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Abstract

We study the encoding of λ[], the call by name λ-calculus enriched with McCarthy’s
amb operator, into the π-calculus. Semantically, amb is a challenging operator,
for the fairness constraints that it expresses. We prove that, under a certain in-
terpretation of divergence in the λ-calculus (weak divergence), a faithful encoding
is impossible. However, with a different interpretation of divergence (strong diver-
gence), the encoding is possible, and for this case we derive results and coinductive
proof methods to reason about λ[] that are similar to those for the encoding of pure
λ-calculi. We then use these methods to derive the most important laws concerning
amb. We take bisimilarity as behavioural equivalence on the π-calculus, which sheds
some light on the relationship between fairness and bisimilarity. As a spin-off result,
we show that there is no small-step operational semantics for λ[] that preserves the
branching structure of terms and yields the correct predicates of convergence and
(weak) divergence.

1 Introduction

The operator of ambiguous choice, amb, was first introduced in [McC63], to
describe a form of composition of (partial) functions that is liable to return
one among several results. [McC63] describes amb by giving its main prop-
erties. The two most important properties have to do with fairness. One
property says that amb is bottom-avoiding, meaning that the composition of
a function with a function that is undefined should return the result of the
former function. The other important property says that amb behaves as

c©2017 Published by Elsevier Science B. V.



Carayol, Hirschkoff, Sangiorgi

a non-deterministic choice whenever the results computed by the functions
being composed are both defined: either of them may be returned, in an un-
predictable way. The usefulness for an operator having the properties of amb
has come to light for the specification of systems, in particular operating sys-
tems, essentially because a form of fair non-determinism is required to merge
incoming messages (see [Hen82,Tur90], and also [HO90], that studies amb and
other nondeterministic operators with respect to this issue). The main rea-
son, however, for our interest in amb is that, semantically, 40 years later, amb
remains a very challenging operator [Las98,Mor98,LM99,Pit01,FK02].

The difficulties introduced by amb are clear in λ[], the call-by-name λ-
calculus enriched with the binary operator 8 that is a ‘realisation’ of Mc-
Carthy’s amb. The two standard approaches to obtaining semantics and anal-
ysis techniques for λ-calculi are the denotational and the operational ones.
The former is based on domain theory; in the latter, applicative bisimilarity
is exploited to reason about contextual equivalence. The problem for denota-
tional analyses is that amb is not continuous (see [Mor98] for a discussion).
The operational approach has been followed by Moran, Lassen and Pitcher,
in a series of works [Las98,Mor98,LM99,Pit01]. The problem of proving con-
gruence of applicative bisimilarity (or a similar coinductively defined relation,
that coincides with or at least gives a good approximation of contextual equiv-
alence) is however still open for λ[]. The usual technique for proving congruence
of applicative bisimilarity in λ-calculi is Howe’s [How96], but this technique
does not seem to work in presence of amb [LM99]. Therefore, to prove a set
of characteristic laws of amb, some ‘partial’ proof techniques have been devel-
oped, in particular in [Mor98,LM99] (these techniques are partial in the sense
that, taken separately, none of them can be used to derive all the laws – see
also Section 5). It would be very hard and tedious to prove the laws following
the definition of contextual equivalence, due to its heavy quantification on
contexts.

In the present paper, we explore an alternative way to give the seman-
tics of λ[], via an encoding into the (asynchronous) π-calculus. There were
various reasons for carrying out this study. The first reason is the quest
for proof methods to reason about languages like λ[] that contain operators
expressing fairness constraints. The problem of encoding the λ-calculus (as
well as parallel and nondeterministic extensions of it) into the π-calculus has
been extensively studied – see e.g. [Mil90,San92,BL00,SW01]. In the case of
the call-by-name λ-calculus, for example, the π-calculus semantics induces an
equivalence on λ-terms that coincides with the classical Lévy-Longo Tree se-
mantics [SW01], which shows an agreement between the π-calculus semantics
and standard denotational analyses of the call-by-name λ-calculus. Moreover,
bisimulation is the canonical equivalence in the π-calculus, and comes with a
well-developed theory, as well as powerful proof techniques that alleviate the
task of building bisimulation proofs. One can therefore hope that working in
the π-calculus can help in defining useful bisimulation-based techniques for λ[].
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A second motivation for this study is expressiveness. The π-calculus has
been shown to be a very powerful formalism. We want to understand whether,
and under which conditions, the π-calculus can encode an operator as sophis-
ticated as amb. We are not aware of other attempts at encoding into the
π-calculus operators that express fairness constraints.

Another motivation is the question of fairness in the π-calculus. While the
standard SOS rules of the π-calculus make no reference to fairness, the use
of bisimulation or of similar semantical equivalences introduces this kind of
property. The definition of a semantics for a fair operator like amb is a way to
gain a better understanding of this issue. To illustrate this point, consider the
π-calculus term τω | a, where τω represents a process that can perform infinitely
many internal actions, a is an output at a without value exchange, and “|”
is the operator of parallel composition. Under bisimulation equivalence, as
opposed to, say, testing equivalence, this process is deemed the same as the
process a. One way of interpreting this equality is to say that bisimilarity
ignores divergence. However, another way of looking at the equality is to
say that bisimilarity encompasses some fairness: under a fair implementation
of parallel composition, the left component τω cannot always prevail, hence
eventually the action a on the right-hand side will be executed. It is precisely
this second – and usually neglected – interpretation of bisimilarity that we
are addressing, trying to understand its significance on a non-trivial concrete
example.

When studying non-deterministic operators like amb, contextual equiva-
lence is defined by observing the ability for two terms, in any context, to
exhibit convergences and divergences. Two kinds of divergences can be distin-
guished (see e.g. [NC95]): a computation in which convergence is impossible
is a strong divergence, while a weak divergence corresponds to an infinite com-
putation along which the possibility to converge to a value is never lost. Both
forms of divergence arise in λ[]: first notice that Ω, the usual always diverging
term, is strongly divergent. To give an example of a weak divergence, we use
the operator of internal choice, ⊕, that can be encoded in λ[] as follows:

M ⊕ N
def
= (KM 8KN) I ,

K and I being the usual combinators for selection and identity. By definition
of λ[], M ⊕ N can nondeterministically evolve to M or N . Now consider the
term

T
def
= Fix λx. (x⊕ I)

(where Fix is defined as AA, with A
def
= λxy. y (x x y)). Because of the ‘erratic’

nature of internal choice, T exhibits a weak divergence, along which conver-
gence to I is repeatedly discarded. In the operational studies of amb in the
literature, strong and weak divergences are not distinguished. In this paper,
in contrast, we separate the case in which both strong and weak divergences
count from the case in which only strong divergences count. Interestingly, the
difference between strong and weak divergence does not affect the character-
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istic laws of amb: we refer here to a set of laws that capture amb’s essential
properties (these laws are studied for example in [Mor98]) – as mentioned
above, the original specification of amb [McC63] is given at a very high level
by describing its behavioural properties.

The semantics of amb is very challenging also in the π-calculus. Indeed we
prove that, under the usual (i.e., weak) interpretation of divergence in λ[], a
faithful encoding into the π-calculus is impossible. By ‘faithful’ we mean that
the encoding should be sound and should mimic the behaviour of λ[] terms, at
least as far as divergence and reduction to values are concerned. This result
holds for the π-calculus, as well as any extension of π-calculus with finitary
operators.

However, we also show that with the strong interpretation of divergence,
the encoding of λ[] into the π-calculus is possible, and we derive results and
coinductive proof methods to reason about λ[] that are similar to those that
have been developed for the encodings of pure λ-calculi (see [SW01]). We
then use these methods to derive the characteristic laws of McCarthy’s amb.
Using the π-calculus proof techniques, the proof of some of these laws is very
simple, in particular that of the two key laws of amb, the bottom-avoidance
law M 8 Ω ∼=M M , and the law V 8V ′ ∼=M V ⊕ V ′ (where V and V ′ are
λ-abstractions). We also study the extension of λ[] with local call-by-value,
again showing an encoding into the π-calculus and then using the encoding
for deriving algebraic laws of the source calculus.

We have mentioned above that a characterisation of operational equiva-
lence in λ[] as a form of applicative bisimilarity is still an open problem. As a
spin-off result of our study suggests that it might indeed be very hard to ob-
tain such a bisimilarity. The result says that there is no small-step operational
semantics for λ[] that preserves the branching structure of terms and yields the
correct predicates of convergence and divergence. An operational semantics
having these properties is important for defining bisimilarity in languages with
non-determinism like λ[], for bisimulation is based on the branching structure
of terms and to be really useful in practice, in the bisimulation game between
two non-deterministic terms, the challenge should use the small-step seman-
tics.

Outline. After recalling the necessary definitions and results we need about
λ[] and the π-calculus (Section 2), Section 3 presents our semantic framework
for McCarthy’s amb, as well as some results for it that motivate the study
in the following sections. In Sections 4 to 6, we introduce our π-calculus
encoding of λ[], and present a number of applications and developments of it.
We conclude and discuss further research directions in Section 7. Detailed
proofs can be found in [CHS03].
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Beta (λx. M) N � M [N/x]

Lazy
M � M ′

M N � M ′ N
Trans

M � M ′ M ′ � M ′′

M � M ′′

Par
M � M ′ N � N ′

M 8N � M ′ 8N ′
ValL

M � V or M = V

M 8N � V

Fig. 1. Operational semantics for closed terms of λ[]

2 Background

This section contains background material. (However it also contains some
novel results: a new semantics for λ[] and some new up-to proof techniques for
coupled simulation.)

2.1 The λ-calculus with Ambiguous Choice

We suppose we have an infinite set of variables, ranged over with x, y, . . . .
Terms of λ[], ranged over with M,N, . . . , are given by the following grammar:

M
def
= x | λx.M | M1M2 | M1 8M2 .

Bound and free variables are defined as usual. A closed term is a term that
contains no free variable. Substitution (written M [N/x]) and α-conversion
are defined as usual. We will work up-to α-conversion. Closed values, ranged
over with V, V ′, . . . , are abstractions. A context, ranged over with C,C ′, . . .
is a term containing occurrences of a hole, written [ · ], in it. Given a context
C, C[M ] denotes the term obtained by replacing the hole with a term M in
C. Given M , C is closing if C[M ] is closed, this terminology being extended
to the case where C ‘closes’ several terms.

Here are some λ[] terms, that will be useful below:

I
def
= λx. x Ω

def
= (λx. x x) (λx. x x)

K
def
= λx y. x Fix

def
= AA where A

def
= λx y. y (x x y) .

We introduce some notations for relations:

Definition 2.1 (Relations) If R is a binary relation over elements of a set
S, R−1 denotes the inverse of R, while R+ and R∗ denote the transitive (resp.
transitive and reflexive) closures of R. Composition of two relations R and
SS is written RSS, and T Rω stands for the existence of an infinite sequence
of elements of S, T = T0, T1, . . . such that for all i, TiRTi+1.

Following [LM99], we present an operational semantics for closed λ[]-terms.
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Definition 2.2 (�) Relation � is defined on closed terms by the rules of
Figure 2.1, where the symmetrical version of ValL is omitted.

In defining�, we capture the transitive, non-reflexive closure of the underly-
ing reduction relation. In rule Par both components of an amb are allowed to
evolve. Rules ValL, ValR make the choice between components of an amb,
when one of the branches converges.

The λ[]-term I 8 Ω can only reduce to I (using ValL); it cannot diverge
because Par does not apply (remember that � is non-reflexive). If we set

W
def
= Fix λx. x ⊕ I, then the term W 8W can reduce to itself by Par and

therefore diverges; it can also converge to I by either ValL or ValR.

Remark 2.3 The semantics � of Figure 2.1 is new. It coincides with the
semantics  introduced in [Mor98] (see [CHS03]) but is defined directly on
λ[]-terms whereas the definition of  requires the use of decorated terms.

Definition 2.4 (⇓ and ⇑) A term M is convergent, written M ⇓, if there
exists a value V s.t. M � V or M = V . M is divergent, written M ⇑, if
M �ω.

We can remark that by definition of �, a term of the form M 8 I, for any
M , cannot diverge: this observation will be useful in several proofs below.

Definition 2.5 (Observational equivalence, using divergence) M and
N are observationally equivalent, written M ∼=M N , iff for any closing context
C: (C[M ] ⇓ ⇐⇒ C[N ] ⇓) and (C[M ] ⇑ ⇐⇒ C[N ] ⇑) .

2.2 The Asynchronous π-calculus

We suppose that we have an infinite set of names, also called channels, over
which we range with small letters: a, b, . . . , x, y, . . . . For the sake of the Asyn-
chronous π-calculus (in short, Aπ) encoding of Section 4, we shall translate a
λ[] variable using a π-calculus name, and we suppose that there is an injection
from variables to names so that we can keep letter x to refer to the encoding
of a variable x. (Possibly empty) name tuples are ranged over with x̃, ỹ, . . . .
Aπ terms, to which we shall refer simply as processes, are ranged over using
P,Q, . . . , and are defined as follows:

P
def
= 0 | P1|P2 | !P | νx P | x(ỹ).P | x̄〈ỹ〉 .

Our calculus has the inactive process (0), parallel composition, replication,
restriction, the input prefix and asynchronous output. Bound names in pro-
cesses are defined by saying that the input and restriction operators are bind-
ing. Contexts in Aπ are defined along the lines of λ[] contexts.

Late operational semantics for Aπ is introduced as usual. It defines judge-
ments of the form P

µ−→ P ′, where µ is either an input action of the form a(x̃),
a (bound) output action of the form νx̃ ā〈ỹ〉, in which x̃ has a set (instead of
a tuple) structure and all names of x̃ occur in ỹ, or τ , which denotes internal
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computation. We introduce the following notations: ⇒ def
= (

τ−→)∗,
µ̂−→ def

=
τ−→

or = if µ = τ ,
µ̂−→ def

=
µ−→ otherwise, and

µ̂
=⇒ def

= ⇒ µ̂−→⇒.

Structural congruence, ≡, is also defined as usual, to capture some basic
structural properties of processes. It is needed in the statement of the following
result, which will be useful for a proof below:

Proposition 2.6 (
τ−→/≡ is finitely branching) Given a process P , there is,

up to structural congruence, a finite number of processes P ′ such that P
τ−→ P ′.

We shall use the following behavioural relations on processes:

Definition 2.7 (Behavioural equivalences and preorders, ≈,�)

• A binary relation R on processes is a weak simulation if P RQ and

P
µ−→ P ′ imply that there exists Q′ such that Q

µ̂
=⇒ Q′ and P ′RQ′.

• A weak bisimulation is a symmetric weak simulation. Weak bisimilarity,
written ≈, is the greatest weak bisimulation.

• A coupled bisimulation is a pair of simulations (SS1, SS
−1
2 ) such that:

- if P SS1Q then there exists Q′ s.t. Q⇒ Q′ and P SS2Q
′;

- if P SS2Q then there exists P ′ s.t. P ⇒ P ′ and P ′ SS1Q.

Two processes P and Q are coupled bisimilar, written P � Q, if there exists
a coupled bisimulation (SS1, SS

−1
2 ) such that P SS1Q and P SS2Q.

Coupled bisimulation has been used for the π-calculus e.g. in [NP96].

Definition 2.8 (∼=π) Given a name p, P ⇓p stands for P ⇒ νx̃ p̄〈ỹ〉−−−−→ for some
x̃ and ỹ. P and Q are observationally equivalent, written P ∼=π Q, iff

(for all C and p, C[P ] ⇓p ⇔ C[Q] ⇓p) and (P ⇒≈ 0 ⇔ Q ⇒≈ 0) .

The definition of ∼=π follows the pattern of ∼=M in λ[] (Definition 2.5, see also
Definition 3.7 below). In Aπ, observables are output particles, and visible
(strong) divergences, arising from terms that are compelled to diverge, equate
such terms with 0.

Proposition 2.9 (Congruence properties) ≈ and � are congruences in
Aπ.

We have ≈⊆�. Moreover, ≈⊆∼=π and �⊆∼=π, and we shall use both
≈ and � to establish properties of ∼=π. This task will be made easy by the
use of up-to techniques, essentially up to context and up to expansion. Such
techniques are well-known for ≈ ([SW01]). We have proved that they can be
adapted to � (we omit the details for lack of space, see [CHS03]).

3 Equivalence in λ[] Revisited

We now present our semantic framework for McCarthy’s amb operator, includ-
ing the distinction between strong and weak divergence. We study operational
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Fig. 2. Derivations trees of V1 ⊕ (V2 ⊕ V3) and V1 ⊕ (V2 ⊕ V3) 8V4 for �

accounts of λ[], and introduce an equivalence based on strong divergences. We
also show that if also weak divergences are taken into account in the notion
of divergence, then a faithful encoding into the π-calculus is impossible.

3.1 Operational descriptions of amb

Let us examine how amb is described by �. If we consider the terms given
on Figure 3.1 (where the Vis are values), we see that according to �, amb
composition makes trees degenerate and loose their branching structure. Thus,
� misses some choices along λ[] computations. This lack of precision can be
seen as a drawback for defining a bisimulation-based equivalence for λ[], since
such an equivalence usually exploits an accurate analysis of the decisions that
are made along computation. Indeed, bisimulation equivalences are known
to be more discriminating than trace equivalence, intuitively because they are
based on trees and not on single executions (traces). In fact, on all terms of the
form M 8 V , � defines a big step semantics: such a term can only converge
(immediately) to a value. � thus appears to be too imprecise to allow one
to derive a suitable notion of bisimulation. One could then ask whether this
could be improved, by providing a branching preserving presentation of a fair
operational semantics for λ[], in the following sense:

Definition 3.1 (Branching preserving semantics) We say that a rela-
tion ( on λ[] is a branching preserving semantics if for any reduction se-
quence M0 ( . . . ( Mn ( V and any λ[]-term P0, there exists a sequence
(Pi)i∈[0,n] such that M08P0 (+ . . .(+ Mn8Pn.

This definition expresses the fact that the reduction tree of a term is pre-
served when this term is put in parallel with an other term. Standard small
step semantics for a language that can express a form of parallel composition
and nondeterministic choice usually have this property, as a consequence of
their compositional nature. It turns out in this case that imposing this condi-
tion to a sufficiently accurate semantics of λ[] prevents it to rule out forbidden
divergences (according to amb’s specification).

Theorem 3.2 (No small step semantics preserving branching for λ[])
There exists no branching preserving semantics for λ[] that validates rules
Beta and Lazy and induces the same notions of convergence and divergence
as �.

Proof (sketch) Let ( be a branching preserving semantics for λ[]. We de-
fine:

M
def
= Fix (λx. V ′ ⊕ (x ⊕ V )) M ′ def= M ⊕ V ,
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where V and V ′ are values. We have:

M (+ M ′ (+ V and M ′ (+ M (+ V ′ .
This leads to a contradiction, since we may then infer M 8 I (+ M ′ 8 I (+

M 8 I, which authorises a divergence that should be ruled out. 2

This impossibility results therefore suggests that, even if some form of
applicative bisimilarity for λ[] were possible (i.e., definable, and provably a
congruence), it might be of limited practical usefulness.

3.2 Strong vs Weak Divergences

We now study how working within the π-calculus affects the description of
λ[]. By reasoning abstractly about ‘reasonable’ translations, we show that we
cannot encode amb into the π-calculus if we demand to respect divergences
(as defined in Definition 2.4):

Theorem 3.3 (No divergence-faithful encoding) Let m be an equivalence
relation on π-calculus terms containing structural congruence. There does not
exist an encoding [[·]] of λ[] in Aπ such that, for any closed term M :

(i) [[M ]] m [[N ]] ⇒ M ∼=M N (soundness w.r.t. ∼=M);

(ii) [[M ]]
τ−→
ω
⇔ M �ω (divergence faithfulness);

(iii) M � V ⇒ [[M ]]
τ−→

+
m [[V ]] (value preservation).

Proof (sketch) We reason on terms such as

Z
def
= Fixλz. (I 8 (λx. z (λy. x))

The term ZI can converge to λx1 . . . xn. xn, for any n ≥ 1, and cannot
diverge. This entails, using clauses (i) and (iii), that the execution tree (mod-
ulo ≡) of [[Z]] has infinitely many nodes. Using Proposition 2.6, we prove that
this implies that this tree has an infinite branch. By clause (ii), this is in
contradiction with the fact that Z cannot diverge. 2

Remark 3.4 The previous result holds in any finitary (i.e. preserving Propo-
sition 2.6) extension of Aπ. To our knowledge, all extensions of the π-calculus
considered in the literature are finitary, except for those including the operator
of infinite sum.

As illustrated in Section 1, working with bisimulation in Aπ leads us to
distinguish between strong and weak divergences, that are defined as follows:

Definition 3.5 (Strong and weak divergences) Let M be a λ[] term.

- M is strongly divergent, written M �, if M can evolve into a term that
cannot converge;
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- M is weakly divergent if M exhibits an infinite computation along which it
never loses the possibility to converge.

A divergent term (Definition 2.4) is either strongly or weakly divergent, or
both, as is T ⊕ Ω (T is defined in Section 1).

Remark 3.6 The difference between strong and weak divergences already ap-
pears in [NC95]. The authors give a topological argument to show that the
set of weakly divergent computations is ‘small’ in the set of all computations
and therefore can be neglected. It is actually possible to introduce a reasonable
operational semantics for λ[] such that the set of convergent computations and
the set of strongly divergent computations have a non null measure, while the
set of weakly divergent computations has a null measure.

A divergent term (Definition 2.4) is either strongly or weakly divergent, or
both, as is T ⊕ Ω (T is defined in Section 1).

We now adapt Definition 2.5 to focus on strong divergences.

Definition 3.7 (∼=λ) For any M,N , M ∼=λ N if for any closing context C:

(C[M ] ⇓ ⇔ C[N ] ⇓) and (C[M ]� ⇔ C[N ]�) .

Relations ∼=λ and ∼=M (Definition 2.5) are incomparable: as ∼=M is sensitive
to weak divergences, it separates terms that are equated by∼=λ, hence∼=λ 6⊆∼=M.
Conversely, ∼=λ 6⊇∼=M because ∼=M identifies weak and strong divergences. We
have for instance:

I
∼=λ

6∼=M

Fix λx. (x⊕ I)
6∼=λ

∼=M

Ω ⊕ I .

Theorem 3.2 does not hold if only strong divergence counts, see [CHS03].

4 Encoding and soundness

Our encoding, written [[ ]], is defined on Figure 4, and follows the usual en-
codings of the λ-calculus for the operators of application and abstraction. A
λ[]-term M is mapped to a process [[M ]]p, p being a channel where the value
of (the encoding of) M will be passed (cf. the clause for abstraction).

To take 8 into account, we run the encodings of M and N in parallel
at a freshly created location q, and let the (ephemeral) link process q _ p
forward any successfully terminated evaluation on p. Once q _ p has been
triggered by one of the components, the other component is isolated from the
context, either because it tries to interact on the private channel q, or because
it diverges. Modulo ∼=π, this corresponds to what we expect from amb.

Note the extra indirection p′ _ p in the encoding of variables. A similar
indirection is needed in the encoding of call-by-value into (untyped) π-calculus,
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[[λx.M ]]p
def
= νl (p̄〈l〉 | l(x, q).[[M ]]q) [[x]]p

def
= νp′ (x̄〈p′〉 | p′ _ p)

[[M N ]]p
def
= νq

(
[[M ]]q | q(l).

(
νx

(
l̄〈x, p〉 | !x(r).[[N ]]r

)))
[[M8N ]]p

def
= νp′ ([[M ]]p′ | [[N ]]p′ | p′ _ p) where q _ p

def
= q(x).p̄〈x〉

Fig. 3. Encoding of λ[] in the π-calculus

M 8N ∼=λ N 8M (M 8N) 8P ∼=λ M 8 (N 8P )

(λx.M)N ∼=λ M [N/x] M 8 Ω ∼=λ M V ⊕ V ′ ∼=λ V 8V ′

(M ⊕N)⊕ P ∼=λ M ⊕ (N ⊕ P ) M 8M ∼=λ M for M closed

Fig. 4. Some properties of amb

and can be removed using capability types [SW01]. We do not know how to
avoid the indirection in the encoding of Figure 4 using types or other means.

Below is the soundness result for [[ ]]. To prove it, we first establish op-
erational correspondence, where each ↪→ reduction in λ[] is associated (up to
expansion, a behavioural preorder related to weak bisimilarity) to a (non-
empty) sequence of

τ−→ reduction steps in the encoding π-calculus terms.

Theorem 4.1 (Soundness) For any M,N in λ[] and name p, [[M ]]p ∼=π

[[N ]]p implies M ∼=λ N .

5 Deriving characteristic properties of amb

Figure 4 presents a set of characteristic laws of amb we have been able to
establish. The proofs of these results are all based on the same method: we
compute the Aπ encoding of the two λ[]-terms being compared, construct a
(weak or coupled) bisimulation to show (possibly using up-to techniques and
algebraic laws for Aπ) that these processes are related by ∼=π, and conclude
using Theorem 4.1.

We give an illustration of this method for the bottom avoidance property
M 8 Ω ∼=λ M , one of the key fairness properties of amb. We first need a
technical result:

Lemma 5.1 For any term M of λ[] and name p, [[M ]]p ≈ νq ([[M ]]q | q _ p).
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This is now how we show that for any term M , M8Ω ∼=λ M :

[[M8Ω]]p
def
= νq ([[M ]]q | [[Ω]]q | q _ p)

≈ νq ([[M ]]q | q _ p) because [[Ω]]q ≈ 0

≈ [[M ]]p using Lemma 5.1

Along these lines, we prove associativity and commutativity of amb, and
that ∼=λ validates the β rule. We also establish associativity of internal choice
(⊕): it has to be stressed that for this proof, we are compelled to reason with
� (and not ≈), because of the presence of ‘partially committed states’ in the
execution of choices.

We have also established equations like I ∼=λ Fix (λx. (I ⊕ x)), that holds
because we consider only strong divergences (this law is not valid in the setting
of [Mor98,LM99]).

Derived techniques.

We can also use the π-calculus encoding to derive proof techniques similar
to those used in the literature to proof the laws of λ[] [Mor98,LM99]. For in-
stance, below we derive a technique that is similar to the “Kleene equivalence”
technique.

Definition 5.2 (�) For two λ[] terms M and N , M � N iff

(i) if M ↪→+ V , there exists V ′ s.t. N ↪→+ V ′ and, for any p, [[V ]]p � [[V ′]]p;

(ii) M � iff N �.

Proposition 5.3 (Soundness of �) �⊆∼=λ.

Aside the use of π-calculus, the main difference with “Kleene equivalence”
is that, in clause (i), the latter uses syntactic equality to compare V and
V ′, while we can rely on behavioural equivalences (since ≈⊆�, we can also
use ≈ to compare [[V ]]p and [[V ′]]p when treating clause (i) above). As an
example of consequence of this difference, Proposition 5.3 allows us to show
that λx. (x 8 Ω) ∼=λ I, which cannot be proved using the “Kleene equivalence”
technique.

Full abstraction.

As expected, our method is not fully-abstract with respect to ∼=λ (because
we use bisimilarity in the π-calculus whereas ∼=λ is purely contextual; this
situation is standard for encodings of λ-calculi into the π-calculus). We can
however derive a partial full-abstraction result (partial in the sense that we
only compare pure λ-terms), for the ‘open’ version of applicative bisimilarity
(see [SW01, Part VI]). This relation, written ∼=op

λ , is defined by extending
relation � to open terms, and saying that a term having a free variable in

12
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[[λx.M ]]p
def
= νl (p̄〈l〉 | !l(x, q).[[M ]]q)

[[let x=M in N ]]p
def
= νq ([[M ]]q | q(v).([[N ]]p | !x(r).r̄〈v〉))

Fig. 5. π-calculus encoding of λ[] with local call-by-value

head position is stuck. In the following definition, we keep the same notation
� for the extended version of the operational semantics.

Definition 5.4 (Open applicative bisimilarity) ∼=op
λ is the largest sym-

metric relation on λ[] such that, whenever M ∼=op
λ N ,

(i) M � λx.M ′ implies N � λx.N ′ with M ′ ∼=op
λ N ′;

(ii) M � xM1 . . .Mn with n ≥ 0 implies N � xN1 . . . Nn and Mi
∼=op
λ Ni

for all 1 ≤ i ≤ n.

Theorem 5.5 (Partial full abstraction) Let M,N be two pure λ-terms,
and p a name. Then

[[M ]]p ≈ [[N ]]p iff M ∼=op
λ N .

It can be noted that for the λ-calculus extended with internal choice, the
problem of full abstraction on the whole calculus (whether the π-calculus
encoding is fully abstract wrt open applicative bisimilarity) is still open. The
same question in λ[] seems at least as difficult.

6 Local call by value

An important enrichment of λ[] is that with the familiar let. . . in construction,
that introduces a form of local call by value in the language. The corresponding
additional reduction rule is:

Let
M ↪→ V

let x=M in N ↪→ N [V/x]

The encoding of the resulting calculus is obtained by a modification of the
encoding presented above, as shown on Figure 6 (clauses that are left un-
changed are not mentioned). The translation of a let. . . in construct consists
in the evaluation of the locally declared term, followed by the evaluation of
the term after the “in” in which the bound variable is replaced by the com-
puted value. We also add persistence, using replication, in the encoding of
abstractions, since in presence of let. . . in, several copies of a function may be
triggered along a computation.

The results presented in previous sections also holds on λ[] with let. For
instance, soundness becomes:

13
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Theorem 6.1 For any terms M,N of λ[] enriched with local call-by-value,
and for any name p, [[M ]]p ∼=π [[N ]]p implies M ∼=λ N .

Again, using simple bisimulation reasoning, we have derived these example
laws for λ[] with let:

let x=V inM ∼=λ (λx.M)V let x=M in x 8x ∼=λ M for M closed

let x=Ω inM ∼=λ Ω let x=M in N ∼=λ N if M ⇓ and x 6∈ fn(N) .

7 Further results and remarks

In the paper we have distinguished strong and weak divergences, and showed
that only strong divergences should count in order to obtain a semantics to
λ[] using the π-calculus. We think that both resulting semantics – the one
where both strong and weak divergences count, and the one where only strong
divergences count – are interesting. However, one may argue that in languages
with operators like amb, a general fairness requirement that a computation
should not “always miss a reachable value” – obtained by counting only the
strong divergences – appears more reasonable (for instance, a computation
starting from the term T in Section 1 should not always miss the value I).

Parallel operators that have similarities with amb and that have been stud-
ied in λ-calculi are those in [DCdP98] and [Bou94]. These are “parallel”, rather
than “choice” operators, and do not give rise to the issues of fairness that amb
does. Indeed, semantically, these operators are much simpler than amb. (The
encoding into the π-calculus is straightforward, see [SW01].)

In the full paper [CHS03] we discuss a few variants of the π-calculus en-
coding of Section 4. For instance, we discuss why certain simplifications of
the encoding would not allow us to obtain some of the results in Sections 4-6.

Some of the laws we have established express amb’s fairness in Aπ, and in
our setting are derived exploiting bisimulation. It would be interesting to go
further in this direction in order to gain a better understanding of the fairness
brought by bisimulation. A way to do this is to study π-calculus semantics
of other fair operators, like e.g. fair merge, which is more expressive than
amb [PS88,FK02]. This operator computes the merge of two (finite or infinite)
lists in a fair fashion, also in the case when the lists contain divergences.
We have adapted an argument of [PS88] and proved that it is impossible to
represent fair merge into the π-calculus at an operational level; see the full
paper [CHS03]. An interesting question is the definability of fair merge modulo
bisimulation, i.e. at a behavioural level.
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