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Abstract

We study the logical properties of the (parametric) well-
founded fixed point operation. We show that the operation
satisfies several, but not all of the equational properties of
fixed point operations described by the axioms of iteration
theories.

1. Introduction
Fixed points and fixed point operations have been used in
just about all areas of computer science. There has been a
tremendous amount of work on the existence, construction
and logic of fixed point operations. It has been shown that
most fixed point operations, including the least (or greatest)
fixed point operation on monotonic functions over complete
lattices, satisfy the same equational properties. These equa-
tional properties are captured by the notion of iteration the-
ories, or iteration categories, cf. (Bloom and Ésik 1993) or
the recent survey (Ésik 2015a).

In this paper, we study the equational properties of the
well-founded fixed point operation as defined in (Denecker,
Marek, and Truszczyński 2000; 2004; Vennekens, Gilis, and
Denecker 2006) with the aim of relating well-founded fixed
points to iteration categories. We extend the well-founded
fixed point operation to a parametric fixed point (or dagger)
operation (Bloom and Ésik 1993; 1996) over the cartesian
category of approximation function pairs between complete
bilattices and offer an initial analysis of its equational prop-
erties. Our main results show that several identities of iter-
ation theories hold for the well-founded fixed point opera-
tion, but some others fail. For proofs, we refer to (Carayol
and Ésik 2015).

2. Preliminaries
Recall that a complete lattice (Davey and Priestley 1990) is a
partially ordered set L, ordered by ≤, such that each X ⊆ L
has a supremum

∨
X and hence also an infimum

∧
X . In

particular, each complete lattice has a least and a greatest
element, respectively denoted either ⊥ and >, or 0 and 1.
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We say that a function f : L → L over a complete lattice
L is monotonic (anti-monotonic, resp.) if for all x, y ∈ L, if
x ≤ y then f(x) ≤ f(y) (f(x) ≥ f(y), resp.).

A complete bilattice1 (Fitting 2002) (B,≤p,≤t) is
equipped with two partial orders, ≤p and ≤t, both giving
rise to a complete lattice. We will denote the ≤p-least and
greatest elements of a complete bilattice by ⊥ and >, and
the ≤t-least and greatest elements by 0 and 1, respectively.

An example of a complete bilattice is FOUR, which
has 4 elements, ⊥,>, 0, 1. The nontrivial order relations are
given by ⊥ ≤p 0, 1 ≤p > and 0 ≤t ⊥,> ≤t 1.

There are two closely related constructions of a complete
bilattice from a complete lattice. Here we recall one of them.
Suppose that L = (L,≤) is a complete lattice with extremal
(i.e., least and greatest) elements 0 and 1. Then define the
partial orders ≤p and ≤t on L× L as follows:

(x, x′) ≤p (y, y′) ⇔ x ≤ y ∧ x′ ≥ y′

(x, x′) ≤t (y, y′) ⇔ x ≤ y ∧ x′ ≤ y′.

Then L × L is a complete bilattice with ≤p-extremal ele-
ments⊥ = (0, 1) and> = (1, 0), and≤t-extremal elements
0 = (0, 0) and 1 = (1, 1). Note that when L is the 2-element
lattice 2 = {0 ≤ 1}, then L × L is isomorphic to FOUR.
In this paper, we will mainly be concerned with the ordering
≤p.

In any category, we usually denote the composition of
morphisms f : A → B and g : B → C by g ◦ f and
the identity morphisms by idA. We let SET and CL respec-
tively denote the category of sets and functions an the cate-
gory of complete lattices and monotonic functions. Both cat-
egories are cartesian categories with the usual direct prod-
uct A1 × · · · × An (equipped with the pointwise order in
CL) serving as categorical product. The categorical pro-
jection morphisms πA1×···×An

i : A1 × · · · × An → Ai,
i ∈ [n] = {1, . . . , n}, are the usual projection functions.

Products give rise to a tupling operation. Suppose that
fi : C → Ai, i ∈ [n] in a cartesian category. Then there is a
unique f : C → A1 × · · · × An with πA1×···×An

i ◦ f = fi
for all i ∈ [n]. We denote this unique morphism f by
〈f1, . . . , fn〉 and call it the (target) tupling of the fi (or pair-
ing, when n = 2). And when f : C → A and g : D → B,

1Sometimes bilattices are equipped with a negation operation
and the bilattices as defined here are called pre-bilattices.



then we define f × g as the unique morphism h : C ×D →
A×B with πA×B1 ◦h = f◦πC×D1 and πA×B2 ◦h = g◦πC×D2 .

When m,n ≥ 0, ρ is a function [m] → [n] and
A1, . . . , An is a sequence of objects in a cartesian category,
we associate with ρ (and A1, . . . , An) the morphism

ρA1,...,An = 〈πA1×···×An

ρ(1) , . . . , πA1×···×An

ρ(m) 〉

from A1 × · · · × An to Aρ(1) × · · · × Aρ(m) (Note that in
SET and CL, ρA1,...,An maps (x1, . . . , xn) ∈ A1×· · ·×An
to (xρ(1), . . . , xρ(m)) ∈ Aρ(1) × · · · ×Aρ(m).) With a slight
abuse of notation, we usually let ρ denote this morphism
as well. Morphisms of this form are sometimes called base
morphisms. When m = n and ρ is a bijection, then the asso-
ciated morphism A1 × · · · × An → Aρ(1) × · · · × Aρ(n) is
an isomorphism. Its inverse is the morphism associated with
the inverse ρ−1 of the function ρ. For each objectA, the base
morphism associated with the unique function [m] → [1] is
the diagonal morphism ∆A

m = 〈idA, . . . , idA〉 : A → Am,
usually denoted just ∆m.

3. The category CL

The objects of CL are complete lattices. Suppose that A,B
are complete lattices. A morphism from A to B in CL, de-
noted f : A

•→ B, is a≤p-monotonic function f : A×A→
B × B, where A × A and B × B are the complete bilat-
ices determined by A and B. Thus, f = 〈f1, f2〉 such that
f1 : A×A→ B is monotonic in its first argument and anti-
monotonic in the second argument, and f2 : A× A→ B is
anti-monotonic in its first argument and monotonic in its sec-
ond argument. (Such functions f are called approximations
in (Vennekens, Gilis, and Denecker 2006).) Composition is
ordinary function composition and for each complete lattice
A, the identity morphism idA : A

•→ A is the identity func-
tion idA×A = idA × idA = 〈πA×A1 , πA×A2 〉 : A × A →
A×A.

The category CL has finite products. (Actually it has
all products). Indeed, a terminal object T of CL is any 1-
element lattice. Suppose that A1, . . . , An are complete lat-
tices. Then consider the direct product A1 × · · · × An as
an object of CL together with the following morphisms
πA1×···×An
i : A1 × · · · × An

•→ Ai, i ∈ [n]. For each i,
πA1×···×An
i is the functionA1×· · ·×An×A1×· · ·×An →

Ai × Ai defined by πA1×···×An
i (x1, . . . , xn, x

′
1, . . . , x

′
n) =

(xi, x
′
i), so that in SET, πA1×···×An

i can be written as

〈πA1×···×An×A1×···×An
i , πA1×···×An×A1×···×An

n+i 〉 =

= πA1×···×An
i × πA1×···×An

i .

It is easy to see that the morphisms πA1×···×An
i , i ∈ [n],

determine a product diagram in CL. To this end, let f i =

〈f i1, f i2〉 : C
•→ Ai in CL, for all i ∈ [n], so that each

f i is a ≤p-monotonic function C × C → Ai × Ai. Then
let h = 〈h1, h2〉 be the function C × C → A1 × · · · ×
An × A1 × · · · × An, where h1 = 〈f11 , . . . , fn1 〉 and h2 =
〈f12 , . . . , fn2 〉. Thus, h1 and h2 are functions C×C → A1×
· · · × An. The tupling of any sequence of morphisms f i =

〈f i1, f i2〉 : C
•→ Ai in CL is h = 〈h1, h2〉. We will denote it

by 〈〈f1, . . . , fn〉〉 : C
•→ A1 × · · · ×An.

Proposition 1 CL is a cartesian category in which the
product of any objects A1, . . . , An agrees with their prod-
uct in CL.

For further use, we note the following. Suppose that ρ :
[m] → [n] and A1, . . . , An are complete lattices. Then the
associated morphism ρA1,...,An : A1×· · ·×An

•→ Aρ(1)×
· · · ×Aρ(m) in CL is the function

A1 × · · · ×An ×A1 × · · · ×An →
Aρ(1) × · · · ×Aρ(m) ×Aρ(1) × · · · ×Aρ(m)

given by
(x1, . . . , xn, x

′
1, . . . , x

′
n) 7→

(xρ(1), . . . , xρ(m), x
′
ρ(1), . . . , x

′
ρ(m)).

Thus, ρA1,...,An = ρA1,...,An × ρA1,...,An , where ρA1,...,An

is the morphism associated with ρ and A1, . . . , An in SET
(or CL). This is in accordance with idA = idA × idA.

Suppose that f : C
•→ A and g : D

•→ B in CL, so
that f is a function C × C → A × A and g is a function
D × D → B × B. Then f × g : C × D •→ A × B in the
category CL is the function (idA×〈πB×A2 , πB×A1 〉× idB)◦
h ◦ (idC × 〈πD×C2 , πD×C1 〉 × idD) from C ×D × C ×D
to A×B ×A×B, where h is f × g : C ×C ×D ×D →
A×A×B ×B in SET.

Some subcategories
Motivated by (Denecker, Marek, and Truszczyński 2000;
2004; Vennekens, Gilis, and Denecker 2006), we define sev-
eral subcategories of CL. Suppose that A,B are complete
lattices. Following (Denecker, Marek, and Truszczyński
2000), we call an ordered pair (x, x′) ∈ A × A consistent
if x ≤ x′. Moreover, we call f : A

•→ B in CL con-
sistent if it maps consistent pairs to consistent pairs. The
consistent morphisms in CL determine a cartesian subcat-
egory of CL with the same product diagrams. Let CCL
denote this subcategory. We define two subcategories of
CCL. The first one, ACL, is the subcategory determined
by those morphisms f = 〈f1, f2〉 : A

•→ B in CL such
that f1(x, x) ≤ f2(x, x) for all x ∈ A. The second, EACL,
is the subcategory determined by those f : A

•→ B with
f1(x, x) = f2(x, x). These are again cartesian subcategories
with the same product diagrams.

As noted in (Denecker, Marek, and Truszczyński 2000),
most applications of approximation fixed point theory use
symmetric functions. We introduce the subcategory of CL
having complete lattices as object but only symmetric ≤p-
preserving functions as morphisms. Suppose that f : A

•→
B in CL, say f = 〈f1, f2〉, We call f symmetric if
f2(x, x′) = f1(x′, x), i.e., when

f2 = f1 ◦ 〈πA×A2 , πA×A1 〉 : A×A→ B.

The symmetric morphisms determine a subcategory of CL,
denoted SCL. In fact, SCL is a subcategory of EACL.
Moreover, it is again a cartesian subcategory with the same
products.



4. Fixed points
Suppose that A and B are complete lattices, ordered by ≤,
and let f : A × B → A be a monotonic function. The least
fixed point operation on CL maps f to the monotonic func-
tion f† : B → A such that for all y ∈ B, f†(y), sometimes
also denoted µx.f(x, y), is the least solution of the fixed
point equation x = f(x, y). The existence of f†(y) is guar-
anteed by the Knaster-Tarski fixed point theorem. It is also
known that f†(y) is the least z ∈ A such that f(z, y) ≤ z.

In this section, we recall from (Denecker, Marek, and
Truszczyński 2000) the construction of stable and well-
founded fixed points. Suppose that f = 〈f1, f2〉 : A

•→ A in
CL, so that f is a ≤p-monotonic function A×A→ A×A.
Then f1 : A×A→ A is monotonic in its first argument and
anti-monotonic in its second argument, and f2 : A×A→ A
is monotonic in its second argument and anti-monotonic in
its first argument. Define the functions s1, s2 : A→ A by

s1(x′) = µx.f1(x, x′) and s2(x) = µx′.f2(x, x′),

and let S(f) : A×A→ A×A be the function S(f)(x, x′) =
(s1(x′), s2(x)). Since s1 and s2 are anti-monotonic, S(f) is
a morphismA

•→ A in CL. We call S(f) the stable function
for f . It is known that every fixed point of S(f) is a fixed
point of f , called a stable fixed point of f . Since S(f) is≤p-
monotonic, there is a ≤p-least stable fixed point f‡, called
the well-founded fixed point of f .

The above construction can slightly be extended. When
f : A × B •→ A is in CL and (y, y′) ∈ B × B, then let
g : A

•→ A be given by g(x, x′) = f(x, y, x′, y′). Then we
define f‡(y, y′) = g‡.

Proposition 2 Suppose that f : A×B •→ A is in CL. Then
f‡ : B

•→ A is also in CL. However, neither of the sub-
categories CCL, ACL, EACL and SCL is closed under
‡.

5. Some valid identities
Iteration categories capture the equational properties of sev-
eral fixed point operations including the least fixed point
operation over CL. Axiomatizations of iteration categories
can be conveniently divided into two parts, axioms for Con-
way categories and the commutative (Bloom and Ésik 1993)
or group identities (Ésik 1999b), or the generalized power
identities of (Ésik 1999a). Known axiomatizations of Con-
way categories include the group consisting of the parameter
(1), composition (5) and double dagger (7) identities, and
the group consisting of the fixed point (2), parameter (1),
pairing (6) and permutation (3) identities. In this section we
establish several of the above mentioned identities for the
parametrized well-founded fixed point operation over CL.
In the next section we will show that several others fail.
Proposition 3 The following parameter (1), fixed point (2)
and permutation (3) identities hold:

(f ◦ (idA × g))‡ = f‡ ◦ g, (1)

for all f : A×B •→ A and g : C
•→ B.

f ◦ 〈〈f‡, idB〉〉 = f‡, (2)

f : A×B •→ A.

(ρ ◦ f ◦ (ρ−1 × idB))‡ = ρ ◦ f‡, (3)

for all f : A1 × · · · × An × B
•→ A1 × · · · × An and

permutation ρ : [n]→ [n].

Also, a special case of the pairing identity (6) holds:

Proposition 4 The following identity holds:

〈〈f, g ◦ (πA×B2 × idC)〉〉‡ = 〈〈f‡ ◦ 〈〈g‡, idC〉〉, g‡〉〉, (4)

where f : A×B × C •→ A and g : B × C •→ B.

The identity (4) has already been established in Theorem
3.11 of (Vennekens, Gilis, and Denecker 2006), see also the
Splitting Set Theorem of (Lifschitz and Turner 1994).

Proposition 5 The weak functorial dagger implication
holds: for all f : An × B

•→ An and g : A × B
•→ A

in CL: if f ◦ (∆n × idB) = ∆n ◦ g, then f‡ = ∆n ◦ g‡.
Since the weak functorial implication holds, so do the
commutative and group identities (Bloom and Ésik 1993;
Ésik 1999b).

6. Some identities that fail
Proposition 6 The composition identity

(f ◦ 〈〈g,πA×C2 〉〉)‡ = f ◦ 〈〈(g ◦ 〈〈f, πB×C2 〉〉)‡, idC〉〉,(5)

f : B × C •→ A, g : A × C •→ B, fails in CL, even in
the following simple case: f ◦ (f ◦ f)‡ = (f ◦ f)‡, where
f : A

•→ A.

Proposition 7 The squaring identity (f ◦ f)‡ = f‡ fails,
where f : A

•→ A.

Since the fixed point, parameter and permutation identi-
ties hold but the composition identity fails, the pairing iden-
tity (6) also must fail, see (Bloom and Ésik 1993).

Proposition 8 The pairing identity

〈〈f, g〉〉‡ = 〈〈f‡ ◦ 〈h‡, idC〉, h‡〉〉, (6)

where h = g◦〈〈f‡, idB×C〉〉 fails, where f : A×B×C •→ A

and g : A×B × C •→ B.

Proposition 9 The double dagger identity

f‡‡ = (f ◦ (〈〈idA, idA〉〉× idB))‡, (7)

f : A × A × B •→ A, fails in CL, even in the particular
case when B = T (terminal object).

7. Some applications
The established identities can be seen as abstract versions
of transformations over logic programs that preserve the
well-founded semantics (in the bilattice setting). For one
example, consider the simple propositional logic program
p :− q,∼ r; q :− r,∼ p; r :− p,∼ q. Identifying p, q, r,
we obtain p :− p,∼ p. By the weak functorial implication,



the two programs are equivalent in the sense that each com-
ponent of the well-founded semantics of the first program
agrees with the well-founded semantics of the second.

By formulating transformations as identities, one can use
standard (many-sorted) equational logic to derive other iden-
tities that in turn give rise to new transformations. For exam-
ple, the following identity is an equational consequence of
those established in the paper:

〈〈f, g ◦πA×BB 〉〉‡ = 〈〈f ◦ (idA × 〈g,πB×CC 〉), g ◦πA×B×CB×C 〉〉‡

where f : A×B × C •→ A and g : B × C •→ B.
This identity is an abstract version of the fold/unfold

transformation (Tamaki and Sato 1984; Seki 1993). For ex-
ample, it yields that the following propositional logic pro-
grams p :− q, r; r :− s, t and p :− q, s, t; r :− s, t are equiv-
alent for the well-founded semantics. On the other hand, the
following identity, which is a generalization of the above
folding/unfolding identity, fails: 〈〈f ◦ 〈〈πA×BA , g〉〉, g〉〉‡ =

〈〈f, g〉〉‡, where f : A × B
•→ A and g : A × B

•→ B.
And this again follows by standard equational reasoning us-
ing our positive and negative results.

8. Conclusion
We extended the well-founded fixed point operation of (De-
necker, Marek, and Truszczyński 2000; Vennekens, Gilis,
and Denecker 2006) to a parametric operation and studied its
equational properties. We found that several of the identities
of iteration theories hold for the parametric well-founded
fixed point operation, but some others fail. By showing that
some identities of iteration theories do not hold, we tried
to have a better understanding why logic programs with the
well-founded semantics cannot be manipulated using stan-
dard fixed point methods. And by showing that some other
identities hold, we tried to understand to what extent the
standard techniques can be used for manipulating logic pro-
grams. Two interesting questions arise for further investiga-
tion. The first concerns the algorithmic description of the
valid identities of the well-founded fixed point operation.
The second concerns the axiomatic description of the valid
identities. These questions are also relevant in connection
with modular logic programing, cf. (Ferraris et al. 2009;
Janhunen et al. 2009; Lifschitz and Turner 1994).

An alternative semantics of logic programs with negation
based on an infinite domain of truth values was proposed
in (Rondogiannis and Wadge 2005). The infinite valued ap-
proach has been further developed in the abstract setting
of ‘stratified complete lattices’. It has been proved in (Ésik
2015b) that the stratified least fixed point operation arising
in this approach does satisfy all identities of iteration theo-
ries. So in this regards, the infinite valued semantics behaves
just as the Kripke-Kleene semantics (Fitting 2002).
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