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Abstract. We study algebraic synchronization trees, i.e., initial solu-
tions of algebraic recursion schemes over the continuous categorical alge-
bra of synchronization trees. In particular, we investigate the relative ex-
pressive power of algebraic recursion schemes over two signatures, which
are based on those for Basic CCS and Basic Process Algebra, as a means
for defining synchronization trees up to isomorphism as well as modulo
bisimilarity and language equivalence. The expressiveness of algebraic re-
cursion schemes is also compared to that of the low levels in the Caucal
hierarchy.

1 Introduction

The study of recursive program schemes is one of the classic topics in program-
ming language semantics. (See, e.g., [4,16,20,27] for some of the early references.)
In this paper, we study recursion schemes from a
process-algebraic perspective and investigate the expres-
sive power of algebraic recursion schemes over the sig-
natures of Basic CCS [24] and of Basic Process Algebra
(BPA) [3] as a way of defining possibly infinite synchro-
nization trees [23], which are essentially edge-labelled
trees with a distinguished exit label ex. As depicted here,
this exit label can only occur on edges whose target is
a leaf. Both these signatures allow one to describe every
finite synchronization tree and include a binary choice
operator +. The difference between them is that the sig-
nature for Basic CCS, which is denoted by Γ in this pa-
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per, contains a unary action prefixing operation a. for each action a, whereas
the signature for BPA, which we denote by ∆, has one constant a for each ac-
tion that may label the edge of a synchronization tree and offers a full-blown
sequential composition, or sequential product, operator. Intuitively, the sequen-
tial product t · t′ of two synchronization trees is obtained by appending a copy
of t′ to the leaves of t that describe successful termination of a computation. In
order to distinguish successful and unsuccessful termination, both the signatures
Γ and ∆ contain constants 0 and 1, which denote unsuccessful and successful
termination, respectively. An example of a regular recursion scheme over the
signature ∆ is

X = (X · a) + a, (1)

and an example of an algebraic recursion scheme over the signature Γ is

F1 = F2(a.1), F2(v) = v + F2(a.v). (2)

The synchronization tree defined by these two schemes is depicted on page 1. In
the setting of process algebras such as CCS [24] and ACP [3], synchronization
trees are a classic model of process behaviour. They arise as unfoldings of labelled
transition systems (LTSs) that describe the operational semantics of process
terms and have been used to give denotational semantics to process description
languages—see, for instance, [1]. Regular synchronization trees over the signature
Γ are unfoldings of processes that can be described in the regular fragment of
CCS, which is obtained by adding to the signature Γ a facility for the recursive
definition of processes. On the other hand, regular synchronization trees over the
signature ∆ are unfoldings of processes that can be described in Basic Process
Algebra (BPA) [3] augmented with constants for the deadlocked and the empty
process as well as recursive definitions. For example, the tree that is defined by
(1) is ∆-regular.

As is well known, the collection of regular synchronization trees over the
signature ∆ strictly includes that of regular synchronization trees over the sig-
nature Γ even up to language equivalence. Therefore, the notion of regularity
depends on the signature. But what is the expressiveness of algebraic recursion
schemes over the signatures Γ and ∆? The aim of this paper is to begin the anal-
ysis of the expressive power of those recursion schemes as a means for defining
synchronization trees, and their bisimulation or language equivalence classes.

In order to characterize the expressive power of algebraic recursion schemes
defining synchronization trees, we interpret such schemes in continuous cate-
gorical Γ - and ∆-algebras of synchronization trees. Continuous categorical Σ-
algebras are a categorical generalization of the classic notion of continuous Σ-
algebra that underlies the work on algebraic semantics [19,20], and have been
used in [8,9,17] to give semantics to recursion schemes over synchronization trees
and words. (We refer the interested reader to [21] for a recent discussion of
category-theoretic approaches to the solution of recursion schemes.) In this set-
ting, the Γ -regular (respectively, Γ -algebraic) synchronization trees are those
that are initial solutions of regular (respectively, algebraic) recursion schemes
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over the signature Γ . ∆-regular and ∆-algebraic synchronization trees are de-
fined in similar fashion.

Our first contribution in the paper is therefore to provide a categorical se-
mantics for first-order recursion schemes that define processes, whose behaviour
is represented by synchronization trees. The use of continuous categorical Σ-
algebras allows us to deal with arbitrary first-order recursion schemes; there is
no need to restrict oneself to, say, ‘guarded’ recursion schemes, as one is forced
to do when using a metric semantics (see, for instance, [10] for a tutorial intro-
duction to metric semantics), and this categorical approach to giving semantics
to first-order recursion schemes can be applied even when the order-theoretic
framework either fails because of the lack of a ‘natural’ order or leads to unde-
sirable identities.

As a second contribution, we provide a comparison of the expressive power
of regular and algebraic recursion schemes over the signatures Γ and ∆, as a
formalism for defining processes described by their associated synchronization
trees up to isomorphism, bisimilarity [24,26] and language equivalence. More-
over, we compare the expressiveness of those recursion schemes to that of the
low levels in the Caucal hierarchy. (As a benefit of the comparison with the
Caucal hierarchy, we obtain structural properties and decidability of Monadic
Second-Order Logic [29].) In the setting of language equivalence, the notion of
Γ -regularity corresponds to the regular languages, the one of ∆-regularity cor-
responds to the context-free languages and ∆-algebraicity corresponds to the
macro languages [18], which coincide with the languages generated by Aho’s
indexed grammars [2]. We present a pictorial summary4 of our expressiveness
results on Figure 1. Moreover, we prove that the synchronization tree that is the
unfolding of the bag (also known as multiset) over a binary alphabet depicted
on Figure 2 is not Γ -algebraic, even up to language equivalence, and that it is
not ∆-algebraic up to bisimilarity. These results are a strengthening of a classic
theorem from the literature on process algebra proved by Bergstra and Klop
in [5].

In order to obtain a deeper understanding of Γ -algebraic recursion schemes,
as a final main contribution of the paper, we characterize their expressive power
by following the lead of Courcelle [15,16]. In those references, Courcelle proved
that a term tree is algebraic if, and only if, its branch language is a determinis-
tic context-free language. In our setting, we associate with each synchronization
tree with bounded branching a family of branch languages and we show that a
synchronization tree with bounded branching is Γ -algebraic if, and only if, the
family of branch languages associated with it contains a deterministic context-
free language (Theorem 2). In conjunction with standard tools from formal lan-
guage theory, this result can be used to show that certain synchronization trees
are not Γ -algebraic.

4 In the version of this article published in the proceedings of ICALP 2012, Figure 1
incorrectly equates Graph

1
and Tree1 up to isomorphism. The trees in Tree1 are the

regular trees of finite degree whereas the trees in Graph
1
are the regular trees of

possibly infinite degree.
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Fig. 1. The expressiveness hierarchies up to language equivalence (a), up to bisimilarity
(b) and up to isomorphism (c)

The paper is organized as follows. In Section 2, we recall the notion of con-
tinuous categorical Σ-algebra. Synchronization trees are defined in Section 3,
together with the signatures Γ and ∆ that contain the operations on those trees
that we use in this paper. We introduce regular and algebraic recursion schemes,
as well as their initial solutions, in Section 4. Section 5 studies the expressive
power of regular and algebraic recursion schemes over the signatures Γ and
∆. In Section 6, following Courcelle, we characterize the expressive power of Γ -
algebraic recursion schemes by studying the branch languages of synchronization
trees whose vertices have bounded outdegree.

2 Continuous Categorical Algebras

In this section, we recall the notion of continuous categorical Σ-algebra. Contin-
uous categorical Σ-algebras were used in [8,9,17] to give semantics to recursion
schemes over synchronization trees and words.

Let Σ =
⋃
n≥0 Σn be a ranked set (or ‘signature’). A categorical Σ-algebra is

a small category A equipped with a functor σA : An → A for each σ ∈ Σn, n ≥ 0.
A morphism between categorical Σ-algebras A and B is a functor h : A → B

such that, for each σ ∈ Σn, the diagram

Bn B
σB

//

An

Bn

hn

��

An A
σA

// A

B

h

��
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commutes up to a natural isomorphism πσ. Here, the functor hn : An → Bn

maps each object and morphism (x1, . . . , xn) in An to (h(x1), . . . , h(xn)) in Bn.
A morphism h is strict if, for all σ ∈ Σ, the natural isomorphism πσ is the
identity.

Suppose that A is a categorical Σ-algebra. We call A continuous if A has a
distinguished initial object (denoted ⊥A or 0A) and colimits of all ω-diagrams
(fk : ak → ak+1)k≥0. Moreover, each functor σA is continuous, i.e., preserves

colimits of ω-diagrams. Thus, if σ ∈ Σ2, say, and if x0
f0
→ x1

f1
→ x2

f2
→ . . . and

y0
g0
→ y1

g1
→ y2

g2
→ . . . are ω-diagrams in A with colimits (xk

φk

→ x)k and (yk
ψk

→ y)k,
respectively, then

σA(x0, y0)
σA(f0,g0)

→ σA(x1, y1)
σA(f1,g1)

→ σA(x2, y2)
σA(f2,g2)

→ . . .

has colimit (σA(xk, yk)
σA(φk,ψk)

→ σA(x, y))k.
A morphism of continuous categorical Σ-algebras is a categorical Σ-algebra

morphism that preserves the distinguished initial object and colimits of all ω-
diagrams. Below we will often write just σ for σA, in particular when A is
understood.

For later use, we note that if A and B are continuous categorical Σ-algebras
then so is A×B. Moreover, for each k ≥ 0, the category [Ak → A] of all continu-
ous functors Ak → A is also a continuous categorical Σ-algebra, where, for each

σ ∈ Σn, σ
[Ak→A](f1, . . . , fn) = σA ◦ 〈f1, . . . , fn〉, with 〈f1, . . . , fn〉 standing for

the target tupling of the continuous functors f1, . . . , fn : Ak → A. On natural

transformations, σ[Ak→A] is defined in a similar fashion. In [Ak → A], colimits
of ω-diagrams are formed pointwise.

3 Synchronization Trees

A synchronization tree t = (V, v0, E, l) over an alphabet A of ‘action symbols’
consists of a finite or countably infinite set V of ‘vertices’ and an element v0 ∈ V

(the ‘root’), a set E ⊆ V × V of “edges” and a ‘labelling function’ l : E →
A∪ {ex}. These data obey the following restrictions.

– (V, v0, E) is a rooted tree: for each u ∈ V , there is a unique path v0 ❀ u.
– If e = (u, v) ∈ E and l(e) = ex, then v is a leaf, and u is called an exit vertex.

A morphism φ : t → t′ of synchronization trees is a function V → V ′ that
preserves the root, the edges and the labels, so that if (u, v) is an edge of t, then
(φ(u), φ(v)) is an edge of t′, and l′(φ(u), φ(v)) = l(u, v). Morphisms are therefore
functional simulations [22,26]. It is clear that the trees and tree morphisms form
a category. The tree that has a single vertex and no edges is initial. It is known
that the category of trees has colimits of all ω-diagrams, see [7]. (It also has
binary coproducts.) In order to make the category of trees small, we may require
that the vertices of a tree form a subset of some fixed infinite set.
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The category ST(A) of synchronization trees over A is equipped with two
binary operations: + (sum) and · (sequential product or sequential composition),
and either with a unary operation or a constant associated with each letter a ∈ A.

The sum t + t′ of two trees is obtained by taking the disjoint union of the
vertices of t and t′ and identifying the roots. The edges and labelling are inher-
ited. The sequential product t · t′ of two trees is obtained by replacing each edge
of t labelled ex by a copy of t′. With each letter a ∈ A, we can either associate
a constant, or a unary prefixing operation. As a constant, a denotes the tree
with vertices v0, v1, v2 and two edges: the edge (v0, v1), labelled a, and the edge
(v1, v2), labelled ex. As an operation, a(t) is the tree a · t, for any tree t. Let
0 denote the tree with no edges and 1 the tree with a single edge labelled ex.
On morphisms, all operations are defined in the expected way. For example, if
h : t → t′ and h′ : s → s′, then h+ h′ is the morphism that agrees with h on the
nonroot vertices of t and that agrees with h′ on the nonroot vertices of s. The
root of t+ s is mapped to the root of t′ + s′.

In the sequel we will consider two signatures for synchronization trees, Γ and
∆. The signature Γ contains +, 0, 1 and each letter a ∈ A as a unary symbol.
In contrast, ∆ contains +, ·, 0, 1 and each letter a ∈ A as a nullary symbol. It is
known that, for both signatures, ST(A) is a continuous categorical algebra. See
[7] for details.

Two synchronization trees t = (V, v0, E, l) and t′ = (V ′, v′0, E
′, l′) are bisim-

ilar or bisimulation equivalent [24,26] if there is some symmetric relation R ⊆
(V × V ′) ∪ (V ′ × V ) that relates their roots, and such that if (v1, v2) ∈ R and
there is some edge (v1, v

′
1), then there is an equally-labelled edge (v2, v

′
2) with

(v′1, v
′
2) ∈ R. The path language of a synchronization tree is composed of the

words in A∗ that label a path from the root to the source of an exit edge. Two
trees are language equivalent if they have the same path language.

4 Algebraic Objects and Functors

When n is a non-negative integer, we denote the set {1, . . . , n} by [n].

Definition 1. Let Σ be a signature. A Σ-recursion scheme, or recursion scheme
over Σ, is a sequence E of equations

F1(v1, . . . , vk1) = t1, . . . , Fn(v1, . . . , vkn) = tn,

where each ti is a term over the signature ΣΦ = Σ∪Φ in the variables v1, . . . , vki ,
and Φ contains the symbols Fi (sometimes called ‘functor variables’) of rank ki,
i ∈ [n]. A Σ-recursion scheme is regular if ki = 0, for each i ∈ [n].

Suppose that A is a continuous categorical Σ-algebra, and consider a Σ-recursion
scheme of the form given above. Define

Ar(Φ) = [Ak1 → A]× · · · × [Akn → A].

Then Ar(Φ) is a continuous categorical Σ-algebra, as noted in Section 2.
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When each Fi, i ∈ [n], is interpreted as a continuous functor fi : A
ki → A,

each term over the extended signature ΣΦ = Σ ∪ Φ in the variables v1, . . . , vm
induces a continuous functor Am → A that we denote by tA(f1, . . . , fn). In
fact, tA is a continuous functor tA : Ar(Φ) → [Am → A]. More precisely, we
define tA as follows. Let fi, gi denote continuous functors Aki → A, i ∈ [n],
and let αi be a natural transformation fi → gi for each i ∈ [n]. When t is the
variable vi, say, then tA(f1, . . . , fn) is the ith projection functor Am → A, and
tA(α1, . . . , αn) is the identity natural transformation corresponding to this pro-
jection functor. Suppose now that t is of the form σ(t1, . . . , tk), where σ ∈ Σk and
t1, . . . , tk are terms. Then tA(f1, . . . , fn) = σA◦〈h1, . . . , hk〉 and tA(α1, . . . , αn) =
σA ◦ 〈β1, . . . , βk〉, where hj = tAj (f1, . . . , fn) and βj = tAj (α1, . . . , αn) for all
j ∈ [k]. (Here, we use the same notation for a functor and the corresponding
identity natural transformation.) Finally, when t is of the form Fi(t1, . . . , tki),
then tA(f1, . . . , fn) = fi ◦ 〈h1, . . . , hki〉, and the corresponding natural transfor-
mation is αi ◦ 〈β1, . . . , βki〉, where the hj and βj , j ∈ [ki], are defined similarly
as above.

Note that if each αi : fi → fi is an identity natural transformation (so that
fi = gi, for all i ∈ [n]), then tA(α1, . . . , αn) is the identity natural transformation
tA(f1, . . . , fn) → tA(f1, . . . , fn).

In any continuous categorical Σ-algebra A, by target-tupling the functors tAi ,
we obtain a continuous functor

EA : Ar(Φ) → Ar(Φ).

Indeed, we have that tAi : Ar(Φ) → [Aki → A], for i ∈ [n], so that

EA = 〈tA1 , . . . , t
A
n 〉 : A

r(Φ) → Ar(Φ).

Thus, EA has an initial fixed point in Ar(Φ), unique up to natural isomorphism,
that we denote by

|EA| = (|E|A1 , . . . , |E|An ),

so that, in particular, |E|Ai = tAi (|E|A1 , . . . , |E|An ), at least up to isomorphism, for
each i ∈ [n].

Definition 2. Suppose that A is a continuous categorical Σ-algebra. We say
that f : Am → A is Σ-algebraic, if there is a recursion scheme E such that f is
isomorphic to |E|A1 , the first component of the above-mentioned initial solution
of E. When m = 0, we identify a Σ-algebraic functor with a Σ-algebraic object.
Last, a Σ-regular object is an object isomorphic to the first component of the
initial solution of a Σ-regular recursion scheme.

In particular, we get the notions of Γ -algebraic and Γ -regular trees, and ∆-
algebraic and ∆-regular trees.

Example 1. The ∆-regular recursion scheme (1) and the Γ -algebraic one (2)
have the infinitely branching tree

∑
i≥1 a

i depicted on page 1 as their initial
solutions. That tree is therefore both ∆-regular and Γ -algebraic. So ∆-regular
and Γ -algebraic recursion schemes can be used to define infinitely branching
trees that have an infinite number of subtrees, even up to language equivalence.
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5 Comparing the Expressiveness of Classes of Recursion

Schemes

In this section, we interpret recursion schemes over the continuous categorical
algebra ST(A), viewed either as a Γ -algebra or as a ∆-algebra, and study the
expressive power of classes of recursion schemes over the signatures Γ and∆. It is
clear that every Γ -regular tree is∆-regular and that the inclusion is proper, since
every Γ -regular tree has, up to isomorphism, only a finite number of subtrees,
see [7,23], while there exist ∆-regular and Γ -algebraic trees that do not have
this property (see Example 1). The strict inclusion also holds with respect to
strong bisimulation equivalence or language equivalence. It is well-known that
the languages of synchronization trees defined by Γ -regular schemes are the
regular languages. On the other hand, modulo language equivalence, ∆-regular
schemes are nothing but context-free grammars and have the same expressive
power as Γ -algebraic schemes (see Theorem 1(1) and (4) below).

The ∆-regular trees that can be defined using regular ∆-recursion schemes
that do not contain occurrences of the constants 0 and 1 correspond to un-
foldings of the labelled transition systems denoted by terms in Basic Process
Algebra (BPA) with recursion, see, for instance, [3,5]. Indeed, the signature of
BPA contains one constant symbol a for each action as well as the binary + and
· operation symbols, denoting nondeterministic choice and sequential composi-
tion, respectively. (Below, we write BPA for ‘BPA with recursion’.) Alternatively,
following [25], one may view BPA as the class of labelled transition systems as-
sociated with context-free grammars in Greibach normal form in which only
leftmost derivations are permitted. The class of Basic Parallel Processes (BPP)
is a parallel counterpart of BPA introduced by Christensen [14]. We refer the
interested readers to [25] for the details of the formal definitions, which are not
needed to appreciate the results to follow, and further pointers to the literature.

In the results to follow, we will compare the expressiveness of recursion
schemes to that of the low levels in the Caucal hierarchy [12]. For the sake
of completeness, following [11], we recall that Tree0 and Graph0 denote the col-
lections of finite, edge-labelled trees and graphs, respectively. Moreover, for each
n ≥ 0, Treen+1 stands for the collection of unfoldings of graphs in Graphn, and
the graphs in Graphn+1 are those that can be obtained from the trees in Treen+1

by applying a monadic interpretation (or transduction). It is well known that
Graph1 is the class of all prefix-recognizable graphs [13].

The following theorem collects our main results on the expressiveness of
recursion schemes over the signatures ∆ and Γ . A pictorial summary of all our
expressiveness results may be found on Figure 1. All the inclusions on that figure
are strict, with the possible exception of the inclusion of the collection of the ∆-
algebraic trees in Graph3 up to bisimilarity and up to isomorphism. To the best
of our knowledge, it is open whether those inclusions are strict. The fact that
the path language of every synchronization tree in Tree3 (respectively, Tree2)
is an indexed language (respectively, context-free language) is known from [11,
Theorem 4].
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Theorem 1.

1. Every ∆-regular tree is Γ -algebraic.
2. There is a Γ -algebraic synchronization tree that is not bisimilar to any ∆-

regular tree. Moreover, there is a Γ -algebraic synchronization tree that is
neither definable in BPA modulo bisimilarity nor in BPP modulo language
equivalence.

3. Each synchronization tree in Tree2 is Γ -algebraic, but there is a ∆-regular
(and hence Γ -algebraic) synchronization tree that is not in Tree2.

4. Every Γ -algebraic synchronization tree is bisimilar to a tree in Tree2. There-
fore, modulo bisimilarity, the Γ -algebraic synchronization trees coincide with
those in Tree2. Moreover, each Γ -algebraic synchronization tree is language
equivalent to a ∆-regular one.

5. Each ∆-algebraic synchronization tree is in Graph3 and hence has a decidable
monadic second-order theory. Moreover, there is a ∆-algebraic synchroniza-
tion tree that does not belong to Tree3.

6. The synchronization tree tbag associated with the bag over a binary alphabet
depicted on Figure 2 has an undecidable monadic second-order theory (even
without the root being the source of an exit edge). Hence, it is not in the
Caucal hierarchy and is therefore not ∆-algebraic, even up to bisimilarity.
Moreover, tbag is not Γ -algebraic up to language equivalence.

7. There exists a Γ -algebraic synchronization tree whose minimization with re-
spect to bisimilarity does not have a decidable monadic second-order theory
and hence is not in the Caucal hierarchy.
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Fig. 2. An LTS whose unfolding is not a ∆-algebraic synchronization tree

Statement 6 in the above theorem is a strengthening of a classic result from
the literature on process algebra proved by Bergstra and Klop in [5]. Indeed,
in Theorem 4.1 in [5], Bergstra and Klop showed that the bag over a domain
of values that contains at least two elements is not expressible in BPA, and the
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collection of synchronization trees that are expressible in BPA is strictly included
in the ∆-algebraic synchronization trees.

Thomas showed in [28, Theorem 10] that the monadic second-order theory
of the infinite two-dimensional grid is undecidable. However, we cannot use that
result to prove that the synchronization tree tbag has an undecidable monadic
second-order theory. Indeed, the unfolding of the infinite two-dimensional grid
is the full binary tree, which has a decidable monadic second-order theory.

Finally, we remark that Theorem 1(7) yields that the collection of synchro-
nization trees in the Caucal hierarchy is not closed under quotients with respect
to bisimilarity. Indeed, there is a Γ -algebraic tree whose quotient with respect
to bisimilarity is not in the Caucal hierarchy. Nevertheless the result is sort of
folklore.

6 Branch Languages of Bounded Synchronization Trees

Call a synchronization tree bounded if there is a constant k such that the
outdegree of each vertex is at most k. Our aim in this section is to offer a
language-theoretic characterization of the expressive power of Γ -algebraic re-
cursion schemes defining synchronization trees. We shall do so by following
Courcelle—see, e.g., [16]—and studying the branch languages of bounded syn-
chronization trees. More precisely, we assign a family of branch languages to each
bounded synchronization tree over an alphabet A and show that a bounded tree
is Γ -algebraic if, and only if, the corresponding language family contains a de-
terministic context-free language (DCFL). Throughout this section, we will call
Γ -algebraic trees just algebraic trees, and similarly for regular trees.

Definition 3. Suppose that t = (V, v0, E, l) is a bounded synchronization tree
over the alphabet A. Denote by k the maximum of the outdegrees of the ver-
tices of t. Let B denote the alphabet A × [k]. A determinization of t is a tree
t′ = (V, v0, E, l′) over the alphabet B which differs from t only in the labelling
as follows. Suppose that v ∈ V with outgoing edges (v, v1), . . . , (v, vℓ) labelled
a1, . . . , aℓ ∈ A ∪ {ex} in t. Then there is some permutation π of the set [ℓ] such
that the label of each (v, vi) in t′ is (ai, π(i)).

Consider a determinization t′ of t. Let v ∈ V and let v0, v1, . . . , vm = v

denote the vertices on the unique path from the root to v. The branch word
corresponding to v in t′ is the alternating word

k0(a1, i1)k1 . . . km−1(am, im)km

where k0, . . . , km denote the outdegrees of the vertices v0, . . . , vm, and for each
j ∈ [m], (aj , ij) is the label of the edge (vj−1, vj) in t′. The branch language
L(t′) corresponding to a determinization t′ of t consists of all the branch words
of t′. Finally, the family of branch languages corresponding to t is:

L(t) = {L(t′) : t′ is a determinization of t}.
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By way of example, consider the LTS depicted in Figure 2. The synchro-
nization tree tbag that is obtained by unfolding this LTS from its start state is
bounded. In fact, the outdegree of each non-leaf node is three. The branch words
corresponding to the nodes of any determinization of the tree tbag have the form

3(a1, i1)3 . . . 3(am, im)km,

where km is either 3 or 0, i1, . . . , im ∈ [3] and a1 . . . am is a word with the
property that, in any of its prefixes, the number of occurrences of the letter a

is greater than, or equal to, the number of occurrences of the letter b, and the
number of occurrences of the letter c is greater than, or equal to, the number
of occurrences of the letter d. Moreover, for each j ∈ [m], aj = ex if and only if
j = m and km = 0. (Note that, when am = ex, the number of a’s in a1 . . . am−1

equals the number of b’s, and similarly for c and d.)

Theorem 2.

1. A bounded synchronization tree t is algebraic (respectively, regular) if, and
only if, L(t) contains a DCFL (respectively, regular language).

2. The bounded synchronization trees in Tree2 are the bounded Γ -algebraic syn-
chronization trees.

Using statement 2 in the above theorem, we can show that Figure 1(b) also
applies for bounded synchronization trees.

The language-theoretic characterization of the class of bounded algebraic
synchronization trees offered in Theorem 2 can be used to prove that certain
trees are not algebraic. For example, consider the following ∆-algebraic scheme:

F0 = F (1), F (v) = a · F (b · v) + v · c · v · 0.

Given any determinization of the synchronization tree t defined by this scheme,
the non-context-free language {anbncbn : n ≥ 0} is a homomorphic image of
the intersection of its branch language with a regular language. Thus t is not
Γ -algebraic.
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