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abstract. We survey some classical results on uniformizations of
automaton definable relations by automaton definable functions. We
consider the case of automatic relations over finite and infinite words
and trees as well as rational relations over finite and infinite words.
We also provide some new results concerning the uniformization of
automatic and rational relations over finite words by subsequential
transducers. We show that it is undecidable whether a given rational
relation can be uniformized by a subsequential transducer and provide
a decision procedure for the case of automatic relations.

1 Introduction

A uniformization of a (binary) relation is a function that selects for each
element in the domain of the relation a unique image that is in relation with
this element. In other words, a uniformization of R ⊆ X × Y is a function
fR : X → Y with the same domain as R and whose graph is a subset of
R. The origin of uniformization problems comes from set theory, where the
complexity of a class of definable relations is related with the complexity
of uniformizations for these relations (see Moschovakis (1980) for results of
this kind).

The aim of this paper is to give an overview of some uniformization re-
sults in the setting where the relations and functions are defined by finite
automata. In analogy to the problems studied in set theory, the uniformiza-
tion question for a given class of relations defined by some automaton model
is whether each such relation has a uniformization in the same class. A moti-
vation for studying these kinds of questions in computer science arises when
the relation describes a specification relating inputs to allowed outputs, for
example for a program or a circuit, as in Church’s synthesis problem Church
(1962). A uniformization of such a specification can be seen as a concrete
implementation conforming to the specification because it selects for each
input exactly one allowed output. In this view, the uniformization question
then asks whether each specification from a given class can implemented
within the same class.
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These uniformization questions have already been studied in the early
times of automata theory. The first class considered is that of word rela-
tions defined by finite automata Elgot & Mezei (1965) also called rational
relations. In (Kobayashi, 1969, Theorem 3), it is first shown that any rela-
tion accepted by a finite automaton admits a uniformization also accepted
by a finite automaton. Several alternative and simplified proofs were pub-
lished Eilenberg (1974); Arnold & Latteux (1979); Choffrut & Grigorieff
(1999). The proof of Arnold & Latteux (1979) builds on a decomposition
theorem for rational functions from Elgot & Mezei (1965) and shows that
uniformization can be realised by the composition of a sequential (i.e., input
deterministic) transducer working from left to right followed by one work-
ing from right to left. Choffrut & Grigorieff (1999) contains the idea of the
reduction to the length-preserving case that we use in this article as well
as a generalisation to the infinite word case. The uniformization problem
for relations on trees defined by finite automata was only considered more
recently Kuske & Weidner (2011); Colcombet & Löding (2007) but can be
traced back to Engelfriet (1978).

The decision problem corresponding to the uniformization question is
to decide whether a given relation has a uniformization. We consider this
question in a setting where the relation comes from one class C and we are
looking for a uniformization in another class C′ (which is more restrictive
than C in our setting). An early decidability results in this spirit was pro-
vided by Büchi and Landweber in Büchi & Landweber (1969) for relations
of infinite words given by synchronous two-tape Büchi automata and to be
uniformized by synchronous deterministic sequential transducers, that is,
deterministic transducers that produce one output symbol for each input
symbol. Modern presentations of these results can be found, e.g., in Thomas
(2008) and Löding (2011).

This decidability result has been studied for variations where the trans-
ducer defining the uniformization is allowed to skip a bounded number of
output symbols in order to obtain a bounded look-ahead Hosch & Landwe-
ber (1972). In Holtmann et al. (2010) the condition is relaxed further by
allowing an arbitrary finite number of skips. However, as shown in Holt-
mann et al. (2010), this case can be reduced to a bounded number of skips,
where the bound depends on the size of the automaton defining the speci-
fication.

We study a similar setting in the case of finite words. A standard model
for deterministically computing functions over finite words are subsequential
transducers. These are basically deterministic finite automata that output
a finite word on each transition. We show that it is decidable whether an
automatic relation can be uniformized by a subsequential transducer. The
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setting is similar to the one mentioned above for infinite words studied in
Holtmann et al. (2010). However, in the setting of finite words the number
of required skips (where the transducer outputs the empty word) cannot
be bounded because the input and the output might be of different length.
This adds some new phenomena compared to the setting of Holtmann et al.
(2010).

Furthermore, we show that it is undecidable whether a rational relation
can be uniformized by a subsequential transducer.

The paper is structured as follows. In Section 2 we consider uniformiza-
tion automatic relations over finite and infinite words and trees. Section 3
is about uniformization of rational relations over finite and infinite words.
In Section 4 we present some new results on uniformization of rational and
automatic relations over finite words by subsequential transducers.

We assume the reader to be familiar with basic notions from automata
theory and only provide some definitions for fixing the terminology.

2 Automatic Relations on Words and Trees

In this section, we consider the class of relations that are definable by syn-
chronous finite automata, that is, automata that process the input and
the output at the same time and at the same speed. Such relations are re-
ferred to as automatic Khoussainov & Nerode (1995); Blumensath & Grädel
(2000). Automatic relations can be defined over finite words, infinite words,
finite trees, and infinite trees. For these four classes, we study the question
whether a given automatic relation always has an automatic uniformization.
We only consider the case of binary relations; uniformization questions for
automatic relations of higher arity can be reduced to the binary case (which
is not the case for rational relations, see Section 3). To simplify notation,
we usually assume that the alphabets for the two components are the same,
which is not a restriction.

2.1 Finite Words

We start by considering automatic relations over finite words. As usual, a
finite word is finite sequence of letters over an alphabet Σ, where an alphabet
is just a finite set of symbols. The set of all finite words over Σ is denoted
by Σ∗ and the empty word by ε. The length of a word w is denoted by |w|.

We use the standard model of finite automata on finite words. To fix
the notation, a nondeterministic finite automaton (NFA) is of the form
A = (Q,Σ, q0,∆, F ), whereQ is a finite set of states, Σ is the input alphabet,
q0 ∈ Q is the initial state, ∆ ⊆ Q × Σ × Q is the transition relation, and
F ⊆ Q is the set of final (or accepting) states. A run of A on w ∈ Σ∗

is a sequence p0, . . . , pn of states such that (pi, ai, pi+1) ∈ ∆ for all i ∈
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{0, . . . , n − 1}, where w = a0 · · · an−1. We write A : p0
w−→ pn to indicate

that there is a run of A on w from p0 to pn. An accepting run is a run that
starts in q0 and ends in a state from F . The set of words that labels an
accepting run ofA is denoted by L(A) and is called the language accepted by
A. The class of languages that can be accepted by NFAs is called the class
of regular languages. An NFA is deterministic (a DFA) if for each q ∈ Q
and a ∈ Σ there is at most one q′ ∈ Q with (q, a, q′) ∈ ∆. In this case, we
usually write the transition relation as a (partial) function δ : Q× Σ→ Q.
We refer the reader who is not familiar with the basic results on regular
languages and finite automata to Hopcroft & Ullman (1979).

One way to make finite automata process tuples of words (for defining
a relation) is to use a product alphabet such that the automaton processes
one letter from each word in the tuple in one step. This leads to the notion
of automatic relations defined more formally below. To handle the case of
words of different length, a dummy symbol 2 is used to pad shorter words.

Formally, for w1, w2 ∈ Σ∗ we define

w1 ⊗ w2 =

[
a′11

a′21

]
· · ·
[
a′1n
a′2n

]
∈ (Σ2

2)∗

where Σ2 = Σ ∪ {2}, n is the maximal length of one of the words wi,
and aij is the jth letter of wi if j ≤ |wi| and 2 otherwise. A language
L ⊆ ((Σ ∪ {2})2)∗ defines a relation RL ⊆ (Σ∗)2 in the obvious way:
(w1, w2) ∈ RL iff w1⊗w2 ∈ L. A relation R ⊆ (Σ∗)2s is called automatic if
R = RL for some regular language L ⊆ ((Σ∪{2})2)∗. These definitions can
easily be generalized to relations of higher arity, but as mentioned earlier,
we restrict our considerations to the binary case.

EXAMPLE 1 Consider the following relation of words over the alphabet
{0, 1}:

R = {(1n, 1m01k0∗) | n = m+ k + 1}.

This relation is accepted by the DFA depicted in Figure 1 and hence, is an
automatic relation (the initial state is marked by an incoming arrow and
the accepting states by a double circle).

As mentioned above, we study in the section the question whether (bi-
nary) automatic relations have automatic uniformizations. A simple tech-
nique to define a uniformization is to fix a total well-ordering (a total or-
dering without infinite decreasing chains) on the elements of the domain
(finite words in this case), and then to select for each word u the small-
est word v such that u and v are in relation. One such well-ordering is
the length-lexicographic ordering, which first orders words by their length
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Figure 1. A finite automaton for the relation from Example 1.

and the words of the same length are ordered lexicographically according
to some fixed order on the letters of the alphabet. We denote this ordering
by <llex. We observe that <llex is itself an automatic relation, and thus is
a useful tool for uniformization.

For a relation R ⊆ Σ∗×Σ∗ we define the length-lexicographic uniformiza-
tion by

fR(u) = min
<llex

{v ∈ Σ∗ | (u, v) ∈ R}

for all u in the domain of R. For the relation R from Example 1 we obtain
fR(1n) = 01n−1.

In general, one can always construct from the automaton for R a new
automaton that checks for u ⊗ v whether (u, v) ∈ R and at the same time
verifies that there is no smaller word v′ <llex v such that (u, v′) ∈ R. This
technique of selecting smallest representatives (according to some ordering)
in a regular way goes back to Eilenberg’s Cross-Section Theorem Eilenberg
(1974). In the context of automatic relations, this technique is used with
the ordering <llex in Khoussainov & Nerode (1995) to show that automatic
equivalence relations have automatic cross-sections, which means that there
is a regular set of representatives from the equivalence classes. The following
theorem summarizes our considerations. We do not attribute this theorem
to a specific paper because its proof is rather simple and it can easily be
derived in many ways from other results. An explicit statement of the result
can be found in Choffrut & Grigorieff (1999).

THEOREM 2 For an automatic relation R over finite words, the length-
lexicographic uniformization of R is also automatic. In particular, each
automatic relation has an automatic uniformization.

2.2 Finite Trees

We now turn to the uniformization problem for automatic relations over
finite trees. To define trees, we fix a ranked alphabet Σ, that is, each symbol
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in Σ has a rank (or arity), which is a natural number. A tree domain dom
is a non-empty finite subset of N∗ (the set of finite sequences of natural
numbers) with the property that for each x ∈ N∗ and i ∈ N with x · i ∈ dom
we also have x ∈ dom and x · j ∈ dom for each j < i. By using sequences
of natural numbers, a tree domain is naturally equipped with a successor
relation, namely x · i is a successor of x.

A (finite Σ-labeled) tree t is a mapping from a tree domain dom(t) to
the ranked alphabet Σ such that for each x ∈ dom(t) the rank of t(x)
corresponds to the number of successors of x in dom(t).

To define tree-automatic structures, we need a way to code tuples of finite
trees, i.e., we need an operation⊗ for finite trees similar to the one for words.
For a tree t : dom(t) → Σ let t2 : N∗ → Σ2 be defined by t2(u) = t(u) if
u ∈ dom(t), and t2(u) = 2 otherwise. For finite Σ-labeled trees t1, t2, we
define the Σ2

2-labeled tree t = t1 ⊗ t2 by dom(t) = dom(t1) ∪ dom(t2) and
t(u) = (t21 (u), t22 (u)). When viewing words as unary trees, this definition
corresponds to the operation ⊗ as defined for words. As in the case of words,
a set T of finite Σ2

2-labeled trees defines the relation RT by (t1, t2) ∈ RT iff
t1 ⊗ t2 ∈ T .

We are not going to use any details on automata on finite trees. For the
purpose of this paper, it is enough to know that there is a model of finite
automata on finite trees that defines the class of regular tree languages
whose closure and algorithmic properties are comparable to the class of
regular word languages. We refer the reader to Comon et al. (2007) or
Löding (2012) for an introduction to automata on finite trees.

We call a (binary) relation R over the domain of finite Σ-labeled trees
tree-automatic if R = RT for some regular language T of finite Σ2

2-labeled
trees.

A crucial difference to the setting of finite words is that there is no tree-
automatic total well-ordering over the set of all finite Σ-labeled trees. This
fact can be deduced from Theorem 6 presented in Section 2.4. Hence, the
technique used for the uniformization of automatic relations cannot be ex-
tended to finite trees. However, a result from Kuske & Weidner (2011)
(based on Colcombet & Löding (2007)) shows that tree-automatic equiva-
lence relations have regular cross-sections (that is, given a tree-automatic
equivalence relation ∼, it is possible to construct a tree automaton accept-
ing a language that contains exactly one tree from each equivalence class of
∼). We can use this result to obtain a tree-automatic uniformization of an
arbitrary (binary) tree-automatic relation R as follows. We define an equiv-
alence relation ∼R over the set of finite Σ2

2-labeled trees by t1⊗t2 ∼R t3⊗t4
if (t1, t2), (t3, t4) ∈ R and t1 = t3. Then ∼R is a tree-automatic equivalence
relation and we obtain a regular tree language T of finite Σ2

2-labeled trees
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that contains exactly one representative from each equivalence class of ∼R.
The relation RT defines a uniformization of R because for each possible first
component t in the domain of R it contains exactly one pair (t, t′).

The uniformization result for tree-automatic relations can also be de-
duced from (the proof of) a result in Engelfriet (1978) that shows that
relations computed by nondeterministic top-down tree transducers can be
uniformized by deterministic top-down tree transducers with regular look-
ahead. The constructed transducer basically chooses at each node for a
given input letter the least possible transition (according to some fixed or-
dering on the transitions) that admits a successful run on the remaining
input. The regular look-ahead is used to check this property for the cho-
sen transition. In our setting, the regular look-ahead could be simulated by
nondeterministically guessing a transition and then verifying that all smaller
transitions would not admit a successful computation on the remaining in-
put.

THEOREM 3 Every tree-automatic relation has a tree automatic uni-
formization.

2.3 Infinite Words

An infinite word α over an alphabet Σ corresponds to a function α : N→ Σ,
which naturally defines an infinite ordered sequence of letters. We denote
the set of infinite words (also called ω-words) over Σ by Σω.

Automatic relations over infinite words, called ω-automatic relations, are
defined in the same way as for finite words using Büchi automata instead of
standard finite automata (the definition is even simpler because for infinite
words no padding is required). A Büchi automaton is given in the same
way as an NFA. It accepts an infinite word if there is a run on this word
that starts in the initial state and infinitely often visits an accepting state.
For an introduction to the theory of automata on infinite words, we refer
the reader to Thomas (1997).

EXAMPLE 4 Let Σ be some alphabet and consider the relation R≈ of ulti-
mately equal words, that is,

R≈ := {(α, β) | ∃u, v ∈ Σ∗, γ ∈ Σω : |u| = |v| and α = uγ and β = vγ}.

This is an ω-automatic equivalence relation that is accepted by the Bchi
automaton depicted in Figure 2 for Σ = {0, 1}.

The techniques for uniformization of relations over finite words and trees
presented above are both based on the regular cross-section property for
(tree-)automatic equivalence relations. For infinite words, a corresponding
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Figure 2. A Büchi automaton for the relation from Example 4.

result does not hold. As pointed out in Kuske & Lohrey (2006), the equiv-
alence relation R≈ from Example 4 does not have the regular cross-section
property (i.e., does admit a set of representatives that can be accepted by
a Büchi automaton). This easily follows from the fact that each Büchi
automaton that accepts infinitely many ω-words also accepts two different
words that are ultimately equal.

However, uniformization of ω-automatic relations is still possible because
selecting representatives from equivalence classes is a stronger requirement
than selecting unique images for all elements in the domain of a relation
(see also the reduction in Section 3.2). The uniformization result for ω-
automatic relations was already obtained in Siefkes (1975). The technique
that we present here is taken from Choffrut & Grigorieff (1999).

THEOREM 5 (Siefkes (1975); Choffrut & Grigorieff (1999)) Every ω-
automatic relation has an ω-automatic uniformization.

Proof. The key idea for the construction is to take the accepting runs of an
automaton for the relation as additional information for selecting an image.
Given a Büchi automaton A = (Q,Σ2, q0,∆, F ) recognizing R ⊆ Σω × Σω,
we consider an extended relation R′ ⊆ Σω×Σω×Qω containing those tuples
(α, β, ρ) such that (α, β) ∈ R and ρ is an accepting run of A on α⊗ β.

Our aim is to define an ordering on the pairs (β, ρ) such that an automa-
ton can select the smallest such pair for a given α. For ρ, we consider the
unique sequence i1 < i2 < · · · of position at which ρ is in an accepting
state, that is, with ρ(ij) ∈ F .

This induces a factorization of the combined word β ⊗ ρ into finite seg-
ments βj ⊗ ρj for j ≥ 1 where each βj is the segment of β from ij−1 + 1
to ij and similarly for ρ (for the initial segment to be well defined, we set
i0 = −1). Note that the segments ρj all contain exactly one accepting state,
namely at the last position.

Given another pair β′ and ρ′ with corresponding sequence i′1 < i′2 < · · · ,
we obtain the factors β′j⊗ρ′j . Now pick the first j such that βj⊗ρj 6= β′j⊗ρ′j .
We define (β, ρ) < (β′, ρ′) if (βj , ρj) <llex (β′j , ρ

′
j) for this j, where <llex

refers to some fixed ordering on the set Σ×Q.
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One can verify that there is a Büchi automaton that accepts precisely
those pairs (α, β) ∈ R such that there is ρ with (α, β, ρ) ∈ R′ and for all
(α, β′, ρ′) ∈ R′ one has (β, ρ) ≤ (β′, ρ′).

It remains to verify that for each α in the domain of R such a minimal
pair (β, ρ) exists. Such a minimal pair can be constructed for a given α by
inductively defining a sequence of segments βj⊗ρj as follows. The segment
βj⊗ρj is the <llex-minimal segment with the property that ρj is in (Q\F )∗F
and that the concatenation β0⊗ρ0 · · ·βj⊗ρj can be extended to a sequence
β ⊗ ρ such that (α, β, ρ) ∈ R′. Taking the limit sequences β1β2 · · · and
ρ1ρ2 · · · results in a pair with the desired properties. �

2.4 Infinite Trees

The theory of automata on infinite words can be generalized to automata
on infinite trees. For simplicity, we only consider Σ-labeled complete binary
trees, which are mappings t : {0, 1}∗ → Σ. As for automata on finite
trees, we do not detail the model here because it is not required for our
considerations. We refer the reader to Thomas (1997) for the basics on this
model.

The definitions for ω-tree-automatic structures are a straightforward gen-
eralization of the definitions for the other classes of automatic structures in
this section. However, it is the only class of automatic structures that does
not admit uniformization.

This result goes back to Gurevich & Shelah (1983) where it is shown that
there is no choice function over the infinite binary tree that is definable in
monadic second-order logic (MSO). In this setting, we view the (unlabeled)
infinite binary tree as a structure T2 = ({0, 1}∗, S0, S1) with universe {0, 1}∗
and two successor relations S0 and S1 with the natural interpretation (S0

corresponds to appending a 0 and S1 to appending a 1).

As usual, monadic second-order logic is the extension of first-order logic
by set quantifiers. An MSO definable choice function would be given by
an MSO formula ϕ(X, y) with one free set variable X and one free element
variable y such that for each nonempty subset U ⊆ {0, 1}∗ there is exactly
one element u ∈ U such that T2 |= ϕ[U, u].

THEOREM 6 (Gurevich & Shelah (1983)) There is no MSO-definable
choice function over the infinite binary tree.

While the proof given in Gurevich & Shelah (1983) uses set-theoretic
tools, more recently a new proof only based on automata-theoretic methods
has been given in Carayol & Löding (2007); Carayol et al. (2010). From
this new proof, one can even derive a simple family of counter examples in
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the following sense. For N ∈ N, define the set UN ⊆ {0, 1}∗ as

UN := {0, 1}∗(0N0∗1)N .

It turns out that this simple family of sets is sufficient to show that there
is no MSO definable choice function over T2.

THEOREM 7 (Carayol & Löding (2007); Carayol et al. (2010)) For each
MSO formula ϕ(X, y) over the infinite binary tree, there exists N such that
ϕ fails to choose a unique element from UN .

Using the tight connection between MSO and finite automata (see
Thomas (1997)), one can rephrase the result from Gurevich & Shelah (1983)
in automata theoretic terms. For this purpose, we define the relation R∈
over infinite {0, 1}-labeled trees as follows: (t, t′) ∈ R if

� there is exactly one u ∈ {0, 1}∗ with t′(u) = 1, and

� t(u) = 1 for the unique u ∈ {0, 1}∗ with t′(u) = 1.

Intuitively, the relation R∈ corresponds to the element relation because the
tree t represents a non-empty set U (via the 1-labeled nodes), t′ corresponds
to an element u (via the unique 1-labeled node), and the last condition
states that u ∈ U . An automaton defining a uniformization of R∈ could
be turned into an MSO formula defining a choice function, which is not
possible according to Theorem 6.

COROLLARY 8 There are ω-tree-automatic relations that do not have an
ω-tree-automatic uniformization. In particular, the relation R∈ does not
have an ω-tree-automatic uniformization.

3 Rational Word Relations

In this section, we consider the uniformization of relations on finite and in-
finite words accepted by asynchronous automata. These relation are called
rational relations (as for finite words, they are the rational subsets of the
product monoid). Following Choffrut & Grigorieff (1999), we will see that
these problems can be reduced to the automatic case using a standard
decomposition theorem Eilenberg (1974). The generalization of rational
(word) relations to trees is unclear and several notions of asynchronous tree
automata models have been proposed (see for instance (Comon et al., 2007,
Chapter 6) as well as the discussion in Raoult (1997)). The uniformization
problem for these various classes goes beyond the scope of this article.
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Figure 3. A transducer for the relation from Example 9.

3.1 Finite words

As in Section 2, we consider the case of binary relations where (most of the
time) we assume the input and the output alphabet to be the same. The
latter assumption is easily seen not to be a restriction. We comment on the
case of higher arity at the end of this section.

In the case of finite words, a rational relation R ⊆ (Σ∗)2 is accepted
by a finite automaton which can read its two tapes (also called input and
output tape in the binary setting) in an asynchronous fashion. Formally,
such an automaton has its transitions labeled by elements of (Σ∪{ε})2. The
language L ⊆ ((Σ∪ {ε})2)∗ accepted by the automaton defines the relation
{(π1(w), π2(w)) | w ∈ L} where πi is the morphism from (Σ ∪ {ε})2 to Σ∗

corresponding to the projection over the i-th component.

EXAMPLE 9 Consider the rational relational over the alphabet {0, 1, 2}
taken from (Sakarovitch, 2009, Example 3.1,p. 687)

R = {(0m1n, 0m1) | m,n ≥ 1} ∪ {(0m1n, 0n2) | m,n ≥ 1}.

This relation is accepted by the automaton of Figure 3, where we use the
standard notation x/y for pairs of input x ∈ Σ∪{ε} and output y ∈ Σ∪{ε}
processed by a transition.

From the definitions, it is clear that automatic relations are special cases
of rational relations. Furthermore, a word morphism which replaces every
letter by a given word is an example of rational function. More generally,
rational substitutions in which a letter is replaced by a word chosen from
a regular language also define rational relations. As an example for such a
rational substitution over the alphabet {0, 1}, consider the mapping given
by 0 7→ 0+ and 1 7→ 0∗10∗. This defines a relation that relates a non
empty word w to any word obtained by inserting 0s at arbitrary positions
in w, which is easily seen to be rational. In general, using automata for
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the languages in the images of the substitution one can easily build an
asynchronous automaton for the corresponding relation.

Contrarily to the case of automatic relations, the length-lexicographic
uniformization of a rational relation is not in general a rational function.
Consider for instance the relation R of Example 9. By ordering the alphabet
in the natural way (i.e., 0 < 1 < 2), the length-lexicographic uniformization
of R is the function S defined for all m,n ≥ 1, by S(0m1n) = 0m1 if m ≤ n
and S(0m1n) = 0n2 otherwise. The function S is not a rational function as
for instance the inverse image by S of the regular set 0+1 is the non-regular
set {0m1n | m ≤ n}.

REMARK 10 In Lombardy & Sakarovitch (2010), it is shown that the
length-lexicographic uniformization of a rational relation in Σ∗ × Γ∗ with
|Σ| = 1 is a rational function.

Uniformization of rational relations is reduced to the automatic case using
the following decomposition theorem which states that any rational relation
whose domain does not contain the empty word can be expressed as the
composition of an automatic relation followed by a rational substitution.

THEOREM 11 (Eilenberg (1974)) For any rational relation R over an al-
phabet Σ whose domain does not contain the empty word, there exists an
alphabet Γ, a length-preserving automatic relation S ⊆ Σ∗×Γ∗ and a ratio-
nal substitution ρ ⊆ Γ∗ × Σ∗ with dom(ρ) = Γ∗ such that:

R = S ◦ ρ := {(u, v) ∈ Σ∗ ×Σ∗ | ∃w ∈ Γ∗ : (u,w) ∈ S and (w, v) ∈ ρ}.

Proof. Let R be a rational relation over Σ whose domain does not contain
the empty word. Consider an automaton A = (Q, (Σ ∪ {ε})2, q0,∆, F )
accepting R. For all states p and q ∈ Q, we let Ap,q denote the automata
(Q, (Σ ∪ {ε})2, p,∆, {q}) where p is the new initial state and q the unique
final state.

Let Γ be the alphabet Q× Σ×Q. Consider the length-preserving auto-
matic relation S ⊆ Σ∗ × Γ∗ associating to a word a1 · · · an with n ≥ 1 any
word (q0, a1, q1) · · · (qn−1, an, qn) such that qn belongs to F . The rational
substitution ρ associates to (p, a, q) the image of the letter a by the relation
accepted by Ap,q. It can be shown that R = S ◦ ρ.

To guarantee that dom(ρ) = Γ∗, it is enough to ensure that for all a ∈ Γ,
the language ρ(a) is non empty. If it is not the case, we restrict ρ to the
alphabet Ξ = {a ∈ Γ | ρ(a) 6= ∅} and we restrict the image of S to Ξ∗. �

REMARK 12 As a consequence of Theorem 11, we re-obtain the well-known
result stating that all rational functions are unambiguous (i.e., accepted by



Uniformization in Automata Theory 13

an automaton having at most one accepting run for each pair of the rela-
tion). Indeed it shows that any rational function is the composition of length-
preserving automatic function and of a morphism. A length-preserving au-
tomatic function being accepted by a DFA labeled by Σ×Σ is an unambiguous
rational function. The unambiguity is easily shown to be preserved in the
composition with a morphism.

In conjunction with the uniformization result for automatic relations, we
obtain the uniformization theorem for rational relations.

THEOREM 13 Rational relations can be uniformized by rational functions.

Proof. Let R be a rational relation. It is enough to consider the case where
the domain of R does not contain the empty word.1 By Theorem 11, there
exists an alphabet Γ such that R can be expressed as S◦ρ where S ⊆ Σ∗×Γ∗

is a length-preserving automatic relation and a rational substitution ρ with
dom(ρ) = Γ∗ (and hence dom(R) = dom(S)).

By Theorem 2, S admits a length-preserving automatic uniformization
T . Furthermore the rational substitution ρ is uniformized by a morphism ϕ
such that for all a ∈ Γ, ϕ(a) ∈ ρ(a). We have T ◦ϕ ⊆ R and as dom(ϕ) = Γ∗,
dom(T ◦ ϕ) = dom(T ) = dom(S) = dom(R). �

Contrary to the case of automatic relations, the uniformization theorem
cannot be extended to arity greater than 2. Consider for instance the fol-
lowing rational relation in {a, b}∗ × {a}∗ × {a}∗

{(anbm, an, a) | n,m ≥ 0} ∪ {(anbm, am, ε) | m,n ≥ 0}

In (Choffrut & Grigorieff, 1999, p. 7), it is shown by a pumping argument
that this relation does admit any rational uniformization f : {a, b}∗×{a}∗ →
{a∗}. It is furthermore established that the class of rational relations in
Γ∗1 × · · · × Γ∗n for n > 2 enjoys the rational uniformization property if and
only if all the Γi are unary alphabets. The converse implication follows from
the fact that these relations which are essentially subsets of Nn are those
relations definable in Presburger arithmetic. Their length-lexicographic uni-
formization is also definable by a Presburger formula and hence realizable
by a rational relation.

Another notable difference with the automatic setting is that it is not
known whether rational equivalence relations admit rational cross-sections
Johnson (1986). Rational equivalence relations are more difficult to appre-
hend than their automatic counter-parts. For instance, it is undecidable
whether a given rational relation is an equivalence relation Johnson (1986).

1The rational relation R can be decomposed into R′ ∪ {ε} × L where R′ is a rational
relation whose domain does not contain the empty word and L is a regular language.
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3.2 Infinite words

Rational relations over infinite words are defined in the same way as for finite
words using Büchi automata instead of standard finite automata. These
relations are called ω-rational relations. For simplicity, we only consider
rational relations whose domain only contains infinite words.

Using the same construction as in the finite word case, we can decompose
an ω-rational relation into an ω-automatic relation followed by a rational
substitution.

THEOREM 14 (Choffrut & Grigorieff (1999)) For any ω-rational relation
R over an alphabet Σ whose domain only contains infinite words, there
exists an alphabet Γ, an ω-automatic relation S ⊆ Σω × Γω and a rational
substitution ρ ⊆ Γω × Σω with dom(ρ) = Γω such that R = S ◦ ρ.

As in the finite word case, the uniformization theorem for ω-rational
relations follows from that of ω-automatic relations.

THEOREM 15 (Choffrut & Grigorieff (1999)) ω-rational relations can be
uniformized by ω-rational functions.

4 Uniformization by Sequential Transducers

While in the previous section we considered the question whether relations
from a given class have a uniformization within the same class, we now
consider a setting in which the class of functions to choose the uniformization
from is restricted.

As already mentioned, a uniformization of a relation can be viewed as a
concrete implementation of a specification. The specification describes the
admissible outputs for a given input, and the uniformization function selects
one output for each input. In this section, we consider the setting where the
output has to be constructed deterministically by a finite state device that
reads the input letter by letter and can output finite words in each step. In
the classical setting, this problem has been studied for infinite words, going
back to a problem posed by Church Church (1962) that has been solved by
Büchi and Landweber in Büchi & Landweber (1969) (see Thomas (2009) for
a recent overview on this subject). For the setting of finite words, we use
a standard transducer model, which basically can be seen as the subclass
of asynchronous automata from Section 3 which are deterministic on their
input.

A subsequential2 transducer (ST) is of the form T = (S,Σ,Γ, s0, δ, F, f)
where S is the finite set of states, Σ and Γ are the input and output alphabet,

2The prefix “sub” is added for transducers that can make a final output depending
on the last state reached in a run, as opposed to sequential transducers that can only
produce outputs on their transitions.
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s0

sa

sb

s1

a/ε

b/ε

c/ε

a/aa,b/ba

c/ε

a/ab,b/bb

Figure 4. A subsequential transducer.

respectively, s0 ∈ S is the initial state, δ : S ×Σ→ S × Γ∗ is the transition
function, F ⊆ S is a set of final states, and f : F → Γ∗ is the final output
function. Such an ST behaves as a standard deterministic finite automaton
but additionally produces a finite (possibly empty) output word in each
transition. An input u ∈ Σ∗ is accepted if s ∈ F for the state s reached
after reading u. By T(u), we denote the output of T produced along the
transitions while reading u (independent of whether u is accepted or not),
and by Tf (u) := T(u) · f(s) the complete output including the final one
at the last state s (if s /∈ F , then Tf (u) is undefined). For a detailed
introduction to this subject and functions definable by STs, we refer the
reader to Berstel (1979).

EXAMPLE 16 Figure 4 shows the transition graph of an ST T (where the

notation s
a/u−−→ s′ denotes δ(s, a) = (s′, u)). We define the final output to

be ε for the only final state s1. Furthermore, we assume that the missing
transitions lead to a rejecting sink state. The function defined by T has the
domain {a, b}c∗{a, b} with T(xc∗y) = Tf (xc∗y) = yx for x, y ∈ {a, b}.

While it is decidable whether a rational function can be defined by an
ST (see (Berstel, 1979, Theorem 6.2)), our first result shows uniformization
of rational relations by STs is undecidable.

THEOREM 17 It is undecidable whether a given rational relation has a
uniformization by a subsequential transducer.

Proof. We sketch a reduction from the halting problem for Turing ma-
chines (TM). Given such a TM M , we describe a rational relation RM . The
interesting cases are those pairs (u, v) in which the first component is of the
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form

u = c1$c2$ · · · $cn#∗X

where $ and # are special symbols in the alphabet, each ci is a configuration
of M (coded as a word in a standard way), c1 is the initial configuration of
M on the empty tape, cn is a halting configuration of M , and X ∈ {A,B}
is a letter that determines how the word in the second component has to
look like. If u is of this form, we say that it codes a configuration sequence.

If u is does not code a configuration sequence, then every word v with
|v| = |u| is allowed in the second component. If u codes a configuration
sequence and is ending in A, then (u, v) ∈ RM if, and only if, u = v. If u
codes a configuration sequence and is ending in B, then (u, v) ∈ RM if, and
only if, v is of the form

v = c′1$c′2$ · · · $c′n#∗B

such that c′i+1 is not the successor configuration of ci for some i ∈ {1, . . . , n−
1}.

First note that this defines a rational relation. An asynchronous automa-
ton can guess at the beginning whether u codes a configuration sequence,
and whether it ends in A or B. If it ends in A, then the automaton syn-
chronously checks whether u = v, and if it ends in B, then the automaton
guesses a ci and asynchronously verifies that c′i+1 is not the successor con-
figuration of ci. To check this it advances to the next configuration in the
output and compares c′i+1and ci.

We claim that RM can be uniformized by an ST if, and only if, M does
not halt. If M does not halt, then the ST that simply reproduces the input
is a uniformization of RM for the following reason: The only case to verify
is the one where u codes a configuration sequence and ends in B. But
since M does not halt, the configuration sequence in u must contain two
configurations ci and ci+1 such that ci+1 is not the successor configuration
of ci. Since c′i+1 = ci+1, the condition is satisfied.

Now assume that M does halt and that there is an ST T that uniformizes
RM . Let k be the maximal length of an output string on the transitions of
T. Now consider an input u that codes the halting configuration sequence,
followed by k times #. Since the next input letter could be an A, T must
have already reproduced the configuration sequence because it can produce
at most k output letters on the last transition. But then the output does
not satisfy the condition if the next input letter is B. �

The rational relation constructed in the reduction in the proof of Theo-
rem 17 is not automatic, and in fact one can show that the problem becomes
decidable when restricted to automatic relations.
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THEOREM 18 It is decidable whether a given automatic relation has a uni-
formization by a subsequential transducer.

The proof of this result uses techniques similar to Holtmann et al. (2010)
where a similar problem on infinite words is studied: Given an automatic
relation R of infinite words, decide if there is a sequential transducer such
that for each input α in the domain of R, the computed output β is such
that (α, β) ∈ R.

At first glance, it might seem that this problem is more general because
it is studied in the setting of infinite words, and finite words can be coded
by infinite words using a dummy letter that is appended to the finite word.
However, in the setting studied in Holtmann et al. (2010), it is assumed
that the sequential transducer produces an infinite output for each possible
input. As a consequence, one can show that if there is a uniformization by a
sequential transducer, then there is one of bounded delay, which means that
the difference between the length of the processed input and the produced
output is globally bounded.

In the setting of finite words that we study, this needs not to be true.
Consider the following relation over the alphabet {a, b, c}, specified slightly
informally using pairs of regular expressions, representing the Cartesian
product of the respective languages:

(ac∗b, bc∗a) ∪ (bc∗a, ac∗b) ∪ (ac∗a, ac∗a) ∪ (bc∗b, bc∗b) .

It is not difficult to verify that this is an automatic relation. It is uniformized
by the ST from Example 16. This ST has arbitrarily long delays between
input and output, and this cannot be avoided because the first letter of the
output depends on the last letter of the input.

However, the key insight for the decidability proof is that if such a long
delay is necessary, then the connection between the remaining input and
output cannot be very complex. This intuition of not being very complex
is captured by the notion of recognizable relation. A relation R ⊆ Σ∗ × Γ∗

is called recognizable if it is of the form

R =

n⋃
i=1

(Ui × Vi)

for regular sets Ui ⊆ Σ∗ and Vi ⊆ Γ∗. From the definition, it is obvious
that the above example is a recognizable relation. It is easy to verify that
a relation R is recognizable if, and only if, there is a finite automaton that
reads two words u and v sequentially (e.g., as u$v separated by a unique
marker $), and accepts if (u, v) ∈ R. It directly follows that a recognizable
relation can be uniformized by an ST that first scans the entire input and
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then outputs some word in the matching set of output words (as the one in
Figure 4 does).

Before making the link between large delays in the output and rec-
ognizable relations, we need some notations. For the remainder of this
section, fix an automatic relation R ⊆ Σ∗ × Γ∗ recognized by a DFA
A = (Q, (Σ ∪ {2}) × (Γ ∪ {2}), q0, δ, F ). For simplicity, we assume that
dom(R) = Σ∗. Since dom(R) is a regular language and an ST can test
membership in regular languages, this assumption is not a restriction.

For u ∈ Σ∗ and q ∈ Q, let

Ru
q := {(ux, v) | A : q

(ux)⊗v−−−−−→ F}

be the set of pairs that are accepted from q and where the input component
starts with u. For Rε

q we write Rq, and for Ru
q0 we write Ru.

Our aim is to show that if R can be uniformized by an ST, then there is
a bound on the delay between the input and the output, or the remaining
relation can be uniformized by a recognizable one. This bound will be
chosen such that an input word of this length contains some idempotent
factor w.r.t. to some monoid structure that we define in the following.

For each input word u, we are interested in the types of behavior of A
that can be induced by the input u together with some output (of same
or smaller length). Hence, for each v ∈ Γ∗ with |u| ≥ |v|, we consider
the function (also called state transformation) τu,v : Q → Q defined by

τu,v(q) = p if A : q
u⊗v−−−→ p.

The profile Pu of a word u contains the set of possible state transfor-
mations for the different types of words in the second component (of same
length, shorter, or empty). More formally, Pu = (Pu,=, Pu,<, Pu,ε) with

� Pu,= := {τu,v | v ∈ Γ∗ and |v| = |u|},

� Pu,< := {τu,v | v ∈ Γ+ and |v| < |u|},

� Pu,ε := {τu,v | v = ε} (this set only contains one function but for
consistency of notation, we prefer this definition).

It is not difficult to see that from the profiles of two words u and u′ one can
compute the profile of uu′. Hence, the set of profiles is naturally equipped
with a concatenation operation and a neutral element (the profile of the
empty word), and the mapping that assigns the profile to a word u is a
morphism from Σ∗ to the profile monoid. A word u is called idempotent if
Pu = Puu, that is, if the corresponding monoid element is idempotent.



Uniformization in Automata Theory 19

A consequence of Ramsey’s Theorem (see Diestel (2000)) is that there is
some K ∈ N such that all words u ∈ Σ∗ with |u| ≥ K contain an idempo-
tent factor. With this in mind, the following lemma is a technical statement
formalizing the intuition between long output delays and recognizable rela-
tions.

LEMMA 19 Let q ∈ Q and u, v ∈ Σ+ with v idempotent. If Ruv
q is uni-

formized by an ST T such that |T(uvn)| ≤ |u| for all n ∈ N, then Ruv
q can

be uniformized by a recognizable relation.

Proof. Consider an arbitrary word w ∈ Σ∗. We show that there is x ∈ Γ∗

whose length only depends on u and v such that (uvw, x) ∈ Ruv
q . For

fixed u and v, there are only finitely many such words x and thus, Ruv
q can

be uniformized by a recognizable relation (which can be shown using the
technique from the proof of Proposition 20 below).

Since |T(uvn)| ≤ |u| for each n, the length of T(uvnw) is independent
of n for large n. We can thus choose n such that |T(uvnw)| ≤ |uvn|.
Let y = T(uvnw). We now consider the factorization y = y′y′′ such that
|y′| = |u|. Since v is idempotent, Pv = Pvn , and thus there is some z ∈ Γ∗

with |z| ≤ |v| such that τv,z = τvn,y′′ . Letting x = y′z, we obtain that the
pair (uvw, x) induces the same state transformation on A as (uvnw, y) and
hence (uvw, x) ∈ Ruv

q . �

Lemma 19 basically shows us that we can focus on the construction of
STs in which the output delay is bounded. Once the output delay has to
be larger than this bound, the uniformization task is either impossible or
very simple (reduced to a recognizable relation). The following proposition
shows that we can decide in which cases uniformization by a recognizable
relation is possible.

PROPOSITION 20 It is decidable whether an automatic relation can be
uniformized by a recognizable relation.

Proof. Let R ⊆ Σ∗ × Γ∗ be an automatic relation and let

V := {v ∈ Γ∗ | ∃u ∈ Σ∗ : (u, v) ∈ R and ∀v′ ∈ Γ∗ : (u, v′) ∈ R→ v ≤llex v
′}

be the set of words that are the length-lexicographically least output for
some input. It is easy to verify that V is a regular set (an automaton for V
can be constructed from an automaton for R using the closure properties
of finite automata). We claim that R can be uniformized by a recognizable
relation if, and only if, V is finite (and since V is regular, finiteness of V
can be decided).



20 Arnaud Carayol & Christof Löding

If V is finite, then for each v ∈ V , let Uv consist of those words u ∈ Σ∗

such that v is the length-lexicographically minimal word with (u, v) ∈ R.
Then Uv is regular and

⋃
v∈V Uv × {v} is a recognizable uniformization of

R.
If
⋃n

i=1(Ui×{vi}) is a uniformization of R by a recognizable relation (in
fact, a recognizable function), then consider the set

W := {w ∈ Γ∗ | w ≤llex vi for some i ∈ {1, . . . , n}}.

Since ≤llex is a well-ordering, the set W is finite. Thus, V must also be
finite because V ⊆W . �

We are now ready to describe the decision procedure. Similar to Holt-
mann et al. (2010), we consider a game between two players Input (In) and
Output (Out). The game is played on a game graph such that In plays an
input symbol and Out can react with a finite (possibly empty) sequence of
output symbols. Player In wins the game if for the input sequence u that
he has played so far, Out cannot extend her current output sequence such
that the resulting pair is in R. Our goal is to construct the game graph
such that an ST uniformizing R can be obtained from a winning strategy
of Out.

The vertices of the game graph keep track of the current state of A on
the combined part of the input and output, and possibly of the part of the
input that is currently ahead. Making use of Lemma 19 (see the proof of
Lemma 21 below), we can restrict the game to situations in which the input
is ahead at most 2K steps (where K is such that words of length at least
K contain an idempotent factor, see the description before Lemma 19). It
turns out that we do not have to consider the case in which the output is
ahead.

The game graph GK
A consists of vertices for In and Out and a set of edges

corresponding to the possible moves of the two players:

� VIn := {(q, u) ∈ Q× Σ∗ | |u| ≤ 2K)} is the set of vertices of player In.

� VOut := VIn × {Out} is the set of vertices of player Out.

� From a vertex of In, the following moves are possible:

– (q, u)
a−→ (q, ua,Out) if |u| < 2K and a ∈ Σ

� From a vertex of Out, the following moves are possible:

– (q, u,Out)
b−→ (q′, u′,Out) for each b ∈ Γ such that u = au′ for

a ∈ Σ and q′ = δ(q, (a, b)),
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– (q, u,Out)
ε−→ (q, u),

� The initial vertex is (q0, ε).

The winning condition should express the following property: at each point,
In can extend the output such that the resulting pair of input and output
is in R. For this purpose, we define a set B of bad vertices for player Out
consisting of

1. all (q, u) ∈ VOut such that |u| < 2K and Ru
q is empty, and

2. all (q, u) ∈ VOut such that |u| = 2K and Ru
q cannot be uniformized by

a recognizable relation.

Note that both conditions are decidable for a given vertex ((1) is emptiness
of automatic relations and (2) is decidable by Proposition 20).

The objective of Out is to avoid the vertices in B. Games with an objec-
tive of this kind are usually referred to as safety games because the player
has to stay within the safe region of the game graph.

A play is a maximal path in GK
A starting in the initial vertex. Maximal

means that the path is either infinite or it ends in a vertex without outgoing
edges (a vertex (q, u) with |u| = 2K). Out wins a play if no vertex from B
occurs. A strategy for Out is a function that defines for finite sequences of
moves that end in a vertex of Out the next move to be taken by Out. Such
a strategy is winning if Out wins all plays in which she makes her moves
according to the strategy.

The following lemma reduces our question to the existence of winning
strategies in GK

A .

LEMMA 21 The relation R can be uniformized by an ST if, and only if,
Out has a winning strategy in GK

A .

Proof. Assume that Out has a winning strategy in GK
A . Since GK

A is a
safety game, the player who has a winning strategy also has a positional
one, which means that the next move chosen by the strategy only depends
on the current vertex (see Grädel et al. (2002)). Such a strategy can be
represented by a function σ : VOut → Γ∪{ε} (because the moves of Out are
deterministically labeled by letters in Γ or by ε).

We now describe how to construct the ST T that uniformizes R. Consider
a pair (q, u) such that |u| = 2K and Ru

q can be uniformized by a recognizable
relation. For each such pair we choose an ST Tu

q that uniformizes Ru
q . Then

T consists of the (disjoint) union of the transducers Tu
q and a part that

uses VIn as states. The initial state of Tu
q is identified with (q, u) ∈ VIn. The

transitions of T for some (q, u) ∈ VIn with |u| < 2K is defined as follows.
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Let a ∈ Σ. The strategy σ defines a unique finite sequence of moves of Out
from (q, ua,Out). This sequence of moves corresponds to some finite word
w ∈ Γ∗ and ends in a vertex (p, u′). We define δT((q, u), a) := ((p, u′), w).
Furthermore, we define the final output function f of T by f(q, u) := v for
some v such that (u, v) ∈ Ru

q , which exists since σ is a winning strategy
and thus avoids all vertices in B. It is not difficult to verify that T indeed
defines a uniformization of R.

For the other direction, assume that R is uniformized by some ST T. A
winning strategy for Out basically simulates T on the inputs played by In.
However, it might happen that the output delay in T is larger than 2K or
that for some input sequences the output sequence produced by T might be
longer than the input sequence. These cases are not captured by the game
graph.

To describe the strategy, we split the sequence of moves by In (simply
referred to as input sequence) into blocks ui ∈ Σ∗ of length K. So the
current input sequence is always of the form u1 · · ·unu with |ui| = K and
|u| < K. The strategy produces its output moves that are different from
the ε-move in blocks of K. For the input u1 · · ·unu, it will have produced
output moves v1 · · · vn−1 with |vi| = K. This means that the corresponding
vertex in the game graph is (qn−1, unu) with qn−1 = δ(q0, (u1 · · ·un−1) ⊗
(v1 · · · vn−1)).

The output moves producing vn are played once a vertex
(qn−1, unun+1,Out) is reached (with |unun+1| = 2K). To define vn,
the ST T is not simulated on the original input sequence u1 · · ·unun+1

but on a modification u′1 · · ·u′nu′n+1 that is obtained by repeating some
idempotent factors as follows: We let u′1 = u1. Now assume that u′i is
defined for all 1 ≤ i ≤ n. Let un+1 = xyz with y 6= ε idempotent. Then
u′n+1 = xymz for some m such that |T(u′1 · · ·u′n+1)| ≥ |u′1 · · ·u′n|. If such an
m does not exist, then Lemma 19 implies that R

unun+1
qn−1 can be uniformized

by a recognizable relation. Then Out can move to (qn−1, unun+1) and wins.

Given this definition of the u′i, we define vn as follows: Let v′1 · · · v′n be
the initial part of T(u′1 · · ·u′n+1) such that |v′i| = |u′i|. Since u′n is obtained
from un by repeating an idempotent factor, the profiles of un and u′n are
the same and thus, there is some vn such that un ⊗ vn induces the same
state transformation on A as u′n ⊗ v′n. We pick such a vn, and σ makes K
moves from (qn−1, unun+1,Out) according to the letters in vn, leading to
some (qn, un+1,Out), and then takes the ε-move to (qn, un+1).

To show that this defines a winning strategy for Out, it suffices to show
that (qn, un+1) is not in B. Consider Tf (u′1 · · ·u′n+1), which is of the form
v′1 · · · v′nv′. Since T uniformizes R, we know that (u′1 · · ·u′n+1, v

′
1 · · · v′nv′) ∈

R. Because u′n+1 is obtained from un+1 by repeating an idempotent factor,



Uniformization in Automata Theory 23

there is some v such that un+1 ⊗ v induces the same state transformation
on A as u′n+1 ⊗ v′. In combination with the choice of the vi, we obtain
that u′1 · · ·u′n+1 ⊗ v′1 · · · v′nv′ and u1 · · ·un+1 ⊗ v1 · · · vnv induce the same
state transformation in A and therefore, (u1 · · ·un+1, v1 · · · vnv) ∈ R and
(un+1, v) ∈ Run+1

qn . This shows that (qn, un+1) is not in B. �

Theorem 18 follows from Lemma 21 and the fact that a winning strategy
for Out can effectively be computed in GK

A (see Grädel et al. (2002)).

5 Conclusion

In this paper, we have given an overview of uniformization results for re-
lations defined by various automaton models. Automatic relations can be
uniformized by automatic functions for relations defined over finite words
and trees, as well as for relations over infinite words. For infinite trees, the
uniformization fails, for example for the element relation.

For rational relations, uniformization can be shown by a reduction to
automatic relations using a composition theorem. This technique works for
finite as well as infinite words.

Concerning the uniformization of relations over finite words by subse-
quential transducers, we have presented a decidability result for automatic
relations and an undecidability result for rational relations. It turns out
that compared to the case of automatic relations over infinite words, some
new phenomena arise because of the possible length difference in the input
and output.

One direction for future research is the uniformization of tree relations
beyond automatic relations. For example, there is no canonical adaption
of the notion of rational relations. However, there are various models of
transducers for defining relations over finite trees (see Comon et al. (2007)
and Raoult (1997)), for which uniformization questions can be studied.
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Colcombet, T. & Löding, C. (2007). Transforming structures by set interpreta-
tions. Logical Methods in Computer Science, 3 (2), 1–36, doi:10.2168/LMCS-
3(2:4)2007.

Comon, H., Dauchet, M., et al. (2007). Tree Automata Techniques and Applica-
tions. Available on http://tata.gforge.inria.fr/, last Release: October 12,
2007.

Diestel, R. (2000). Graph Theory. New York: Springer, 2nd edn.

Eilenberg, S. (1974). Automata, Languages and Machines, vol. A. New York: Aca-
demic Press.

Elgot, C. C. & Mezei, J. E. (1965). On relations defined by generalized fi-
nite automata. IBM Journal of Research and Development, 9 (1), 47–68, doi:
10.1147/rd.91.0047.

Engelfriet, J. (1978). On tree transducers for partial functions. Information Pro-
cessing Letters, 7 (4), 170–172.
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