach was to represent the set of all possible be-
haviour of a circuit by an infinite tree (directions are used to code the input while
node labels along a branch code the output) and to reduce the synthesis problem
to emptiness of a tree automaton accepting all those trees coding circuits satisfying
the specification.

Since then, automata on infinite trees and their variants have been intensively
studied and found many applications, in particular in logic. Connections between
automata on infinite trees and logic are discussed in the excellent surveys [Thomas
1997; Vardi and Wilke 2007].

A fundamental result of Rabin is that !-regular tree languages form a Boolean
algebra [Rabin 1969]. The hard part in this proof is the complementation, and since
the publication of this result in 1969, it has been a challenging problem to simplify
the proof. A much simpler one was obtained in [Gurevich and Harrington 1982]
making use of two-player games on graphs for checking membership of a tree in the
language accepted by the automaton: the first player (called Automaton) builds a
run on the input tree while the second player (called Pathfinder) tries to exhibit
a rejecting branch in the run. Beyond this result, the tight connection between
automata and games is one of the main tools in automata theory (see e.g. [Grädel
et al. 2002; Löding 2011]).

In this article, we consider variations of the classical model of tree automata
over infinite trees. These variations involve, in two different ways, probabilities and
preserve the fruitful connection with game theory.

In the first part of this paper, we consider a relaxed notion of an accepting run.
While the usual definition requires for a run to be accepting that all branches
in it satisfy the acceptance condition, we allow a negligible set of non-accepting
branches. In this qualitative setting, a tree is accepted by the automaton if there
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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exists a run over this tree in which almost every (in the usual sense from measure
theory) branch is accepting. With the parity condition, this leads to a new class
of tree languages that we call qualitative tree languages. We show that this class
enjoys many desirable properties: closure under union and intersection (but not
under complement), emptiness is decidable in polynomial time (contrasting with
the fact that no polynomial algorithm is known for the emptiness test of standard
parity tree automata). We also prove that there exists a strong connection between
automata accepting qualitative tree languages and Markov decision processes, which
play here a similar role as two-player games for usual tree automata. We also discuss
the positive setting, where a run is accepting if the set of accepting branches in it
has a strictly positive measure.

The idea of allowing a certain amount of rejecting branches in a run was already
considered in [Beauquier et al. 1991; Beauquier and Niwiński 1995], where it was
required that the number of accepting branches in a run belong to a specified set
of cardinals �. In particular, they proved that if � consists of all cardinals greater
than some �, then one obtains a regular tree language. Qualitative tree languages
as defined in this article are not captured by the work of [Beauquier and Niwiński
1995]. Indeed, our classes are incomparable with regular tree languages.

In the second part of this paper, we investigate probabilistic automata on infinite
trees. Acceptance by an automaton is based on existential quantification: an input
is accepted if there exists an accepting run over it. Probabilistic automata are an
alternative way to define acceptance. On finite words they have been introduced by
Rabin in [Rabin 1963]. Compared with the standard setting, the non-deterministic
guesses are replaced by random choices (according to some probabilistic distribution
depending on the control state and the input letter). Hence, the set of transitions is
replaced by a probability distribution over the set of all transitions which induces a
probability measure on the set of runs of the automaton and acceptation is defined
using a threshold 0 † � † 1 on the probability of a run to be accepting. In contrast
to the non-deterministic setting, the emptiness problem for probabilistic automata
on finite words is undecidable [Paz 1971].

The probabilistic model was recently extended to infinite words in [Baier and
Größer 2005] by Baier and Größer1 and studied in more details in [Baier et al.
2008; Chadha et al. 2009; Chatterjee et al. 2009]. In addition to the threshold
criterion, two additional semantics were considered : almost-sure and probable

which respectively corresponds to a probability 1 or °0 for a run to be accepting2.
Surprisingly the class of languages defined by Büchi automata with the probable
semantics is closed under complement, which implies that it coincides with the class
of languages defined by co-Büchi automata with the almost-sure semantics3. The

1A previous attempt by Reisz[Reisz 1999] should be mentioned but this approach does not make
real use of probabilities as in this setting an input word is accepted if after some time the behaviour
in the run becomes deterministic.
2In the finite word case, the almost-sure and probable acceptance are trivial as the set of runs for
a given word is finite.
3Indeed, let L be accepted by a Büchi automaton with the probable acceptance. As one can
complement, there is a Büchi automaton with the probable semantics A such that L is the language
accepted by A. If one sees A as a co-Buchi automaton B (final states becoming the forbidden ones)
with an almost-sure semantics, B accepts a word if and only if A does not. Hence, B recognises
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emptiness problem for Büchi automata with the almost-sure semantics as well as
for co-Büchi automata with the probable semantics are decidable. However the
emptiness problem for Büchi automata with the probable semantics as well as for
co-Büchi automata with the almost-sure semantics are undecidable. Of course,
emptiness is undecidable when considering a threshold semantics. See [Baier et al.
2012] for a very rich overview of this topic.

In this paper, we consider probabilistic automata on infinite trees. We first focus
on the almost-sure semantics, i.e. a tree is accepted if almost every run over it is
accepting, and later discuss the probable semantics, i.e. a tree is accepted if the set
of accepting runs on it has a (strictly) positive measure. Of course each semantics
can be used in combination with the acceptance criteria on runs: the classical one
(all branches are accepting), the qualitative one (almost all branches are accepting)
and the positive one (there is a non negligible set of accepting branches). For all
these combinations, we establish that the definition makes sense (i.e. we prove
measurability of the set of accepting runs).

For the qualitative criterion on runs combined with the almost-sure semantics,
as well as for the probable criterion on runs combined with the positive semantics,
we prove that there exists a strong connection with partial observation Markov
decision processes. This condition is independent of the acceptance condition on
branches (Büchi, co-Büchi, parity. . . ). In particular, for the Büchi (resp. co-Büchi)
acceptance condition on branches, probabilistic automata on infinite trees with
the qualitative criterion on runs combined with the almost-sure semantics (resp.
with the positive criterion on runs combined with the probable semantics) enjoy
a decidable emptiness problem. To our knowledge, this is the first positive result
for a class of probabilistic automata over infinite trees. On the negative side,
we derive from undecidability results on probabilistic automata on infinite words
similar results for probabilistic automata on infinite trees. Note that whilst being
immediate for the classical criterion on runs such a reduction is not as simple for
the qualitative and positive criteria.

The paper is organised as follows. In Section 2 we introduce general notations and
definitions. In Section 3 we define the class of qualitative tree languages, present
their properties (closure properties, decidability properties) and their tight connec-
tions with Markov decision processes, and establish that they are incomparable with
regular tree languages. We also discuss possible variants of the model (leading the
notion of positive tree languages). In Section 4 we focus on the probabilistic model.
We first justify the validity of the definition and give some examples. Then we pro-
vide connections with partial observation Markov decision processes from which we
derive positive results for the emptiness problem on a subclass. Finally we discuss
variants of the probabilistic model. Section 5 summarises the contributions of the
paper.

the complement of L, namely L.
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2. DEFINITIONS

2.1 Words and Trees

An alphabet A is a finite set of letters. In the sequel A˚ denotes the set of finite
words over A, and A! the set of infinite words over A. The empty word is written
"; the length of a word u is denoted by |u|. Let u be a finite word and v be a
(possibly infinite) word. Then u ¨ v denotes the concatenation of u and v; the
word u is a prefix of v, denoted u Ñ v, if there exists a word w such that v “ u ¨w.
We denote by u Ä v the fact that u is a strict prefix of v (i.e. u Ñ v and u �“ v).
For some word u and some integer k • 0, we denote by uk the word obtained by
concatenating k copies of u (with the convention that u0

“ ").
In this paper we consider full binary node-labelled trees. An A-labelled tree t

is a mapping from t0, 1u
˚ to A. In this context, an element u P t0, 1u

˚ is called a
node, and the node u ¨ 0 (resp. u ¨ 1) is the left son (resp. right son) of u. The
node " is called the root. We shall refer to |u| as the depth of u. The letter tpuq is
called the label of u in t.

A branch is an infinite word ⇡ P t0, 1u
!. We write Br “ t0, 1u

! for the set
of all branches. A node u belongs to a branch ⇡ if u is a prefix of ⇡. For an
A-labelled tree t and a branch ⇡ “ ⇡0⇡1 ¨ ¨ ¨ we define the label of ⇡ as the !-word
tp⇡q “ tp"qtp⇡0qtp⇡0⇡1qtp⇡0⇡1⇡2q ¨ ¨ ¨ . The cone going through a node u is the set
Conepuq “ u ¨ t0, 1u

!. A sub-cone of a cone Conepuq is a cone Conepvq with u Ñ v.
Given a tree t and a node u, the subtree of t rooted at u denoted trus is the

tree defined by truspvq “ tpu ¨ vq. A tree t is said to be regular if it contains only
finitely many different subtrees, i.e. the set ttrus | u P t0, 1u

˚
u is finite.

We assume that the reader is familiar with basic notions of measure theory and
from probability theory and we use [Bauer 2001; 1996] as references for all known
results related to this field. Let FBr be the �-algebra generated by the set of
cones (i.e. the smallest set of subsets of t0, 1u

! containing the cones and closed
under countable union and complementation). Let µ be the unique probability
measure on FBr such that for all u P t0, 1u

˚, µpConepuqq “ 2´|u|. The existence
and uniqueness of µ are guaranteed by Carathéodory’s extension theorem [Bauer
2001, Theorem 5.6, p. 24]. For all 0 † p † 1, a probability measure µp is similarly
defined by taking µppConepuqq “ p|u|0p1 ´ pq

|u|1 where |u|0 and |u|1 respectively
designate the number of occurrences of 0 and 1 in u. In particular, the measure µ
corresponds to µ1{2.

2.2 Tree Automata and Regular Tree Languages

A tree automaton A is a tuple xA,Q, qini,�,Accy where A is the input alphabet,
Q is the finite set of states, qini P Q is the initial state, � Ñ Q ˆ A ˆ pQ ˆ Qq

is the transition relation and Acc Ñ Q! is the acceptance condition. In the
following, we use the notation q

a
Ñ pq0, q1q as a shorthand for pq, a, pq0, q1qq P �.

An automaton is deterministic if q a
Ñ pq0, q1q and q

a
Ñ pq1

0, q
1
1q implies q0 “ q1

0

and q1
1 “ q1

1. An automaton is complete if, for all q P Q and a P A there is at least
one pair pq0, q1q P Q2 such that q

a
Ñ pq0, q1q.

Given an A-labelled tree t, a run of A over t is a Q-labelled tree ⇢ such that the
root is labelled by the initial state, i.e. ⇢p"q “ qini; for all nodes u, p⇢puq, tpuq, ⇢pu ¨

0q, ⇢pu ¨ 1qq P �.
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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A branch ⇡ P t0, 1u
! is accepting in the run ⇢ if ⇢p⇡q P Acc. A run ⇢ is

accepting if all its branches are accepting. Finally, a tree t is accepted if there
exists an accepting run of A over t. The set of all trees accepted by A is denoted
LpAq.

We consider the following classical acceptance conditions:

—A reachability condition is given by a subset F Ñ Q of final states by letting
ReachpF q “ Q˚FQ!, i.e. a branch is accepting if it contains a final state.

—A Büchi condition is given by a subset F Ñ Q of final states by letting BuchipF q “

pQ˚F q
!, i.e. a branch is accepting if it contains infinitely many final states.

—A co-Büchi condition is given by a subset F Ñ Q of forbidden states by letting
coBuchipF q “ Q˚

pQzF q
!, i.e. a branch is accepting it contains finitely many

forbidden states.
—A parity condition is given by a colouring mapping Col : Q Ñ N by letting
Parity “ tq0q1q2 ¨ ¨ ¨ | lim infpColpqiqqi is evenu, i.e. a branch is accepting if the
smallest colour appearing infinitely often is even.

All these conditions are examples of !-regular acceptance conditions, i.e. Acc is
regular set of !-words [Perrin and Pin 2004].

Remark 1. The parity condition is expressive enough to capture the general case
of an arbitrary !-regular condition. Indeed it is well known that Acc is accepted by
a deterministic parity word automaton. By taking the synchronised product of this
automaton with the tree automaton, we obtain a parity tree automaton accepting
the same language (see e.g. [Perrin and Pin 2004]).

When it is clear from the context, we may replace, in the description of A, Acc by
F (for a reachability, Büchi or co-Büchi condition) or Col (for a parity condition),
and we shall refer to the automaton as a reachability (resp. Büchi, co-Büchi, parity)
tree automaton. A set L of trees is a regular language if there exists a parity tree
automaton A such that L “ LpAq. The class of regular tree languages is robust, as
illustrated by the following statement.

Theorem 2. [Rabin 1969],[Emerson et al. 1993] The class of regular tree lan-
guages is a Boolean algebra.

A regular tree language is non-empty if and only if it contains a regular tree. Test-
ing the emptiness of a regular tree language (defined by a given parity automaton)
is in NP X coNP.

2.3 Markov Decision Process

2.3.1 Perfect Information Setting. A probability distribution over a count-
able set X is a mapping d : X Ñ r0, 1s such that

∞
xPX dpxq “ 1. In the sequel we

denote by DpXq the set of probability distributions over X. In this paper, all prob-
abilities will be rational numbers, which will be described in binary when dealing
with encoding.

An arena is a tuple G “ xS, sini,⌃, ⇣y where S is a countable set of states, sini is
an initial state, ⌃ is a finite set of actions and ⇣ : S ˆ ⌃ Ñ DpSq is the transition
(total) function.
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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A play in such an arena proceeds as follows. It starts in state sini and Éloïse picks
an action �, and a successor state is chosen according to the probability distribution
⇣psini,�q. Then Éloïse chooses a new action and the state is updated and so on
forever. Hence a play is an infinite sequence s0s1s2 ¨ ¨ ¨ P S! such that s0 “ sini
and for every i • 0, there exists a � P ⌃ with ⇣psi,�qpsi`1q ° 0. In the sequel we
refer to a prefix of a play as a partial play and we denote by Plays the set of all
plays.

A (pure) strategy
4 for Éloïse is a function ' : S˚

Ñ ⌃ assigning to every partial
play an action. Of special interest are those strategies that do not require memory:
a strategy ' is memoryless if 'p� ¨ sq “ 'p�1

¨ sq for all partial play �, �1 and
all states s (i.e. ' only depends on the current state). A play � “ s0s1s2 ¨ ¨ ¨ is
consistent with a strategy ' if ⇣psi,'pv0 ¨ ¨ ¨ viqqpsi`1q ° 0, for all i • 0.

Now, for any partial play �, the cylinder for � is the set Cylp�q “ �S!
XPlays.

Let FP be the �-algebra generated by the set of cylinders. Then, pPlays,FP q is a
measurable space.

A strategy ' induces a probability space over pPlays,FP q as follows: one defines
a measure µ' on cylinders and then uniquely extends it to a probability measure
on FP using the Carathéodory’s unique extension theorem. For this, we first define
inductively µ' on cylinders:

—as all plays start from sini, we let µ'pCylpsiniqq “ 1;
—for any partial play � ending in some state s, we let µ'pCylp� ¨s1

qq “ µ'pCylp�qq ¨

⇣ps,'p�qqps1
q.

We also denote by µ' the unique extension of µ' to a probability measure on F .
Then pPlays,FP , µ'q is a probability space.

An objective is a measurable set O Ñ Plays: a play is winning if it belongs
to O. A Markov decision process (MDP, aka one-and-half-player game)
is a pair G “ pG,Oq where G is an arena and O is an objective. In the sequel
we should focus on !-regular objectives (which are easily seen to be measurable),
whose definitions are the same as for the acceptance condition on tree automata
(the only differences is that we may have an infinite set of states and that we restrict
ourselves to the set Plays).

A strategy ' is almost-surely winning (resp. positively winning) if µ'pOq “

1 (resp. µ'pOq ° 0). If such a strategy exists, we say that Éloïse almost-

surely wins (resp. positively wins) G. The value of G is defined as ValpGq “

sup' µ'pOq, and a strategy ' is optimal if ValpGq “ µ'pOq.
When the set of actions ⌃ is reduced to one element, the MDP pG,Oq is called

a Markov chain and we omit the unique action from all the definitions. The set
Plays is called the set of traces of the Markov chain and is denoted Traces. We
write µG the probability measure associated with the unique strategy. We say that
the Markov chain almost-surely fulfils its objective if µGpOq “ 1.

MDPs over finite arenas enjoy many good properties.

Theorem 3. [Courcoubetis and Yannakakis 1990; Chatterjee et al. 2004] Let
G be an MDP over a finite arena with a parity objective. Then, one can decide

4We do not consider here randomised strategies as in the setting of this paper they are useless.
Note that for finite MDP, optimal strategies — when exists — can always be chosen to be pure.
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in polynomial time whether Éloïse almost-surely ( resp. positively) wins. Moreover,
Éloïse always has an optimal memoryless strategy.

2.3.2 Imperfect Information Setting. Now we consider the case where Éloïse has
imperfect information about the current state. For this, we consider an equivalence
relation „ over S. We let rss„ be the equivalence class of s for „ and S{„ be the
set of equivalence classes of „ over S.

The intuitive meaning of „ is that two states s1 „ s2 cannot be distinguished by
Éloïse. We easily extend „ to partial plays: s0s1 ¨ ¨ ¨ sn „ s1

0s
1
1 ¨ ¨ ¨ s1

n if and only if
si „ s1

i for all i “ 0, ¨ ¨ ¨ , n. As two equivalent plays �1 „ �2 cannot be distinguished
by Éloïse she should therefore behave the same in both of them.

Hence, we should only consider so-called observation-based strategies. An ob-

servation-based (pure) strategy is a function ' : pS{„q
˚

Ñ ⌃, i.e., to choose
her next action, Éloïse considers the sequence of observations she got so far5. In
particular, an observation-based strategy ' is such that 'p�q “ 'p�1

q whenever
� „ �1. In this context, a memoryless strategy is a function from S{„ Ñ Dp⌃q,
i.e. it only depend on the current equivalence class.

A partial observation Markov decision process (POMDP, aka one-and-
half-player imperfect information game) is a triple pG,„,Oq where G is an
arena, „ is an equivalence relation over states and O is an objective. We say that
Éloïse almost-surely wins (resp. positively wins) G if she has an almost-surely
(resp. positively) winning observation-based strategy. Finally the value of G is
defined as ValpGq “ sup' µ'pOq where ' ranges over observation-based strategies;
optimality is defined as previously.

The following decidability results are known for POMDP:

Theorem 4. [Baier et al. 2008] In a POMDP with a Büchi ( resp. co-Büchi)
objective, deciding whether Éloïse almost-surely ( resp. positively) wins is ExpTime-
complete. Moreover if Éloïse has an almost-surely ( resp. positively) winning strat-
egy, she has an almost-surely ( resp. positively) winning strategy with finite memory.

In a POMDP with a co-Büchi ( resp. Büchi) objective, it is undecidable whether
Éloïse almost-surely ( resp. positively) wins.

Remark 5. The results in Theorem 3 and 4 do not depend on the encoding of
probability distributions, as the only relevant information is which probabilities are
non zero.

3. QUALITATIVE TREE LANGUAGES
3.1 Definitions
In the classical definition, a run of a tree automaton A is accepting if all its branches
satisfy the acceptance condition. In this article, we introduce a more relaxed notion
of acceptation: a run is qualitatively accepting if almost every (in the sense of the
measure µ) branch in it is accepting. More formally, consider a tree automaton
A with an !-regular acceptance condition Acc. A run ⇢ of A is qualitatively

accepting if the set AccBrp⇢q “ t⇡ P t0, 1u
!

| ⇢p⇡q P Accu has measure 1, i.e.
µpAccBrp⇢qq “ 1. Note that, thanks to Proposition 6 below, the set AccBrp⇢q

5By abuse of notation, we shall write 'ps0 ¨ ¨ ¨ snq to mean 'prs0s„ ¨ ¨ ¨ rsns„q
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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is indeed measurable. A tree t is qualitatively accepted by A if there exists a
qualitatively accepting run of A over t and the set of all trees qualitatively accepted
by A is denoted LQualpAq. Finally, a qualitative tree language is a set L of trees
such that there exists a parity automaton A such that LQualpAq “ L.

Proposition 6. Let A be a tree automaton equipped with an !-regular accep-
tance condition, and let ⇢ be a run of A. The set AccBrp⇢q is measurable.

Proof. Below is a simple ad-hoc proof of Proposition 6. Nevertheless, one
should notice that Corollary 37 (see Section 4.1.2) directly implies Proposition 6.

The reachability case (with final states F ) is obvious as the set AccBrp⇢q is the
(countable) union of all cones Cpuq with ⇢puq P F .

We focus now on the co-Büchi case (with forbidden states F ). Recall that a
branch is accepting if and only if there is a node after which there are only states
in QzF .

We claim that

AccBrp⇢q “

§

uPt0,1u˚
pCpuqz

§

uÑv,⇢pvqPF
Cpvqq

Let b P AccBrp⇢q and let u be a node after which all node labels in b be-
longs to QzF . Then b P Cpuq and for all v Ö u, ⇢pvq R F : hence, b belongs to
Cpuqz

î
uÑv,⇢pvqPF Cpvq. Now, let b R AccBrp⇢q: b contains infinitely many occur-

rences of forbidden states. Therefore, for all node u in b there is another node v
below u on b that is labelled by a state in F , meaning that b P

î
uÑv,⇢pvqPF Cpvq.

Equivalently, b R Cpuqz
î

uÑv,⇢pvqPF Cpvq. Therefore the set AccBrp⇢q is measurable.
The parity conditions follows from the previous case as one can express them as a
Boolean combination of co-Büchi conditions. The general case of an arbitrary !-
regular condition is obtained as follows. First, one considers a deterministic parity
word automaton recognising Acc, and then takes the synchronised product of this
automaton with the tree automaton. This leads to a parity tree automaton accept-
ing the same language and whose runs are in bijection with the ones of the original
automaton. Moreover as this bijection preserves the set of accepting branches one
can conclude from the parity case.

Example 7. Let La be the language of ta, bu-labelled trees whose set of branches
containing at least one a has measure 1. This language is recognised by the follow-
ing reachability deterministic automaton A “ xta, bu, tqini, qfu, qini,�, tqfuy where:
� “ tqini

b
Ñ pqini, qiniq, qini

a
Ñ pqf , qf q, qf

a
Ñ pqf , qf q, qf

b
Ñ pqini, qiniqu.

If one considers A as a Büchi automaton, the accepted language consists of those
trees whose set of branches containing infinitely many a has measure 1.

Example 8. Let L1 be the language of trees t such that in almost every branch,
there is a node u labelled by a such that the subtree trus has only a on its leftmost
branch. This language is recognised by the non-deterministic reachability automaton
A “ xA,Q, qw,�, tqaccuy with A “ ta, bu, Q “ tqw, ql, qacc, qreju, and � contains
the following transitions: qw Ñ̊ pqw, qwq, qw

a
Ñ pql, qaccq, ql

a
Ñ pql, qaccq, ql

b
Ñ

pqrej , qrejq, qacc Ñ̊ pqacc, qaccq, qrej Ñ̊ pqrej , qrejq (here ˚ is a shorthand for an
arbitrary letter). Intuitively, the automaton can wait in state qw as long as it wants.
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Using the second transition, the automaton can guess that the node u (labeled by a)
has a leftmost branch containing only a. This assumption is checked by sending on
the leftmost branch the state ql and the accepting state qacc on all other branches.
As long as the nodes are labelled by a state ql is propagated to the left son. If
all nodes on the leftmost branch starting at u are labelled by a, this branch will be
rejecting, but this does not affect the measure as there are only countably many such
branches). If a node v labelled by b is encountered in state ql the non-accepting state
qrej is propagated on all branches. This last scenario cannot occur in an accepting
run as these cones of rejecting branches have a strictly positive measure. Hence the
automaton is penalised for wrong guesses.

For the same reasons as for regular tree languages (cf. Remark 1), the parity con-
dition is expressive enough to capture any !-regular conditions: for any automaton
A with an !-regular acceptance condition, there exists a parity automaton B such
that LQualpAq “ LQualpBq.

Thanks to the following proposition, we can only focus on complete automata.

Proposition 9. For any tree automaton A with an !-regular acceptance condi-
tion, there exists a complete tree automaton B with the same acceptance condition
and such that LQualpAq “ LQualpBq.

Proof. Let A “ xA,Q, qini,�,Accy be a possibly incomplete automaton. Define
a complete automaton B “ xA,Q1

“ QZ tqreju, qini,�1,Accy, where the set �1 is �
augmented with tq

a
Ñ pqrej, qrejq | E q

a
Ñ pq0, q1q P �u Y tqrej

a
Ñ pqrej, qrejq | a P Au;

i.e. we add a transition to the sink state qrej whenever a transition is missing.
Note that as the acceptance condition is unchanged, a branch going through

qrej is rejecting. In particular, as qrej is a sink state, a run that contains qrej as a
rejecting cone, hence is rejecting (as the measure of the rejecting cone is strictly
positive). Therefore, the only accepting runs of B are actually runs that only uses
transitions in A, hence are runs of A. Therefore LQualpAq “ LQualpBq.

Unsurprisingly determinism is a restriction.

Proposition 10. There is a qualitative tree language that cannot be qualitatively
accepted by any deterministic automaton.

Proof. Let La be the qualitative language (see Example 7) of ta, bu-labelled
trees whose set of branches containing at least one a has measure 1. Consider now
the language L

1
a “ tt | tr0s P La or tr1s P Lau. Clearly L

1
a is qualitative (it suffices

to guess one subtree and check that it belongs to La while accepting without any
further consideration the other subtree). By contradiction assume that there is a
deterministic automaton A that qualitatively accepts L1

a. Indeed, consider the two
trees ta,b and tb,a defined as follows: ta,bp"q “ tb,ap"q “ b, the left subtree of the
root of ta,b (resp. tb,a) has only a’s (resp. b’s) and the right subtree of the root
of ta,b (resp. tb,a) has only b’s (resp. a’s). Both ta,b and tb,a belongs to L

1
a. The

run of A1 on ta,b start with the same transition at the root, and therefore one can
combine them and get a run for the tree tb whose nodes are all labeled by b, which
leads a contradiction as tb R L

1
a.
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3.2 On the Choice of Measure µ

The choice of the measure µ though natural is arbitrary. Considering the measure
µp for some 0 † p †

1
2 would not affect the results obtained in this article (provided

that definitions of the games are modified accordingly). However note that changing
the measure does change the accepted language for a given automaton.

Proposition 11. Let 0 † p † q † 1 be two reals. Let A be the (determin-
istic and complete) automaton of Example 7. Then, there is a tree t such that
µppAccpA, tqq “ 0 and µqpAccpA, tqq “ 1, where AccpA, tq denotes the set of accept-
ing branches for the unique run of A over t.

Proof. First recall that A accepts those trees whose set of branches containing
infinitely many a has measure 1.

We define the ta, bu-labeled tree t by letting for all u P t0, 1u
˚ tpuq “ a if and

only if µppConepuqq § µqpConepuqq.
Let " be the maximum among p, q, 1 ´ p, 1 ´ q.
Following the proof of Kakutani’s theorem [Kakutani 1948] as presented in [Much-

nik et al. 1998] and [Bienvenu 2008], we consider the measure µr for r “
p ` q

2
.

We first establish that for all w P t0, 1u
˚,

µrpConepwqq
2

• µppConepwqqµqpConepwqq↵|w|

where ↵ “ 1 `
pp ´ qq

2

4"2
(note that ↵ ° 1). Indeed,

µrpConepwqq
2

“

ˆ
pp ` qq

2

4

˙|w|0 ˜
pp1 ´ pq ` p1 ´ qqq

2

4

¸|w|1

“ p|w|0q|w|0
ˆ
1 `

pp ´ qq
2

4pq

˙|w|0
p1 ´ pq

|w|1

p1 ´ qq
|w|1

˜
1 `

pp1 ´ pq ´ p1 ´ qqq
2

4p1 ´ pqp1 ´ qq

¸|w|1

“ p|w|0q|w|0
ˆ
1 `

pp ´ qq
2

4pq

˙|w|0
p1 ´ pq

|w|1

p1 ´ qq
|w|1

ˆ
1 `

pp ´ qq
2

4p1 ´ pqp1 ´ qq

˙|w|1

• p|w|0q|w|0↵|w|0p1 ´ pq
|w|1p1 ´ qq

|w|1↵|w|1

“ µppConepwqqµqpConepwqq↵|w|

Let Kn be the set of words w P t0, 1u
n such that µppConepwqq § µqpConepwqq

and let Cn be the disjoint union of all Conepwq for all w P Kn.
For all w P Kn we have µrpConepwqq • µppConepwqq↵n{2, and for all w R Kn we

have µrpConepwqq • µqpConepwqq↵n{2.
Hence, µppCnq “

∞
wPKn

µppConepwqq

§ ↵´n{2∞
wPKn

µrpConepwqq

§ ↵´n{2
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Similarly, µqpCnq “ 1 ´ µqpCnq

“ 1 ´
∞

wRKn, wPt0,1un µqpConepwqq

• 1 ´ ↵´n{2∞
wRKn, wPt0,1un µrpConepwqq

• 1 ´ ↵´n{2

By definition of A, we have

AccpA, tq “

£

k•0

§

n•k

Cn.

For k • 1, we let Dk denote the set
î

n•k Cn.

As for all k • 1, µppDkq §
∞

n•k ↵
´ n

2 §
↵

´k
2

1 ´ ↵
´1
2

, we have limkÑ8 µppDkq “ 0

(recall that ↵ ° 1). Moreover for all k • 0, µqpDkq “ 1 (as ↵ ° 1 and as for all
n • k, µqpDkq • µqpCnq • 1 ´ ↵´n{2).

As the sequence of sets pDkqk•0 is decreasing for the inclusion, we have thanks
to [Bauer 2001, Theorem 3.2, p. 10] that:

"
µppAccpA, tqq “ limkÑ8 µppDkq “ 0
µqpAccpA, tqq “ limkÑ8 µqpDkq “ 1

A more general definition is to associate with any letter a in the alphabet a
pair pp0a, p

1
aq P r0, 1s

2 with p0a ` p1a “ 1 and then to define the measure of a cone
in a tree t by letting µpConepu1 ¨ ¨ ¨unqq “ pu1

tp"qp
u2

tpu1q . . . p
un

tpu1¨¨¨un´1q. Intuitively,
the node label determines the respective weights of the left and right sons in the
definition of the measure. In particular the measure µp is the one obtained by
letting pp0x, p

1
xq “ pp, 1 ´ pq for all letters x in the alphabet.

Again, with such a measure the results obtained in this article (provided that
definitions of the games are modified accordingly) remains correct.

Remark 12. Following Proposition 11, a natural question is whether the class
of qualitative tree languages is the same for each distribution µp with 0 † p † 1.
And the same for the above variant with probability values p0a, p1a for all letters in
the alphabet. From the statement of Proposition 11 we conjecture that the answer
to these questions is no but we leave it open.

3.3 Pumping Lemma
Let t be a tree and u P t0, 1u

˚ be a node. A pair � “ pt, uq is called a pointed tree.
With a pointed tree �1 “ pt1, u1q and a tree t2, we associate a new tree, �1 ¨ t2, by
plugging t2 in t1 instead of the subtree rooted at u1. Formally, �1 ¨ t2puq “ t1puq if
u1 is not a prefix of u and �1 ¨ t2puq “ t2pu1

q if u “ u1u1 for some u1
P t0, 1u

˚. We
can also define the product of two pointed trees �1 “ pt1, u1q and �2 “ pt2, u2q

by letting �1 ¨ �2 “ p�1 ¨ t2, u1 ¨ u2q. Finally, with a pointed tree � “ pt, uq, we
associate a tree �! by taking an !-iteration of the product: �!

pvq “ tpv1
q where

v1 is the shortest word s.t. v “ ukv1 for some k • 0.
Qualitative tree languages enjoy a pumping lemma (see Figure 13 for an illustra-

tion), which contrasts with regular tree languages. Intuitively, pumping does not
change acceptance for the qualitative semantics as it may only introduce a set of
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



Randomisation in Automata on Infinite Trees ¨ 13

rejecting branches of measure zero (while for the classical semantics introducing a
rejecting branch would make the run rejecting).

Lemma 13. Let A be an n-states parity automaton, t be a tree in LQualpAq and
u be a node of depth greater that n. Then there exists three pointed trees �1, �2

and �3 such that t “ �1 ¨ �2 ¨ �3 ¨ trus and �1 ¨ �!
2 P LQualpAq.

t “ �1 ¨ �2 ¨ �3 ¨ trus

�1

�2

�3

trus

q

q

u

�1.�!
2

�1

�2

�2

�2

q

q

q

q

Fig. 1. Pumping Lemma

Proof. Let ⇢ be an accepting run of A over t. Since u has depth greater than
the number of states, there are two nodes u1 and u2 such that u1 Ñ u2 Ñ u and
⇢pu1q “ ⇢pu2q “ q for some state q. We now decompose t as t “ �1 ¨ �2 ¨ �3 ¨ trus

with �1 “ pt, u1q, �2 “ ptru1s, u2q and �3 “ ptru2s, uq. We decompose ⇢ in a
similar way, by letting ⇢ “ ⇥1 ¨ ⇥2 ¨ ⇥3 ¨ ⇢rus with ⇥1 “ p⇢, u1q, ⇥2 “ p⇢ru1s, u2q

and ⇥3 “ p⇢ru2s, uq. Note that ⇥1 ¨ ⇥!
2 is a run of A over �1 ¨ �!

2 . A branch in
⇥1 ¨⇥!

2 can be rejecting for three reasons: it is a rejecting branch in ⇢z⇢ru1s; or it is
a branch in some of the copies of ⇢ru1sz⇢ru2s; or it is the newly created branch u1v!

where v is the word such that u2 “ u1 ¨ v. As ⇢ is accepting, the measure of each of
these three sets of rejecting branches is 0 (for the second set, it is a finite union of
sets of measure 0). Therefore ⇥1 ¨ ⇥!

2 is accepting, hence �1 ¨ �!
2 P LQualpAq.
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3.4 Closure Properties
We now investigate the closure properties of qualitative tree languages under Boolean
operations.

Proposition 14. Qualitative tree languages are closed under union and inter-
section.

Proof. The union is for free thanks to non-determinism of the automata model.
For the intersection of two languages, LQualpA1q and LQualpA2q, we consider the
usual product automaton whose states set is the Cartesian product of the states
set of A1 and of A2, and that simulates A1 (resp. A2) on its first (resp. second)
component. Hence runs of the product automaton are in bijection with pairs of runs
of A1 and A2. The (!-regular) acceptance condition requires that the acceptance
condition of A1 (resp. A2) is fulfilled on the first (resp. second) component. Hence
the set of accepting branches in a run of the product automaton is the intersection
of the set of accepting branches in the corresponding runs of A1 and A2. Hence,
it has measure 1 if and only if both sets have measure 1, i.e. a run is accepting if
and only if both corresponding runs in A1 and A2 are accepting.

Unsurprisingly, qualitative tree languages are not closed under complement. This
is a simple consequence of the pumping lemma.

Proposition 15. Qualitative tree languages are not closed under complement.

Proof. Let La be the set of ta, bu-labelled trees whose set of branches contain-
ing an a has measure 1. Clearly, La is a qualitative tree language. However, we
will show that its complement La does not satisfy the pumping lemma, hence is
not qualitative. By contradiction assume that La “ LQualpAq for some n-state
automaton A. Now define a tree t by letting u “ 0n and tpvq “ b if v P trus and
tpvq “ a otherwise. Hence in t a tree is labelled by a b if and only if it belongs
to the subtree rooted at u, and therefore the branches in Conepuq contains finitely
many a, implying that t P La. Now, if one uses Lemma 13 for t and u, the tree
�1 ¨ �!

2 (as in the statement of Lemma 13) is the tree whose nodes are all labelled
by a, i.e. �1 ¨ �!

2 R La, leading a contradiction.

3.5 Emptiness Problem
It is well known that tree automata (as acceptors of regular languages) and two-
player (perfect information) game are closely related [Gurevich and Harrington
1982; Grädel et al. 2002]. In particular, the emptiness problem for regular tree
languages and the problem of deciding the winner in a parity game on a finite graph
are polynomially equivalent. From the proof of this result also follows that a regular
tree language is non-empty if and only if it contains a regular tree.

We show that a similar connection exists between tree automata as acceptors
of qualitative tree languages and MDP. For this, fix a parity tree automaton A “

xA,Q, qini,�,Coly and a tree t. Consider the arena, depicted in Figure 2, GA,t “

xS, sini,⌃, ⇣y where S “ Q ˆ t0, 1u
˚

Y tKu, sini “ pqini, "q, ⌃ “ � and ⇣ is defined
as follows. First we let dK be the distribution defined by dKpsq “ 1 if s “ K and
dKpsq “ 0 otherwise, and, for all q0, q1 P Q and u P t0, 1u

˚, we let dq0,q1,u be the
distribution such that dq0,q1,upq0, u0q “ dq0,q1,upq1, u1q “ 1{2 and dq0,q1,upsq “ 0
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q, uK

q0, u0

q1, u1

� P �� P �

˚

1

2

1

2
for � “ pq, tpuq, q0, q1q

for � “ pq1, a, q0, q1q with q1 ‰ q or a ‰ tpuq

Fig. 2. The arena GA,t of the acceptance game.

for all other s P S. Then we let ⇣ppq, uq, pq1, a, q0, q1qq “ dK if q ‰ q1 or a ‰ tpuq,
⇣ppq, uq, pq, tpuq, q0, q1qq “ dq0,q1,u and ⇣pK,�q “ dK for all � P �. Finally, we
define a colouring function ⇢ by letting ⇢ppq, uqq “ Colpqq and ⇢pKq “ 1, and we
call GA,t “ pGA,t,O⇢q the MDP equipped with the parity objective O⇢ defined by
⇢.

Then, the following holds:

Theorem 16. The tree t belongs to LQualpAq if and only if Éloïse almost-surely
wins in GA,t.

Proof. In GA,t, a partial play that does not visit K is a sequence of the form
pq0, u0qpq1, u1q ¨ ¨ ¨ pqk, ukq where for all i, ui`1 “ uixi for some xi “ 0, 1. Now, with
any strategy ' of Éloïse we can associate a strategy '1 of Éloïse that is defined
only on those partial plays that are compatible with it (meaning that if in some
partial play � Éloïse does not respect '1 then '1

p�q is undefined) and coincide with
' when defined; it is easily seen that ' and '1 leads the same plays and define the
same probability measure. This means that one can only focus on such strategies
for Éloïse. We should also only focus on strategies that never reach K, i.e. it
always chooses an action of the form pq, tpuq, q0, q1q if the current state is pq, uq.
Now, one can remark that for any node u there is a unique partial play � where
Éloïse respects '1 and that ends in a state of the form pq, uq for some q such that
'1 is defined on �. Therefore, an equivalent way to see '1 is as a Q-labelled tree,
that should additionally verify the local properties imposed by �, namely the tree
should be a run of A over t. It should also be clear that the set of plays where Éloïse
respects '1 is the set of branches in the run associated with '1 and that this map
preserves the measure (in particular the set of winning plays has the same measure
as the set of accepting branches in the run), meaning that a strategy with value ⇠
is mapped to a run whose set of accepting branches has measure ⇠ and vice-versa.
As this map, from strategies to runs is bijective, this concludes the proof: a tree t
belongs to LQualpAq if and only if there is an accepting run of A over t if and only
if there is an almost surely winning strategy for Éloïse in GA,t.

Consider the (finite) arena GA “ xS, sini,⌃, ⇣y, depicted in Figure 3, where
S “ Q ˆ t0, 1u Y tqini,Ku, sini “ qini, ⌃ “ � and ⇣ is defined as follows. First
we let dK be the distribution defined by dKpsq “ 1 if s “ K and dKpsq “ 0
otherwise, and, for all q0, q1 P Q, we let dq0,q1 be the distribution such that
dq0,q1ppq0, 0qq “ dq0,q1ppq1, 1qq “ 1{2 and dq0,q1psq “ 0 for all other s P S. Then we
let ⇣ppq, iq, pq, a, q0, q1qq “ dq0,q1 , ⇣ppq, iq, pq1, a, q0, q1qq “ dK if q ‰ q1, ⇣pqini, pqini, a, q0, q1qq “
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q, iK

q0, 0

q1, 1

� P �� P �

˚

1

2

1

2
for � “ pq, a, q0, q1q

for � “ pq1, a, q0, q1q with q1 ‰ q

Fig. 3. The arena GA of the emptiness game.

dq0,q1 , ⇣pqini, pq, a, q0, q1qq “ dK if q ‰ qini, and ⇣pK,�q “ dK for all � P �. Finally,
we define a colouring function ⇢ by letting ⇢ppq, iqq “ Colpqq and ⇢pKq “ 1, and we
call GA “ pGA,O⇢q the MDP equipped with the parity objective O⇢ defined by ⇢.
Then, the following hold:

Theorem 17. The language LQualpAq is non empty if and only if Éloïse almost-
surely wins in GA from qini.

Proof. Following the same lines as for the proof of Theorem 16 it is easily seen
that strategies that avoid state K are in bijection with pairs of pt, ⇢q where t is an
A-labeled tree and ⇢ is a run of A over t. Moreover this map preserves the measure,
meaning that a strategy with value ⇠ is mapped to a pair pt, ⇢q such that the set of
accepting branches in ⇢ has measure ⇠. In particular, Éloïse almost surely wins in
GA if and only if there is a tree t that is qualitatively accepted by A.

Corollary 18. Let A be a parity tree automaton. Then one can decide whether
LQualpAq “ H in polynomial time. Moreover, if LQualpAq �“ H, it contains a
regular tree, and such a tree can be constructed in polynomial time.

Proof. Emptiness in polynomial time follows from theorems 17 and 3. Now,
if Éloïse has an almost surely strategy, then she has a memoryless one (Theorem
3). Then the tree and the run associated with this strategy are regular, the run
is qualitatively accepting. As one can compute (when exists) an almost surely
winning positional strategy, one can also compute (when exists) in polynomial time
a regular tree in LQualpAq.

Remark 19. Motivated by a decision problem for qualitative tree language we
designed a polynomial reduction of the emptiness problem to the problem of deciding
almost-surely winning in a finite MDP.

As already mentioned, a similar connection exists between tree automata (as ac-
ceptors of regular tree languages) and two-player (perfect information) games (see
e.g. [Gurevich and Harrington 1982; Grädel et al. 2002]). Indeed, the emptiness
problem for regular tree languages and the problem of deciding the winner in a parity
game on a finite graph are polynomially equivalent.

Hence, one may ask whether conversely the problem of deciding almost-surely
winning in a finite MDP can be polynomially reduced to the emptiness problem for
qualitative tree languages. It is indeed possible and the proof is very similar to the
one from a two-player game to a regular tree language. We briefly sketch the proof
below.
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First note that one can, up to coding, restrict its attention to finite MDP with
only two actions and such that from any state and any action there are always two
possible successors that can both be reached with same probability 1{2. Then one
designs a deterministic tree automaton whose states are identified with the ones of
the MDP, whose input alphabet is identified with the set of actions of the MDP,
and whose transition function mimics the one of the MDP. Then one concludes by
noting that there is a bijection between trees and strategies and that this bijection is
such that the measure of the accepting branches in the (unique) run of the automaton
on a tree equals the value of the corresponding strategy in the MDP.

3.6 Regular Tree Languages and Qualitative Tree Languages are Incomparable
In this section, we prove that regular tree languages and qualitative tree languages
are incomparable.

Proposition 20. There is a regular tree language that is not qualitative.

Proof. Consider the regular tree language L of those ta, bu-labelled trees that
contains at least one node labeled by b. By contradiction, assume that L “

LQualpAq for some n-state automaton A and let t P L be the tree defined by
tpuq “ b if u “ 0n and tpuq “ a otherwise. Apply Lemma 1 to t and u: the tree
�1 ¨ �!

2 (using the notations of Lemma 13) is the tree whose nodes are all labelled
by a, thus �1 ¨ �!

2 R L, leading to a contradiction.

Theorem 21. There is a qualitative tree language that is not regular.

Proof. Let La be the language of trees whose set of branches containing at least
one a has measure 1. This language is qualitative as noticed in Example 7. In the
sequel, we prove that La is not regular.

We first prove that, for any regular tree t, if there is no cone in t whose branches
only contain the letter b, then t P La. Let t be a regular tree, we can assume w.l.o.g.
that if there is a node labelled by a then all its descendants are labeled by a. Then
the property “there is no cone in t whose branches only contain b” is the same as
“every subtree contains a subtree made only of a”. Let X1, . . . , Xn be the n different
subtrees of t, and for all i, let µi be the measure of the set of branches containing
a in Xi (we call it the value of Xi). We can assume w.l.o.g. that @i µ1 § µi. If
Xi1 and Xi2 are the two sons of X1, we know that µ1 “

µi1`µi2
2 . Since µ1 § µi

for i “ i1, i2, µi1 “ µi2 “ µ1. Hence we can prove by induction that for all Xi

of minimal value, all the subtrees of Xi have minimal value too. Since there is a
subtree of a (of value 1) in X1, µ1 “ 1 hence for all i, µi “ 1, hence the value of t
is 1, hence t P La.

We assume by contradiction that La is regular. The closure properties of regular
tree languages implies that the following language L is also regular:

L “
 

t
ˇ̌
t R La ^ “there is no cone in t whose branches only contain b”

(

Using our previous characterisation of regular trees in La it follows that L does
not contain any regular tree, hence L is empty (Theorem 2). Then, to raise a
contradiction, we build a (non-regular) tree t0 P L.

For every node u P t0, 1u
˚, we let nu be the integer whose binary representation

is 1 ¨ u. We define a tree t0 as follows: let v P t0, 1u
˚, if there exists some u such
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u

a

depth 0 Ñ

depth |u| Ñ

depth nu ` 1 Ñ

Fig. 4. The tree t0

that v “ u.0nu`1´|u| then t0pvq “ a, otherwise t0pvq “ b (see Figure 4). We now
establish that t0 R La. First note that the set of branches in t0 that contains at
least one a is obtained by taking the union of those cones Cpuq such that t0puq “ a.
Then remark that, for every level `, there is one and only one node u of depth `
labelled by a (except for ` “ 0, 1 where there are no such u). Thus we can bound
the measure µ of the set of branches in t0 that contains at least one a:

µ §

`8ÿ

`“2

2´`
“

1

2

This proves that t0 R La. Moreover, it follows from the definition, that for every
node u, there is a branch (the leftmost one) in the cone Cpuq that contains an a,
hence t0 P L, which contradicts the fact that L is empty.

3.7 The Value of a Tree May not be Reached
So far we defined qualitative acceptance of a tree by the existence of a run whose
set of accepting branches has measure 1. We can refine this notion by defining the
value of a tree as follows. For a tree automaton A, and a tree t we let

ValAptq “ sup
⇢t run of A over t

µpAccBrp⇢tqq

In particular LQualpAq is the set of trees t whose value is 1 and is reached for some
run (i.e. the sup is a max). The following result proves that the value may not be
reached by some run.

Theorem 22. There is a reachability automaton A and a tree t such that ValAptq “

1 but t R LQualpAq.

Proof. Let A “ xA,Q, qw,�, tqaccuy with A “ ta, bu, Q “ tqw, ql, qacc, qreju,
and � contains the following transitions: qw Ñ̊ pqw, qwq, qw Ñ̊ pql, qaccq, ql

a
Ñ

pqacc, qlq, ql
b

Ñ pqrej , qrejq (here ˚ is a shorthand for an arbitrary letter). Intuitively,
the automaton can wait in state qw as long as it wants. It can at some point use
the second transition: this leads to accept (all branches in) the subtree rooted at
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the left son, as well as those subtrees rooted in the branch going left and then right
forever as long as this branch does not contain a node labelled b, in which case the
subtree rooted at this node is rejected.

Define h : t0, 1u
˚

Ñ t0, 1u
˚ by letting hpuq “ u.0.1|u|, for all u P t0, 1u

˚. Now,
consider the tree t defined by tpuq “ b if u belongs to hpt0, 1u

˚
q — the image of

the set t0, 1u
˚ by h — and tpuq “ a otherwise.

We claim that any run ⇢t of A on t is such that µpAccBrp⇢tqq † 1. Indeed,
either the only transition used in ⇢t is qw Ñ̊ pqw, qwq and therefore all branches are
rejecting. Otherwise the transition qw Ñ̊ pql, qaccq is used at least once. Then pick
u a node of minimal depth where this transition is used: the cone Conephpuqq is
rejecting and therefore µpAccBrp⇢tqq § 1 ´ 2|hpuq|

† 1.
Now, for all integer i • 1, consider the run ⇢it where the transition qw Ñ̊ pqw, qwq

is used for all nodes at depth † i, and the transition qw Ñ̊ pql, qaccq is used for all
nodes at depth i (then there is no more freedom in defining for the rest of the run).
Then for all node u at depth i, the branches in Conephpuqq are rejecting and those in
ConepuqzConephpuqq are accepting. Therefore µpAccBrp⇢tqq “ 1´ 2i ˆ 2´pi`1`iq

“

2´pi`1q. Thus, sup⇢i
t
µpAccBrp⇢tqq “ 1, implying that ValAptq “ 1.

Actually, the proof of Theorem 16 directly leads the following.

Corollary 23. Let A be a parity tree automaton and let t be a tree. Then
ValAptq “ ValpGA,tq.

3.8 Positive Tree Languages
So far, we favoured the almost-sure acceptance condition (i.e. requiring the measure
to be equal to 1) over the positive one (i.e. requiring the measure to be strictly
positive). However, the decidability results on MDP stated in Theorem 3 still hold
if we replace the almost-sure acceptance by the positive acceptance [Courcoubetis
and Yannakakis 1990; Chatterjee et al. 2004]. We now discuss the impact when
considering positive acceptance instead of almost-sure acceptance, and motivate
our choice to focus on almost-sure acceptance.

We say that a run ⇢ of a tree automaton A is positively accepting if the measure
of its set of accepting branches is (strictly) positive, i.e. µpAccBrp⇢qq ° 0. A tree t
is positively accepted if there exists a positively accepting run of A over t, and we
denote by LPospAq the set of all trees positively accepted by A. Finally, a positive

tree language is a language L of trees such that there exists a parity automaton
A with LPospAq “ L.

Note that, contrarily to the qualitative semantics, we can no longer assume that
our automata are complete. In particular, the naive idea of adding a sink state
does not work, as it would have new runs that may be accepting (going to the sink
state yields a rejecting cone, but this may not affect the positivity of the measure
of the set of accepting branches).

Example 24. Consider the language L
°0
a of ta, bu-labeled trees that have a non-

negligible set of branches containing infinitely many a’s. This language is positively
accepted by a deterministic Büchi tree automaton (that goes in a final state whenever
an a is read and in a non-final state otherwise) and hence is a positive tree language.
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Remark 25. The complement of a language qualitatively accepted by a deter-
ministic tree automaton A is positively accepted by a deterministic tree automaton
B. Indeed, it suffices to define B starting from A and dualise its acceptance condi-
tion (namely increment the value of the colouring function by 1).

Let us now give two examples of languages that are not positive tree languages.
For this we introduce the language La^a of ta, bu-labelled trees containing an a in
both their left and right subtrees that is formally defined as La^a “ tt | Du, v P

t0, 1u
˚ s.t. tp0uq “ tp1vq “ au.

Proposition 26. The language La of ta, bu-labelled trees whose set of branches
containing an a has measure 1 and the language La^a of ta, bu-labelled trees con-
taining an a in both their left and right subtrees are not positive tree languages.

Proof. The proofs for both languages rely on the same family of counter-
examples. For every n • 0, let tn be the tree defined by tnpuq “ b for |u| § n and
tnpuq “ a otherwise and let tb be the tree such that tbpuq “ b for all u P t0, 1u

˚.
We are going to show that if tn`2 is positively accepted by a parity automaton

A with n states then A also accepts either the tree t0n`2 obtained by replacing the
left subtree of tn`2 by tb or the tree t1n`2 obtained by replacing the right subtree
of tn`2 by tb.

This property will allow us to conclude as for all n • 0, tn belongs to La but t0n
and t1n do not, La is not a positive language. The same arguments work for La^a.

Let ⇢ be a positively accepting run of A on tn`2. Without loss of generality, we
can assume that the set of accepting branches in the right subtree has a strictly
positive measure. We are going to show that A admits a run ⇢1 (not necessarily a
positively accepting one) on tb starting from ⇢p0q. By replacing the left subtree of
⇢ by ⇢1, we then obtain a positively accepting run for A on t1n`2.

For all i • 1, consider the set Qi “ t⇢p0uq | u P t0, 1u
˚ and 0 § |u| § i ´ 1u of

those states appearing in the left subtree of ⇢ at depth at most i. As the sequence
of the Qi is increasing, we have Qn “ Qn`1. For all q P Qn, there exists a least one
transition �q of A of the form pq, b, q1, q2q with q1 and q2 P Qn (recall that in tn`2

the first n ` 2 levels only contains b’s). By using the transition �q when in state
q and starting from state q0, we easily construct a run of A on tb starting in state
⇢p0q.

Proposition 27. The classes of positive and qualitative tree languages are in-
comparable.

Proof. Let La be the qualitative language of those ta, bu-labelled trees whose
set of branches containing an a has measure 1. We proved in Proposition 15 that its
complement La is not qualitative. But La is a positive tree languages, as it is the
complement of a language qualitatively accepted by a deterministic tree automaton
(see Remark 25).

Conversely we have seen in Proposition 26 the qualitative language La is not
positive.

Remark 28. A natural open question is whether a tree language which is both
positively and qualitatively accepted is always regular.
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As it is the case for qualitative languages, the positive languages are incomparable
with the regular languages.

Proposition 29. The class of positive tree languages is incomparable with the
class of regular languages.

Proof. The language La^a of ta, bu-labelled trees containing an a in both their
left and right subtrees is an example of a regular language that is not positive tree
language (cf. Proposition 26).

We are now going to show that the positive tree language L
°0
a of ta, bu-labeled

trees that have a non-negligible set of branches containing infinitely many a’s (cf.
Example 24) is not a regular language.

Toward a contradiction, we assume that L°0
a is accepted by a parity tree automa-

ton A “ xA,Q, qini,�,Coly (with the standard acceptance condition for runs).
For every i • 1, we let ri be the (finite) tree whose domain consists of all words

of length at most i and in which only 0i is labeled by a and all other nodes are
labelled by b. We denote by |ri| “ i the height of ri. The probability pri to visit

an a-labelled node in ri when starting from the root is
1

2i
. We let T denote the set

tri | i • 1u of all such trees.
To every sequence s “ ptiqi•0 of trees in T , we associate an infinite ta, bu-labelled

tree ts which is intuitively obtained as follows: start with t1 and glue to every leaf
a copy of t2, to every leaf glue a copy of t3 and so on. Formally tspuq “ a if u is of
the form v0|ti| with |v| “

∞
j†i |tj | and tspuq “ b otherwise.

By Borel-Cantelli’s lemma [Bauer 1996, Lemma 11.1 - p. 70], the tree ts belongs
to L°0

a if and only if
∞

i•0 pri“ ` 8.
We extend the notion of runs for A to finite trees. A run of A on finite tree

t : t0, 1u
§n

fiÑ ta, bu is a finite tree ⇢ : t0, 1u
§n

fiÑ Q such that for all u P t0, 1u
†n,

p⇢puq, tpaq, ⇢pu0q, ⇢pu1qq belongs to �. We can summarise the run ⇢ by a finite
information called the profile of the run and denoted Profp⇢q. The profile Profp⇢q

of ⇢ is defined as:

Profp⇢q “ p⇢p"q, Rq where R “ tpm, ⇢puqq | u P t0, 1u
n and m “ inf

vÑu
Colpvqu.

By extension, the profile of a finite tree t, denoted Profptq, is the set tProfp⇢q |

⇢ run of A on tu of all possible profiles of runs of A on t.
This notion induces an equivalence relation on finite trees denoted ”A which

intuitively equates trees that cannot be distinguished by A. Formally for all finite
tree t and t1, t ”A t1 if and only if Profptq “ Profpt1

q.
The following claim is straightforward.

Claim 30. Let s “ ptiqi•1 and s1
“ pt1

iqi•1 be two sequences of finite trees in T .
If for all i • 1, ti ”A t1

i then A accepts ts if and only if A accepts ts1 .

Now, note that there are only finitely many different possible profiles hence,
there exists an infinite sequence s “ prij qj•0 of trees with the same profile and such
that the sequence pijqj•0 is strictly increasing. As the pijqj•0 sequence is strictly
increasing it implies that

∞
j•0 prij † `8, hence the tree ts does not belong to

L°0
a . Now consider the constant sequence s1

“ ri0 , ri0 , . . . : one has
∞

j•0 pri0 “ `8
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hence ts1 belongs to L°0
a . This leads a contradiction with A accepting L°0

a as A

behaves the same on both ts and ts1 ,i.e. A accepts ts if and only if A accepts ts1 .

The most notable difference between positive and qualitative tree languages is
that positive tree languages are not closed under intersection.

Proposition 31. The class of positive tree languages is closed under union but
neither under intersection nor complementation.

Proof. The closure under union is immediate thanks to non-determinism. The
non-closure under complementation will be a consequence of the closure under union
and the non closure under intersection. However, one can also derive it directly by
considering the language La: we have shown in the proof of Proposition 26 that
this language is not positive while its complement is positive.

We now prove the non-closure under intersection. Consider the language L0 (resp.
L1) of those trees t containing a non-negligible set of branches containing an a in
the left (resp. right) subtree of the root. Both languages are positively accepted by
a deterministic reachability automaton. But we have seen in Proposition 26 that
their intersection La^a is not a positive tree language.

However, positive tree languages enjoy all decidability properties of qualitative
languages presented in Section 3.5.

Theorem 32. The tree t belongs to LPospAq if and only if Éloïse positively wins
in GA,t.

Proof. The proof is identical to that of Theorem 16.

Theorem 33. The language LPospAq is non empty if and only if Éloïse positively
wins in GA from qini.

Proof. The proof is identical to that of Theorem 17.

Corollary 34. Let A be a parity tree automaton. Then one can decide whether
LPospAq “ H in polynomial time. Moreover, if LPospAq �“ H, it contains a regular
tree, and such a tree can be constructed in polynomial time.

Proof. As the properties expressed in Theorem 3 of MDP with almost-sure
winning condition also hold for the positive winning condition, we can use the same
proof as for Corollary 18.

4. BEYOND NON-DETERMINISTIC AUTOMATA: THE PROBABILISTIC SETTING
Following [Rabin 1963] for finite words and [Baier and Größer 2005; Baier et al.
2008; Baier et al. 2012] for infinite words we investigate probabilistic automata
on infinite trees. That is the set of transitions of an automaton is replaced by a
probability distribution over the set of all transitions which induces a probability
measure on the set of runs of the automaton. Now, a tree is accepted if almost
every run over the input tree is accepting. For the run, we may use either the
classical or the qualitative acceptance criterion.
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4.1 Definitions
4.1.1 Probabilistic Tree Automata. A probabilistic tree automaton A is a

tuple xA,Q, qini, �,Accy where A is the input alphabet, Q is a finite set of states,
qini P Q is the initial state, Acc Ñ Q! is the acceptance condition and � is
a mapping from Q ˆ A ˆ Q ˆ Q to r0, 1s such that for all q P Q and a P A,∞

q0,q1PQ �pq, a, q0, q1q “ 1. Intuitively, the value �pq, a, q0, q1q is the probability for
a transition q

a
Ñ pq0, q1q to be used by the automaton when it is in state q and

reads the symbol a.
This probability distribution on the transitions induces a probability measure on

the set of runs of A. In this setting, a run of A is simply a Q-labeled tree whose
root is labeled by the initial state qini. We denote by RunspAq (or simply Runs if A
is clear from the context) the set of all runs of A. We denote by AccRunspAq the set
of accepting runs of A and by QualAccRunspAq the set of qualitatively accepting
runs of A.

In the sequel, we will show that, for a given tree t the sets AccRunspAq and
QualAccRunspAq are measurable (Proposition 38), and this will allows us to define
almost-sure acceptance of a tree by a probabilistic automaton.

4.1.2 Measurability of AccRunspAq and QualAccRunspAq. We first define a �-
algebra for RunspAq. A partial run is a partial function � : t0, 1u

˚
Ñ Q with

�p"q “ qini and such that Domp�q is finite, non-empty, prefix-closed and proper,
i.e. such that for all w P t0, 1u

˚, w0 P Domp�q iff w1 P Domp�q. If � is a partial
run, we denote by Innerp�q the set tw P Domp�q | w0 P Domp�q and w1 P Domp�qu

of non-leaf nodes. The cylinder associated to �, denoted Cylp�q, is the set of runs
consistent with �, i.e.

Cylp�q “ t⇢ P Runs | @w P Domp�q, ⇢pwq “ �pwqu

Let FR be the �-algebra generated by the cylinders. By Carathéodory’s extension
theorem, there exists a unique probability measure µt on the measurable space
pRuns,FRq such for all partial run � : t0, 1u

˚
Ñ Q,

µtpCylAp�qq “

π

wPInnerp�q
�p�pwq, tpwq,�pw0q,�pw1qq

Note that both µt and pRuns,FRq depend on t. Also note that the definition
of µt does not make sense without the properness condition in the definition of a
partial run.

Remark 35. A balanced partial run � is a mapping from t0, 1u
n to Q for

some n • 0 with �p"q “ qini. Hence it is a special kind of partial play in the previous
sense. It is straightforward to note that the �-algebra generated by balanced partial
play is FR. Moreover one has

µtpCylAp�qq “

π

wPt0,1u§n´1

�p�pwq, tpwq,�pw0q,�pw1qq

Let A be an automaton and define the mapping fA : RunsˆBr Ñ r0, 1s associat-
ing to a pair p⇢,⇡q P RunsˆBr the value 1 if ⇢p⇡q belongs to Acc and 0 otherwise.
The following lemma proves that fA is integrable.
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Lemma 36. Let A be a probabilistic tree automaton with an !-regular acceptance
condition and let t be a tree. The mapping fA is integrable in the product space
pRunspAq,FR, µtq b pBr,FBr, µq.

Proof. The product space pRuns,FRq b pBr,FBrq is generated by the sets
Conepwq ˆ Cylp�q for all w P t0, 1u

˚ and all partial run � (cf. [Bauer 2001, Theo-
rem 22.1 - p. 132]).Thanks to Remark 35 we can restrict our attention to balanced
partial runs.

According to [Bauer 2001, Theorem 9.1 - p. 50], it is enough to show that
AccPairspAq “ tp⇢,⇡q | ⇢p⇡q P Accu is measurable in the product space.

We first establish the result for a Büchi acceptance condition. For that, we
let A “ xA,Q, qini, �, F y be probabilistic tree automaton with a Büchi acceptance
condition.

For u P t0, 1u
˚, we introduce the set Ru of all pairs p⇢,⇡q P Runs ˆ Br such that

⇡ admits u as a prefix and ⇢pvq R F for all u à v Ñ ⇡. The set AccPairspAq is the
complement of the countable union

î
uPt0,1u˚ Ru. Hence, it is enough to show Ru

is measurable for all u P t0, 1u
˚.

Let us fix a node u P t0, 1u
˚. For all n ° |u|, let Cn be the union all sets

Cylp�q ˆ Conepwq where � : t0, 1u
n

Ñ Q is a partial run and w P t0, 1u
nâu is a

word such that �pvq R F for all u à v Ñ w. We claim that the set Ru is equal
to

ì
n°|u| Cn and hence is measurable. The direct inclusion, Ru Ñ

ì
n°|u| Cn, is

obvious. For the converse one, let p⇢,⇡q be in
ì

n°|u| Cn. For all n ° |u|, the node
wn P t0, 1u

n witnessing that p⇢,⇡q belongs to Cn is indeed the unique node of ⇡ of
depth n. As n can be arbitrary large, it follows that every node v in ⇡ of depth
° |u| is such ⇢pvq R F , which exactly means that p⇢,⇡q P Ru.

The case of the parity conditions follows from the previous case as one can express
them as a Boolean combination of Büchi conditions.

The general case of an arbitrary !-regular condition is obtained as follows. First,
one considers a deterministic parity word automaton recognising Acc, and then
takes the synchronised product of this automaton with the tree automaton. This
leads to a parity tree automaton accepting the same language and whose runs are
in bijection with the ones of the original automaton. Moreover as this bijection
preserves the set of accepting branches, one can conclude from the parity case.

Note that the previous lemma implies that the set of accepting branches in a
run of a tree automaton with an !-regular acceptance condition is measurable in
pBr,FBrq. This leads an alternative proof of Proposition 6.

Corollary 37. Let A be a tree automaton equipped with an !-regular accep-
tance condition, and let ⇢ be a run of A over some tree t. Then the set AccBrp⇢q

of accepting branches in t is measurable.

Proof. Let A be a tree automaton with an !-regular acceptance condition, t be
a tree and ⇢ be a run of A on t. The set AccBrp⇢q is equal to t� P Br | ⇢p�q P Accu.
As by the proof of Lemma 36, AccPairspAq is measurable in the product space,
AccBrp⇢q is also measurable (cf. [Bauer 2001, Lemma 23.1 - p. 135]).

We are now ready to establish the measurability of the sets AccRunspAq and
QualAccRunspAq.
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Proposition 38. For all probabilistic tree automata A with an !-regular accep-
tance condition, the sets AccRunspAq and QualAccRunspAq are measurable.

Proof. We first consider the case of AccRunspAq. As seen in Proposition 6, it
is enough to establish the property for the Büchi acceptance condition.

Let xA,Q, qini, �, F y be probabilistic tree automaton with a Büchi acceptance
condition.

For u P t0, 1u
˚, we introduce the set Ru of all runs ⇢ of A for which there exists

an infinite branch ⇡ such that u Ñ ⇡ and for all u Ñ v à ⇡, ⇢pvq R F . The set of
accepting runs AccRunspAq is the complement of the countable union

î
uPt0,1u˚ Ru.

Hence it is enough to show Ru is measurable for all u P t0, 1u
˚.

Let us fix a node u P t0, 1u
˚. For all n ° |u|, let Cn be the union of all cylinders

Cylp�q where � : t0, 1u
n

Ñ Q is a (balanced) partial run for which there exists a
word w P t0, 1u

n Ö u such that �pvq R F for all u à v Ñ w.
We claim that Ru is equal to

ì
n°|u| Cn and is hence measurable. The direct

inclusion, Ru Ñ
ì

n°|u| Cn, is obvious. For the converse one, let ⇢ be a run inì
n°|u| Cn. For all n ° |u|, let wn be a word in t0, 1u

n witnessing that ⇢ belongs
to Cn. Let T be the prefix-closure of the set twn | n ° |u|u. By Koenig’s lemma,
T contain an infinite branch ⇡. Clearly u is a prefix of ⇡ and for all u Ñ v à ⇡,
⇢pvq R F as v is a prefix of one of the wn. Hence ⇢ belongs to Ru.

Let us now consider the case of QualAccRunspAq. From Lemma 36 we have that
AccPairspAq “ tp⇢,⇡q | ⇢p⇡q P Accu “ f´1

A pt1uq is measurable in the product space.
Hence the numerical function g : Runs Ñ r0, 1s associating to a run ⇢ the measure
of its set of accepting branches (i.e. µpAccPairspAq⇢q where AccPairspAq⇢ “ t� P

Br | ⇢p�q P Accu) is measurable (cf. [Bauer 2001, Lemma 23.1 - p. 135]). As
QualAccRunspAq is equal to g´1

pt1uq, it is measurable.

4.1.3 Almost-Surely Accepted Trees. Proposition 38 shows that the following
definition is well-founded.

A tree t is (almost-surely) accepted by A with the classical (resp. qualitative)
semantics if almost all runs of A on t are accepting (resp. qualitatively accepting),
i.e. µtpAccRunspAqq “ 1 (resp. µtpQualAccRunspAqq “ 1). We denote by L“1

pAq

(resp. L“1
QualpAqq the set of trees accepted by A with the classical (resp. qualitative)

semantics for runs. More formally, we define L“1
pAq “ tt | µtpAccRunspAqq “ 1u

and L“1
QualpAq “ tt | µtpQualAccRunspAqq “ 1u.

Remark 39. Our motivation for considering almost-sure acceptation and not
positive acceptation is discussed in Section 4.5.

The following easy lemma is used later to prove Proposition 42 and Proposi-
tion 43.

Lemma 40. Let p⌦,F , µq be a probability space and f be a measurable function
from ⌦ to r0, 1s then

≥
⌦ fdµ “ 1 if and only if µpf´1

pt1uqq “ 1.

Proof. As f is bounded, measurability implies integrability. Consider the inte-
grable mapping g “ 1´ f . Clearly

≥
⌦ fdµ “ 1 if and only if

≥
⌦ gdµ “ 0. By [Bauer

2001, Theorem 13.2 - p. 71],
≥
⌦ gdµ “ 0 if and only if g´1

pt0uq has measure 1. The
announced equivalence follows.
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Remark 41. The definition of [Baier and Größer 2005] (for !-words) allows
for incomplete automata ( i.e. for all q P Q, the sum

∞
q1PQ �pq, a, q1

q “ 1 or 0).
However it is easy to verify that every automaton can be rendered complete without
changing the acceptance condition and the measure of acceptation. Remark that
removing all states q such that

∞
q1,q2PQ �pq, a, q1, q2q “ 0 does not change the mea-

sure of the set of accepting runs (either in the classical or qualitative sense). By
iteratively applying this process, we obtain an equivalent complete automata.

Combining Lemma 36 and Lemma 40, we can show that the almost-sure accep-
tation of a tree t by an automaton A for the qualitative semantics can be defined
by integrating the mapping fA.

Proposition 42. Let A be a probabilistic tree automaton with an !-regular ac-
ceptance condition and let t be a tree. Then we have:

t P L“1
QualpAq ô

ª
fAdµt b µ “ 1

Proof. As fA is measurable (Lemma 36), by Tonelli’s theorem [Bauer 2001,
Theorem 23.6 - p. 138], the mapping g : Runs Ñ r0, 1s associating to a run ⇢ P Runs
the value

≥
Br fAp⇢, ¨qdµ is measurable.

t belongs to L“1
QualpAq

iff µtpg´1
pt1uqq “ 1

iff
≥
Runs g dµt “ 1 by Lemma 40

iff
≥
Runs

≥
Br fAdµdµt “ 1 by definition of g

iff
≥
RunsˆBr fAdµt b µ “ 1 by Tonelli’s theorem

[Bauer 2001, Theorem 23.6 - p. 138]

4.1.4 Examples. We conclude this section with examples of languages accepted
by probabilistic tree automata.

For an !-word language L Ñ ta, bu
!, we denote by Path“1

pLq the set of trees
labeled by ta, bu with almost all their branch labels in L (i.e. µpt⇡ P Br | tp⇡q P

Luq “ 1). It is easy to see that, for any !-regular language L, the tree language
Path“1

pLq is a qualitative tree language.
More interestingly, if L is almost-surely accepted by a probabilistic !-word au-

tomaton6 with an !-regular acceptance condition, we can show that Path“1
pLq is

accepted by a probabilistic tree automaton (with the qualitative semantics).

Proposition 43. Given a probabilistic !-word automaton B with an !-regular
acceptance condition, there exists a probabilistic tree automaton A with the same
acceptance condition such that L“1

QualpAq is equal to Path“1
pL“1

pBqq.

Proof. Let B “ xA,Q, qini, �,Accy be a (complete) probabilistic !-word au-
tomaton with an !-regular condition. Consider the probabilistic tree automaton A

6In the context of this article, probabilistic !-word automata are simply probabilistic tree au-
tomata running over unary trees. For such an automaton B, we denote by L“1pBq the language
almost-surely accepted by B.
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simulating B on all branches. Formally A is equal to xA,Q, qini, �1, F y where, for
all p, q P Q and x P A, �1

pp, x, q, qq “ �pp, x, qq.
Let t be a tree and let g : Br fiÑ r0, 1s be the mapping associating to a branch ⇡

the value
≥
fAp¨,⇡qdµt. We have the following claim.

Claim 44. For any ⇡ P Br, gp⇡q “ 1 if and only if tp⇡q belongs to L“1
pBq.

Proof of Claim 44. Let ⇡ “ a1a2 ¨ ¨ ¨ P Br and let w “ tp⇡q. It is enough to show
that: gp⇡q “

≥
fAp¨,⇡qdµt is equal to µwpAccRunspBqq. By definition

≥
fAp¨,⇡qdµt

is equal to µtpAccRuns⇡pAqq where µtpAccRuns⇡pAqq is the set of runs ⇢ of A such
that ⇢p⇡q is accepting.

Consider the mapping  : RunspAq Ñ RunspBq associating to a run ⇢ of A the
corresponding run ⇢p"q⇢pa1q ¨ ¨ ¨ of B. We claim that  is measurable and that µw

is the image of µt under  . This claim in particular implies that:

µwpAccRunspBqq “ µtp ´1
pAccRunspBqq

“ µtpAccRuns⇡pAqq

“
≥
fAp¨,⇡q dµt

To substantiate our claim, it is enough to show that  ´1
pCylp�qq is a measurable

subset of RunspAq such that µtp ´1
pCylp�qqq “ µwpCylp�qq. The first part implies

that  is measurable and the second that the image measure of µt under  , denoted
 pµtq, coincide with µw on the cylinders. By Carathéodory’s unique extension
theorem, this in turn implies that µw and  pµtq coincide.

Let � “ q0 . . . qn be a partial run of B. Consider the partial balanced run ⌘ of A
defined for i P r0, n ´ 1s by ⌘pa1 ¨ ¨ ¨ ai´10q “ ⌘pa1 ¨ ¨ ¨ ai´11q “ qi. It is clear that
 ´1

pCylp�qq “ Cylp⌘q. Moreover we have:

µtpCylp⌘qq “
±

jPr0,n´1s �
1
pqj , tpa1 ¨ ¨ ¨ ajq, qj`1, qj`1q

“
±

jPr0,n´1s �pqj , tpa1 ¨ ¨ ¨ ajq, qj`1q

“ µwpCylp�qq

Proof of Claim 44
We are now ready to conclude:

t P L“1
QualpAq

ô
≥
fAdµt b µ “ 1 Proposition 42

ô
≥
gdµ “ 1 Tonelli’s Theorem

ô gp⇡q “ 1 almost everywhere Lemma 40
ô µpt⇡ | tp⇡q P L“1

pBquq “ 1 Claim 44
ô t P Path“1

pL“1
pBqq

4.2 Acceptance Game for Qualitative Probabilistic Tree Automata
Fix a probabilistic tree automaton A “ xA,Q, qini, �,Accy and a tree t. We define
an infinite Markov chain MA,t “ pGA,t,OAccq such that MA,t almost-surely fulfils
its objective iff t belongs to L“1

QualpAq. Compared with the acceptance game for
qualitative tree automata, the transition is no longer chosen by Éloïse: it is now
randomly chosen with the probability distribution given by A. Hence, this is why
we simply obtain a Markov chain instead of an MDP.
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The arena GA,t is equal to xS, sini, ⇣y where S “ Q ˆ t0, 1u
˚

Y � ˆ t0, 1u
˚ with

� “ Q ˆ Q ˆ Q, sini “ pqini, "q and ⇣ : S fiÑ DpSq is defined as follows. For all w P

t0, 1u
˚ and all q P Q, ⇣ppq, wqqppq, q0, q1qq “ �pq, tpwq, q0, q1q for all q0, q1 P Q and is

equal to 0 otherwise. For all w P t0, 1u
˚ and q0, q1 P Q, ⇣pppq, q0, q1q, wq, pq0, w0q “

⇣pppq, q0, q1q, wq, pq1, w1qq “
1
2 and 0 otherwise. Recall that µMA,t denotes the

probability measure associated to MA,t.
Note that a trace in MA,t can be uniquely represented by an infinite sequence

ppp0, q00 , q
1
0q, a0qppp1, q01 , q

0
1q, a1q . . . labeled by � ˆ t0, 1u such that p0 “ qini and for

all i • 0, pi`1 “ qai
i . The objective OAcc is defined as the set of those traces

ppp0, q00 , q
1
0q, a0qppp1, q01 , q

0
1q, a1q . . . such that p0p1 . . . belongs to Acc.

Proposition 45. Let A be a probabilistic tree automaton with an !-regular ac-
ceptance condition and let t be a tree. We have t P L“1

QualpAq iff MA,t almost-surely
fulfils its objective.

Proof. Let AccPairspAq “ tp⇢,⇡q | ⇢p⇡q P Accu Ñ Runs ˆ Br. By Propo-
sition 42, to establish the desired equivalence, it is sufficient to show that µt b

µpAccPairspAqq “ µMA,tpOAccq.
Consider the mapping  : RunsˆBr fiÑ Traces associating with a pair p⇢, a0a1 . . .q

the trace p⇢p"q, ⇢p0q, ⇢p1qqa0p⇢pa0q, ⇢pa00q, ⇢pa01qqa1 . . . of the Markov chain. It is
clear that AccPairspAq “  ´1

pOAccq.
We claim that  is measurable and that µMA,t is the image of µt b µ under  .

In particular this implies that µMA,tpOAccq “ µt b µpAccPairspAqq.
To substantiate our claim, it is enough to show, for any partial trace ✓, that

 ´1
pCylp✓qq is a measurable subset of Runs ˆ Br such that µt b µp ´1

pCylp✓qqq “

µMA,tpCylp✓qq. The first part implies that  is measurable and the second that the
image measure of µt b µ under  , denoted  pµt b µq, coincide with µMA,t on the
cylinders. By Carathéodory’s unique extension theorem, this in turn implies that
µMA,t and  pµt b µq coincide.

Let ✓ “ pp0, q00 , q
1
0qa0 . . . an´1ppn, q0n, q

1
nq be a partial trace. Take w “ a0 . . . an´1

and � the (non balanced) partial run of A defined for all i P r0, ns by �pa0 ¨ ¨ ¨ ai´1q “

pi, �pa0 ¨ ¨ ¨ ai´10q “ q0i and �pa0 . . . ai´11q “ q1i . We have  ´1
pCylp✓qq “ Cylp�q ˆ

Cylpwq. By definition µtpCylp�qq is equal to
±

0§i§n´1 �ppi, tpa0 ¨ ¨ ¨ ai´1q, q0i , q
1
i q

and hence

µt b µp ´1
pCylp✓qqq “

1

2n

π

0§i§n´1

�ppi, tpa0 ¨ ¨ ¨ ai´1q, q0i , q
1
i q

“

π

0§i§n´1

1

2
�ppi, tpa0 ¨ ¨ ¨ ai´1q, q0i , q

1
i q

“ µMA,tpCylp✓qq

4.3 Decidability and Undecidability Results
In this section, we show that the emptiness problem for probabilistic Büchi tree
automata is decidable for the qualitative semantics for runs. We reduce this prob-
lem to deciding almost-surely winning in a POMDP, and the reduction works for
any !-regular acceptance condition. However, the corresponding decision prob-
lem on POMDPs is only decidable for the Büchi condition. Hence we only obtain
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decidability in the Büchi case.
Let A “ xA,Q, qini, �,Accy be a probabilistic automaton with an !-regular ac-

ceptance condition and let � “ Q ˆ Q ˆ Q.
Define a POMDP GA “ pG,„,Oq as follows. The arena G is equal to xS, sini, A, ⇣y

where S “ Qˆt0, 1,Kuˆp�YtKuq, sini “ pq0,K,Kq and ⇣ is defined as follows. For
all a P A and pp, x, tq P S, ⇣ppp, x, tq, aq is the distribution that assigns 1

2�pp, a, q0, q1q

to pqy, y, pp, q0, q1qq where y “ 0, 1 and 0 to all other state. The objective O is the
set of plays for which the sequence of states obtained when projecting on the first
component belongs to Acc. The equivalence „ is defined by pq, x, tq „ pq1, x1, t1

q iff
x “ x1.Intuitively in GA, Éloïse describes a branch along a tree and Random builds
a piece of run along this branch. As Éloïse does not observe the state in the run
constructed by Random, it does not influence her choice for the branch.

Theorem 46. Let A be a probabilistic tree automaton with an !-regular accep-
tance condition. The language L“1

QualpAq is non-empty if and only if Éloïse almost-
surely wins in GA.

Proof. From the definitions, we easily remark that tr�s„ | � P Playsu is in
bijection with “ t0, 1u

˚. Hence, strategies are in bijection with A-labeled trees.
Once such a strategy 't (seen as a tree t) is fixed, the resulting Markov chain is, up
to renaming, GA,t, meaning that the value of 't is the value of GA,t. In particular,
Éloïse almost-surely wins in GA iff there is some t such that ValpGA,tq “ 1 iff
t P L“1

QualpAq (thanks to Proposition 45).

For the Büchi acceptance condition, this leads a decidability result for the empti-
ness problem.

Corollary 47. Let A be a probabilistic Büchi tree automaton. Deciding empti-
ness of L“1

QualpAq is an ExpTime-complete problem. Moreover, if L“1
QualpAq ‰ H,

it contains a regular tree.

Proof. The ExpTime upper-bound follows from the polynomial time reduction
to deciding almost-surely winning in a Büchi POMDP. The lower bound follows
from Proposition 43: emptiness of probabilistic Büchi !-word automata with the
almost-sure acceptation (which is ExpTime-complete [Baier et al. 2008; Baier
et al. 2012]) can be reduced to our problem. Indeed, if B is a probabilistic Büchi
!-word automaton we can construct a probabilistic Büchi tree automaton A of
linear size (cf. Proposition 43) such that L“1

QualpAq is equal to Path“1
pL“1

pBqq and
in particular L“1

QualpAq is empty if and only if L“1
pBq is empty.

The proof of Theorem 46 together with the fact that a finite memory opti-
mal strategy always exists in POMDP imply the existence of a regular tree when
L“1
QualpAq ‰ H.

On the negative side, we show that the emptiness problem for probabilistic co-
Büchi tree automata is undecidable for both the classical and qualitative semantics
for runs. These results are obtained by reduction to the undecidability of the
emptiness problem for co-Büchi !-word automata with the almost-sure acceptation
[Baier et al. 2008].

Theorem 48. The following problems are undecidable :
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(1 ) given a probabilistic co-Büchi tree automaton A, decide if L“1
pAq “ H,

(2 ) given a probabilistic co-Büchi tree automaton A, decide if L“1
QualpAq “ H.

Proof. Both undecidability results are shown by reduction to the undecidability
of the emptiness problem for co-Büchi !-word automata (with the almost-sure
acceptation).

Let B “ xA “ ta, bu, Q, qini, �, F y be a probabilistic co-Büchi !-word automaton.

(1) We construct a probabilistic co-Büchi tree automaton A which simulates B on
the left-most branch of the tree and checks that all other branches contain only
a. Formally A is equal to xA,Q Y tqa,qKu, qini, �1, F Y tqKuy. The probability
distribution �1 is given by:

$
’’&

’’%

�1
pqa, a, qa, qaq “ 1

�1
pqa, b, qK, qKq “ 1

�1
pqK, x, qK, qKq “ 1 for any x P A

�1
pp, x, q, qaq “ �pp, x, qq for any x P A and any p,q P Q

In all other cases, �1 is equal to 0.
We claim that a tree t belongs to L“1

pAq if and only if for all u R 0˚, tpuq “ a
and tp0!q P L“1

pBq. In particular L“1
pAq is empty if and only if L“1

pBq is
empty.
Let t be a tree accepted by L“1

pAq. Toward a contradiction assume that for
some u R 0˚, tpuq “ b. All accepting runs ⇢ P AccRunspAq are such that
⇢puq “ qa. In other terms, AccRunspAq is included in the set t⇢ P RunspAq |

⇢puq “ qau which has a null measure for µt. Hence µtpAccRunspAqq “ 0 which
brings the contradiction.
We denote by w the !-word over A corresponding to the left-most branch of
t (i.e. w “ tp0!q). Consider the mapping p from AccRunspAq to AccRunspBq

associating with a run ⇢ P RunspAq the run ⇢p0!q.
For all partial run � “ q0q1 . . . of B, p´1

pCylp�qq is a finite union of cylinders
corresponding to the (balanced) partial runs of A of depth |�| which coincide
with � on their left-most branch. All these cylinders have measure 0 excepted
the one corresponding to the partial run ⌘ defined by ⌘puq “ q|u| for u P 0§|�|

and ⌘puq “ qa otherwise. By construction of A, µwpCylp�qq “ µtpCylp⌘qq “

µtpp´1
pCylp�qq. This implies that p is measurable and that the image of µt

under p is equal to µw using Carathéodory’s unique extension theorem.
The other direction admits a similar proof.

(2) The case of qualitative semantics directly follows from Proposition 43. Indeed,
let A be a probabilistic co-Büchi tree automaton such that L“1

QualpAq is equal
to Path“1

pL“1
pBqq. Then L“1

QualpAq is empty if and only if L“1
pBq is empty.

4.4 Comparison with Regular Tree Languages and with Qualitative Tree Languages
We now discuss expressiveness. First, we exhibit a family of tree languages that
are accepted by a co-Büchi probabilistic automaton but that are neither regular
tree languages nor qualitative tree languages. On the other hand, we give an
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example of a qualitative tree language that no probabilistic automaton (regardless
of its semantics) can accept and another example of a regular tree language that
no probabilistic automaton (regardless of its semantics) can accept. Hence, this
proves incomparability of probabilistic tree languages with both qualitative and
regular tree languages.

For the first result, we consider, for all 0 † � † 1, the !-word language L� over
ta, bu defined by

L� “ tak1bak2b . . . | k1, k2, . . . ° 0 s.t.
8π

i“1

p1 ´ �kiq ° 0u

In [Baier et al. 2008], L� is shown to be almost-surely accepted by a co-Büchi
probabilistic automaton (actually they show that L� is positively accepted by a
Büchi automaton hence, as previously remarked in the introduction, is accepted by
a co-Büchi probabilistic automaton). Therefore, by Proposition 43, Path“1

pL�q is
a co-Büchi probabilistic qualitative tree language.

Proposition 49. For all 0 † � † 1, Path“1
pL�q is neither a regular tree lan-

guage nor a qualitative tree language.

Proof. Let 0 † � † 1. We will show that Path“1
pL�q does not contain any

regular tree. Hence, thanks to Theorem 2 it is not a regular tree language and
thanks to Corollary 18 it is not a qualitative tree language.

Toward a contradiction, assume that L� contains a regular tree t0. Consider the
Markov chain M whose arena G is given by pS, sini, ⇣q. The set of states S is the
finite set of subtrees of t. The initial state sini is t0. The transition function ⇣ is
defined for all t P S by ⇣ptqptr0sq “ ⇣ptqptr1sq “

1
2 and 0 otherwise. Clearly there

exists a measure preserving bijection between the traces of M and the branchs of
t0.

To define the objective of the M, consider the mapping  for S to ta, bu as-
sociating to a state t the label of its root tp"q. This mapping can canonically be
extended to associate a trace of M an !-word over ta, bu. The objective O of M
is the set of traces whose image under  belongs to L�.

As t0 belongs to Path“1
pL�q, M almost-surely fulfils its objective.

We claim that there exists some k ° 0 such that the following event has a strictly
positive probability: "The Markov chain from its current state reaches a state t with
 ptq “ b and in less that k steps another state t1 with  pt1

q “ b."
Indeed, as t0 belongs to Path“1

pL�q, for all t P S there exists u Ñ v such that
tpuq “ tpvq “ b. Hence, it suffices to take k to be the maximum over all t of the
minimum of |v| ´ |u| over all u Ñ v such that tpuq “ tpvq “ b.

By Borel-Cantelli lemma, this event occurs infinitely often along a trace with
probability 1. In particular, this implies that with probability 1 for a trace ✓ with
 p✓q “ ak1bak2b . . . | k1, k2, . . . ° 0 there are infinitely many ki’s which are equal
to k1

§ k. Hence  p✓q does not belongs to L� (as for all n ° 0,
±8

i“1p1 ´ �kiq §

p1 ´ �k
1
q
n). This contradicts the fact that M fulfils its objective with probability

1.

Remark 50. Using the correspondence with POMDP introduced in Theorem 46,
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any co-Büchi automaton accepting Path“1
pL�q gives rise to an example of a co-

Büchi POMDP GA in which Éloïse needs infinite memory to almost-surely win.

We now give an example of a qualitative tree language that no probabilistic tree
automaton can accept. For this we consider the language L

0_1
a of ta, bu-labelled

trees such that either the left subtree or the right subtree of the root belongs to
the language La of example 7 (recall that La is the language of ta, bu-labelled
trees whose set of branches containing at least one a has measure 1). Formally
L
0_1
a “ tt | tr0s P La or tr1s P Lau. One easily verifies that L0_1

a is a qualitative tree
language. However, L0_1

a cannot be recognised by a probabilistic tree automaton.

Proposition 51. The language L
0_1
a cannot be recognised by a probabilistic tree

automaton (regardless of its semantics).

Proof. By contradiction assume that there is some probabilistic parity tree
automaton A “ xta, bu, Q, qini, �,Coly such that L

0_1
a “ L“1

QualpAq (the proof going
exactly the same for the case where L0_1

a “ L“1
pAq we omit it). Let ta (resp. tb) be

the tree whose nodes are all labeled by a (resp. b), i.e. tapuq “ a (resp. tbpuq “ b)
for all node u P t0, 1u

˚. Now let t0 be the tree defined by t0p"q “ b, t0r0s “ ta
and t0r1s “ tb; and t1 be the tree defined by t1p"q “ b, t1r0s “ tb and t1r1s “ ta.
Obviously, both t0 and t1 belong to L

0_1
a “ L“1

QualpAq.
For any state q P Q, let Aq “ xta, bu, Q, q, �,Coly be the automaton obtained from

A by changing its initial state to be q. Then one easily checks that a tree t belongs
to L“1

QualpAq if and only if for all pq0, q1q P Q2 such that �pqini, tp"q, q0, q1q ° 0 one
has tr0s P L“1

QualpAq0q and tr1s P L“1
QualpAq1q.

Now, for any pq0, q1q P Q2 such that �pqini, b, q0, q1q ° 0 one has that tb P

L“1
QualpAq0q (because of t1 P L“1

QualpAq) and tb P L“1
QualpAq1q (because of t0 P

L“1
QualpAq). Therefore the tree t defined by tp"q “ b and tr0s “ tr1s “ tb belongs to

L“1
QualpAq, which leads a contradiction as t “ tb and tb R L

0_1
a “ L“1

QualpAq.

We now give an example of a regular tree language that no probabilistic tree
automaton can accept. For this, let ta (resp. tb) be the tree whose nodes are all
labeled by a (resp. b), i.e. tapuq “ a (resp. tbpuq “ b) for all node u P t0, 1u

˚. Let
t0 be the tree defined by t0p"q “ b, t0r0s “ ta and t0r1s “ tb; and t1 be the tree
defined by t1p"q “ b, t1r0s “ tb and t1r1s “ ta. Finally let L0_1 “ tt0, t1u: it is a
regular tree language as it consists of two regular trees. However, L0_1 cannot be
recognised by a probabilistic tree automaton.

Proposition 52. The language L0_1 cannot be recognised by a probabilistic tree
automaton (regardless of its semantics).

Proof. One reasons by contradiction exactly as for Proposition 51 and concludes
similarly that if there is a probabilistic automaton accepting L0_1 then it also
accepts tree tb R L0_1, which leads a contradiction.

4.5 Variants
A natural variant is to replace the almost-sure acceptance condition on the set
of runs by the probable one. That is a tree t is probably accepted by A if
µtpAccRunspAqq ° 0.
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Combining the conditions on the set of runs – almost-sure (“1) and probable
(°0) – with the one on the set of accepting branches – qualitative (Qual) and
positive (Pos) – we obtain four semantics for probabilistic tree automata denoted
by p°0,Qualq, p°0,Posq, p“1,Qualq and p“1,Posq where the first component
corresponds to the requirement on the set of accepting runs and the second to the
requirement on the set of accepting branches of a run.

In Section 4, we mainly dealt with p“1,Qualq-probabilistic automata which have
a tight link with POMDP for the almost-sure winning condition (cf. Theorem 46).
It can be shown that p°0,Posq-probabilistic automata share the same connection
with POMDP with the positive winning condition. It implies that the emptiness
problem for the p°0,Posq-probabilistic automata with a co-Büchi acceptance con-
dition is ExpTime-complete.

When the two conditions are not of the same nature (as for the p°0,Qualq and
p“1,Posq semantics), we were unable to define a proper acceptance game.

We now briefly discuss properties of p°0,Posq-probabilistic automata. If A is
a probabilistic tree automaton with an !-regular acceptance condition, we denote
by QualAccRuns°0

pAq the set of positively accepting runs of A and by L°0
PospAq

the set of trees accepted by A with p°0,Posq-semantics. The proposition below
(similar to Proposition 38) justifies of the definition of L°0

PospAq.

Proposition 53. For all probabilistic tree automata A with an !-regular accep-
tance condition the set QualAccRuns°0

pAq is measurable.

Proof. From Lemma 36 we have that AccPairspAq “ tp⇢,⇡q | ⇢p⇡q P Accu “

f´1
A pt1uq is measurable in the product space. Hence the numerical function g :
Runs Ñ r0, 1s associating to a run ⇢ the measure of its set of accepting branches
(i.e. µpAccPairspAq⇢q where AccPairspAq⇢ “ t� P Br | ⇢p�q P Accu) is measurable
(cf. [Bauer 2001, Lemma 23.1 - p. 135]). As QualAccRuns°0

pAq is equal to
g´1

ps0, 1sq, it is measurable.

The following proposition is an adaptation of Proposition 42 to the setting of
p°0,Posq-probabilistic automata.

Proposition 54. Let A be a probabilistic tree automaton with an !-regular ac-
ceptance condition and let t be a tree. We have

t P L°0
PospAq ô

ª
fAdµt b µ ° 0

Proof. As fA is measurable (Lemma 36), by Tonelli’s theorem [Bauer 2001,
Theorem 23.6 - p. 138], the mapping g : Runs Ñ r0, 1s associating to a run ⇢ P Runs
the value

≥
Br fAp⇢, ¨qdµ is measurable.

t belongs to L°0
PospAq

iff µtpg´1
pts0, 1suqq ° 0

iff
≥
Runs g dµt ° 0 By [Bauer 2001, Thm 13.2 - p. 71]

iff
≥
Runs

≥
Br fAdµdµt ° 0 by definition of g

iff
≥
RunsˆBr fAdµt b µ ° 0 by Tonelli’s theorem

[Bauer 2001, Theorem 23.6 - p. 138]
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Similarly to Proposition 43, we obtain a connection with !-word languages.
For an !-word language L Ñ ta, bu

!, we denote by Path°0
pLq the set of trees

labeled by ta, bu with a positive set of branch labels in L (i.e. µpt⇡ P Br | tp⇡q P

Luq ° 0). In the following statement, for a probabilistic word automaton B, we
denote by L°0

pBq the language positively-accepted by B.

Proposition 55. Given a probabilistic !-word automaton B with an !-regular
acceptance condition, there exists a probabilistic tree automaton A with the same
acceptance condition such that L°0

PospAq is equal to Path°0
pL°0

pBqq.

Proof. Let B “ xA,Q, qini, �,Accy be a (complete) probabilistic !-word au-
tomaton with an !-regular condition. Consider the probabilistic tree automaton A

simulating B on all branches. Formally A is equal to xA,Q, qini, �1, F y where, for
all p, q P Q and x P A, �1

pp, x, q, qq “ �pp, x, qq.
Let t be a tree and let g : Br fiÑ r0, 1s be the mapping associating to a branch

⇡ the value
≥
fAp¨,⇡qdµt. We have the following claim whose proof is identical to

that of Claim 44 in Proposition 43.

Claim 56. For any ⇡ P Br, gp⇡q ° 0 if and only if tp⇡q belongs to L°0
pBq.

We are now ready to conclude:

t P L°0
PospAq

ô
≥
fAdµt b µ ° 0 Proposition 54

ô
≥
gdµ “ 1 Tonelli’s Theorem

ô gp⇡q ° 0 on a non-null set rBauer2001, Theorem 13.2 ´ p. 71s

ô µpt⇡ | tp⇡q P L°0
pBquq ° 0 Claim 56

ô t P Path°0
pL°0

pBqq

We can also transfer the results on the acceptance game (Proposition 45 and
Theorem 46).

Proposition 57. Let A be a probabilistic tree automaton with an !-regular ac-
ceptance condition and let t be a tree. We have t P L°0

PospAq iff MA,t positively
fulfils its objective.

Proof. Let AccPairspAq “ tp⇢,⇡q | ⇢p⇡q P Accu. By Proposition 54, to estab-
lish the desired equivalence, it is sufficient to show that µt b µpAccPairspAqq “

µMA,tpOAccq. The latter was done already in the proof of Proposition 45.

Theorem 58. Let A be a probabilistic tree automaton with an !-regular accep-
tance condition. The language L°0

PospAq is non-empty if and only if Éloïse positively
wins in GA.

Proof. The proof only differs from the one of Theorem 46 in its conclusion.
Namely, Éloïse positively wins in GA iff there is some t such that ValpGA,tq ° 0 iff
t P L°0

PospAq (thanks to Proposition 57).

If we consider a co-Büchi acceptance condition, this leads a decidability result
for the emptiness problem (which is a dual version of Corollary 47).
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Corollary 59. Let A be a probabilistic co-Büchi tree automaton. Deciding
emptiness of L°0

PospAq is an ExpTime-complete problem. Moreover, if L°0
PospAq ‰

H, it contains a regular tree.

Proof. The ExpTime upper-bound follows from the polynomial time reduction
to deciding positive winning in a co-Büchi POMDP. The proof of Theorem 58
together with the fact that a finite memory positively winning strategy always
exists in POMDP imply the existence of a regular tree when L°0

PospAq ‰ H.
The lower bound can be establish as for Corollary 47 by reduction of the empti-

ness problem of probabilistic co-Büchi !-word automata with the probable seman-
tics (which is ExpTime-complete [Baier et al. 2008; Baier et al. 2012]). For
this one first establishes a dual version of Proposition 43 and then concludes as in
Corollary 47.

Finally, as a dual version of Theorem 48, we show that the emptiness problem
for a Büchi acceptance condition is undecidable.

Theorem 60. The following problem is undecidable : given a probabilistic Büchi
tree automaton A, decide if L°0

PospAq “ H.

Proof. The proof proceeds by reduction to the undecidability of the emptiness
problem for Büchi !-word automata (with the positive acceptation).

Let B “ xA “ ta, bu, Q, qini, �, F y be a probabilistic Büchi !-word automaton.
By Proposition 55, we can construct a probabilistic Büchi tree automaton A such
that:

L°0
PospAq “ Path°0

pL°0
pBqq.

In particular L°0
PospAq is empty if and only if L°0

pBq is empty as well, which allows
us to conclude.

We terminate this Section with Table I that summarises the (un)decidability
results and open questions on the emptiness problem for the different types of
probabilistic semantics that we considered.

L“1pAq L“1
QualpAq L°0

PospAq L“1
PospAq /

L°0
QualpAq

Büchi Open ExpTime-
complete

(Corollary 47)

Undecidable
(Theorem 60)

Open

co-Büchi Undecidable
(Theorem 48)

Undecidable
(Theorem 48)

ExpTime-
complete

(Corollary 59)

Open

Table I. Decidability status of the emptiness problem for the different types of probabilistic se-
mantics.
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5. CONCLUSION
The first main contribution of this paper was to introduce new acceptance criteria
for non-deterministic automata on infinite trees: qualitative and positive accep-
tance. Both criteria define (incomparable) classes of languages with desirable clo-
sure and decidability properties (in particular a polynomial time emptiness test).
In addition, it leads to a tight connection with (finite) Markov decision processes
in a similar flavour as regular tree automata do with two-player games.

The second main contribution was to define suitable notions of probabilistic au-
tomata. In particular we showed that for Büchi p“1,Qualq-probabilistic automata
as well as co-Büchi p°0,Posq-probabilistic automata emptiness is an ExpTime-
complete problem.

Unsurprisingly, there remain several open questions. Some of them are purely
theoretical (mainly regading expressiveness and decidability status of the emptiness
problem for some variants) but the most pressing one concerns potential applica-
tions of this work. A quick answer to this latter challenge is to rely on the tight
connection between qualitative tree languages and Markov decision processes as
exposed in Section 3.5. As these two objects are essentially the same one seen from
two different perspectives (the qualitative tree languages being a sort of unfolding
of a finite MDP) one can for instance rely on the modelling work made using MDP
(see e.g. [Baier and Katoen 2008, Chapter 10] for many valuable examples) to ar-
gue that qualitative tree languages are equally useful for such a purpose. However,
the setting of MDP seems simpler for modelling purpose as it is closer to real sys-
tems. Concerning the probabilistic setting, it is not clear yet what are the potential
applications. Due to their incomparability with both regular and qualitative tree
languages, we cannot simply extend existing applications. But this is also encour-
aging as it suggest potentially new applications. The hard part being that it mixes
(for the qualitative semantics) two orthogonal notions of measure: the one on the
run and the one the branches; if the one on branches has a simple interpretation
(one looks at all possible executions of a system) the one on runs is more tricky to
interpret (in a sense it speaks of all output of a machine processing the unfolding
of a system).
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