
Higher-order recursion schemes and their automata

models

Arnaud Carayol1 and Olivier Serre2

1LIGM

Université Paris-Est and CNRS

5, boulevard Descartes, Champs-sur-Marne

F-77454 Marne-la-Vallée Cedex 2

email:Arnaud.Carayol@univ-mlv.fr

2IRIF

Université Paris Diderot-Paris 7 and CNRS

Case 7014

F-75205 Paris Cedex 13

email:Olivier.Serre@cnrs.fr

2010 Mathematics Subject Classification: 68Q45 or what is appropriate

Key words: Finite automata or what is appropriate

Contents

1 Introduction 440

2 Preliminaries 445

2.1 Trees and terms . 445

2.2 Labeled transition systems . 446

2.3 Higher-order recursion schemes . 447

2.3.1 Simply typed terms . 447

2.3.2 Recursion schemes . 448

2.3.3 Rewriting system associated with a recursion scheme 449

2.3.4 Value tree of a recursion scheme 450

2.3.5 Labeled recursion schemes . 451

2.3.6 Examples of trees defined by labeled recursion schemes 453

2.4 Higher-order pushdown automata . 456

2.4.1 Higher-order stack and their operations 456

2.4.2 Stacks with links and their operations 457

2.4.3 Higher-order pushdown automata and collapsible automata 458

440 A. Carayol, O. Serre

3 From CPDA to recursion schemes 459

3.1 Term representation of stacks and configurations 459

3.2 The labeled recursion scheme associated with A 462

3.3 Correctness of the representation . 462

4 From recursion schemes to collapsible pushdown automata 465

4.1 Stacks representing terms. 466

4.2 Simulating the LTS of S on stacks . 471

5 Safe higher-order recursion schemes 475

5.1 Safety and the Translation from Schemes to CPDA 476

5.2 Damm’s view of safety . 477

References 477

1 Introduction

The main goal of this chapter is to give a self-contained presentation of the equivalence be-

tween two models: higher-order recursion schemes and collapsible pushdown automata.

Roughly speaking, a recursion scheme is a finite typed term rewriting system and a natu-

ral view of recursion schemes is to be considered generators for (possibly infinite) trees.

Collapsible pushdown automata (CPDA) are an extension of deterministic (higher-order)

pushdown automata and they naturally induce labeled transition systems (LTS). An LTS

is merely a set of relations labeled by a finite alphabet, together with a distinguished el-

ement called the root. Hence unfolding an LTS and contracting silent transitions define

an infinite tree. Applying this construction to CPDA defines a family of trees that ex-

actly coincides with the family of trees defined by higher-order recursion schemes. This

introduction tries to provide the necessary background and motivation for these objects.

Recursive Applicative Program Schemes

Historically, recursion schemes go back to Nivat’s recursive applicative program schemes

[47] that correspond to order-1 recursion schemes in our sense (also see related work by

Garland and Luckham on so-called monadic recursion schemes [30]). We refer the reader

to [24] that, among others things, contains a very detailed and rich history of the topic.

For Nivat, a recursive applicative program scheme is a finite system of equations, each of

the form Fi(x1, . . . , xn) = pi, where the xj are order-0 variables and pi is some order-0
term over the nonterminals (the Fi’s), terminals, and the variables x1, . . . , xk. In Nivat’s

work, a program is a pair: a program scheme together with an interpretation over some

domain. An interpretation gives any terminal a function (of the correct rank) over the

domain. Taking the least fixed point of the rewriting rules of a program scheme gives a

(possibly infinite) term over the terminal alphabet (known as the value of the program in

the free/Hebrand interpretation); applying the interpretation to this infinite term gives the

value of the program. Hence, the program scheme gives the uninterpreted syntax tree of

some functional program that is then fully specified owing to the interpretation.

Nivat also defined a notion of equivalence for program schemes: two schemes are

Higher-order recursion schemes and their automata models 441

equivalent if and only if they compute the same function under every interpretation. Later,

Courcelle and Nivat [19] showed that two schemes are equivalent if and only if they

generate the same infinite term tree. This latter result clearly underscores the importance

of studying the trees generated by a scheme. Following the work by Courcelle [16, 17],

the equivalence problem for schemes is known to be interreducible to the problem of

decidability of language equivalence between deterministic pushdown automata (DPDA).

Research on the equivalence for program schemes was halted until Sénizergues [58, 59]

established the decidability of DPDA equivalence, which therefore also solved the scheme

equivalence problem. Sénizegues’ proof was later simplified and improved by Stirling

[62, 60]. For more insight about this topic, we refer the reader to [61].

Extension of Schemes to Higher Orders

A recursive function is said to be of higher-order if it takes arguments that are them-

selves functions. In Nivat’s program scheme, both the nonterminals and the variables

have order-0. Therefore, they cannot be used to model higher-order recursive programs.

In the late 1970s, there was a substantial effort in extending program schemes in order to

capture higher-order recursion [35, 20, 21, 27, 28]. Note that evaluation, i.e., computing

the value of a scheme in some interpretation, has been a very active topic, in particular

because different evaluation policies, e.g., call by name (OI) or call by value (IO), lead

to different semantics [27, 28, 22]. In a very influential paper [22], Damm introduced

order-n λ-schemes and extended the previously mentioned result of Courcelle and Ni-

vat. Damm’s schemes mostly coincide with the safe fragment of recursion schemes as

we define them later in this chapter. Note that at that time there was no known model of

automata equi-expressive with Damm’s scheme; in particular, there was no known reduc-

tion of the equivalence problem for schemes to a language equivalence problem for (some

model of) automata.

Later, Damm and Goerdt [22, 23] considered the word languages generated by level-

n λ-schemes and they showed that they coincide with a hierarchy previously defined by

Maslov [44, 45]. To define his hierarchy Maslov introduced higher-order pushdown au-

tomata (higher-order PDA). He also gave an equivalent definition of the hierarchy in terms

of higher-order indexed grammars. In particular, Maslov’s hierarchy offers an attractive

classification of the semi-decidable languages: orders 0, 1 and 2 are, respectively, the

regular, context-free, and indexed languages, though little is known about languages at

higher orders (see [34] for recent results on this topic). Later, Engelfriet [25, 26] con-

sidered the characterisation of complexity classes by higher-order pushdown automata.

In particular, he showed that alternating pushdown automata characterise deterministic

iterated exponential time complexity classes.

Higher-Order Recursion Schemes as Generators of Infinite

Structures

Since the late 1990s there has been a strong interest in infinite structures admitting finite

descriptions (either internal, algebraic, logical or transformational), mainly motivated by

442 A. Carayol, O. Serre

applications to program verification. See [5] for an overview about this topic. The central

question is model-checking: given some presentation of a structure and some formula,

decide whether the formula holds. Of course, here decidability is a trade-off between the

richness of the structure and the expressivity of the logic.

Of special interest are tree-like structures. Higher-order PDA as a generating device

for (possibly infinite) labelled ranked trees were first studied by Knapik, Niwiński and

Urzyczyn [37]. As in the case of word languages, an infinite hierarchy of trees is defined

according to the order of the generating PDA; lower orders of the hierarchy are well-

known classes of trees: orders 0, 1 and 2 are respectively the regular [53], algebraic [18],

and hyperalgebraic trees [36]. Knapik et al. considered another method of generating such

trees, namely by higher-order (deterministic) recursion schemes that satisfy the constraint

of safety. A major result in their work is the equi-expressivity of both methods as tree

generators. In particular, it implies that the equivalence problem for higher-order safe

recursion schemes is interreducible to the problem of decidability of language equivalence

between deterministic higher-order PDA.

An alternative approach was developed by Caucal, who introduced [15] two infinite

hierarchies, one made of infinite trees and the other made of infinite graphs, defined by

means of two simple transformations: unfolding, which goes from graphs to trees, and

inverse rational mapping (or MSO-interpretation [14]), which goes from trees to graphs.

He showed that the tree hierarchy coincides with the trees generated by safe schemes.

However the fundamental question open since the early 1980s of finding a class of

automata that characterises the expressivity of higher-order recursion schemes was left

open. Indeed, the results of Damm and Goerdt, as well as those of Knapik et al. may

only be viewed as attempts to answer the question, as they have both had to impose

the same syntactic constraints on recursion schemes, called of derived types and safety,

respectively, in order to establish their results.

A partial answer was later obtained by Knapik, Niwiński, Urzyczyn, and Walukiewicz,

who proved that order-2 homogeneously-typed (but not necessarily safe) recursion sche-

mes are equi-expressive with a variant class of order-2 pushdown automata called panic

automata [38].

Finally, Hague, Murawski, Ong, and Serre gave a complete answer to the question in

[32]. They introduced a new kind of higher-order pushdown automata, which generalizes

pushdown automata with links [2], or equivalently panic automata, to all finite orders,

called collapsible pushdown automata (CPDA), in which every symbol in the stack has

a link to a (necessarily lower-ordered) stack situated somewhere below it. A major result

of their paper is that for every n > 0, order-n recursion schemes and order-n CPDA are

equi-expressive as generators of trees.

Decidability of Monadic Second Order Logic

This quest for finding an alternative description of those trees generated by recursion

schemes took place in parallel with the study of the decidability of the model-checking

problem for monadic second-order logic (MSO) and modal µ-calculus (see [63, 3, 31,

29] for background about these logics and connections with finite automata and games).

Decidability of the MSO theories of trees generated by safe schemes was established by

Higher-order recursion schemes and their automata models 443

Knapik, Niwiński and Urzyczyn [37] and then Caucal [15] proved a stronger decidability

result that holds on graphs as well. The decidability for order-2 unsafe schemes follows

from [38] and was obtained thanks to the equi-expressivity with panic automata. This

result was independently obtained in [2] with similar techniques.

In 2006, Ong showed the decidability of MSO for arbitrary recursion schemes [48],

and established that this problem is n-EXPTIME complete. This result was obtained

using tools from innocent game semantics (in the sense of Hyland and Ong [33]) and

does not rely on an equivalent automata model for generating trees.

Thanks to their equi-expressivity result, Hague et al. provided an alternative proof

of the MSO decidability for schemes. Indeed, thanks to the equi-expressivity between

schemes and CPDA together with the well-known connections between MSO model-

checking (for trees) and parity games, the model-checking problem for schemes is in-

terreducible to the problem of deciding the winner in a two-player perfect information

turn-based parity game played over the LTS (i.e., transition graph) associated with a

CPDA. They extended the techniques and results of Walukiewicz (for pushdown games)

[64], Cachat (for higher-order pushdown) [11] (also see [12] for a more precise study on

higher-order pushdown games) and the one from Knapik et al. [38]. These techniques

were later extended by Broadbent, Carayol, Ong, and Serre to establish stronger results

on schemes — in particular closure under MSO marking [8] — and later by Carayol and

Serre to prove that recursion schemes enjoy the effective MSO selection property [13].

Some years later, following initial ideas by Aehlig [1], Kobayashi [40], and Kobaya-

shi-Ong [43] gave another proof of the decidability of MSO. The proof consists of show-

ing that one can associate, with any scheme and formula, a typing system (based on in-

tersection types) such that the scheme is typable in this system if and only if the formula

holds. Typability is then reduced to solving a parity game.

Using the λY -calculus and Krivine Machines, Salvati and Walukiewicz proposed an

alternative approach for the decidability of MSO, as well as, a new proof for the equiv-

alence between schemes and CPDA [55, 56]. In particular, the translation from schemes

to CPDA is very similar to the one that we present in this chapter and was independently

obtained by the authors in [13].

Recently, Parys established decidability of weak-MSO logic extended by the unbound-

ing quantifier (WMSO+U), for schemes [52].

Verification of Higher-Order Programs

Functional languages such as Haskell, OCaML and Scala strongly encourage the use of

higher-order functions. This represents a challenge for software verification, which usu-

ally does not model recursion accurately, or models only first-order calls (e.g., SLAM [4]

and Moped [57]). However higher-order recursion schemes offer a way of abstracting

functional programs in a manner that precisely models higher-order control-flow, and be-

cause of the µ-calculus/MSO decidability results for them, it opened a very active line of

research toward the verification of higher-order programs.

Even reachability properties (subsumed by the µ-calculus) are very useful in practice:

indeed, as a simple example, the safety of incomplete pattern matching clauses could be

checked by asking whether the program can reach a state where a pattern match failure

444 A. Carayol, O. Serre

occurs. More complex reachability properties can be expressed using a finite automaton

and could, for example, specify that the program respects a certain discipline when ac-

cessing a particular resource (see [42] for a detailed overview of the field). Despite even

reachability being (n − 1)-EXPTIME complete, recent research has revealed that useful

properties of HORS can be checked in practice.

Kobayashi’s TRecS [39] tool, which checks properties expressible by a deterministic

trivial Büchi automaton (all states accepting), was the first to demonstrate model-checking

of schemes was possible in practice. It works by determining whether a HORS is typable

in an intersection type system characterising the property to be checked [42]. In a bid to

improve scalability, a number of other algorithms have subsequently been designed and

implemented, such as Kobayashi’s GTRecS(2) [41] and Neatherway, Ramsay, and Ong’s

TravMC [46] tools, all based on intersection type inference.

Another approach, providing a fresh set of tools that contrast with previous intersec-

tion type techniques, was developed by Broadbent, Carayol, Hague and Serre, relying on

an automata-theoretic perspective [9]. Their idea is to start from a recursion scheme and

to translate it to an equivalent CPDA, and then perform the verification on the latter. In or-

der to avoid state explosion, they used saturation methods (that were well known to work

successfully for pushdown systems [57]) together with an initial forward analysis. This

lead to the C-SHORe tool, which is the first model-checking tool for the (direct) analysis

of collapsible pushdown systems.

Since C-SHORe was released, two new tools were developed. Broadbent and Kobaya-

shi introduced HorSat (later subsumed by HorSat2), which is an application of the satura-

tion technique and initial forward analysis directly to intersection type analysis of recur-

sion schemes [10]. Secondly, Ramsay, Neatherway and Ong introduced Preface [54], us-

ing a type-based abstraction-refinement algorithm that attempts to simultaneously prove

and disprove the property of interest. Both HorSat2 and Preface perform significantly

better than previous tools.

Structure of this Chapter

Higher-order recursion schemes are a very rich domain and we had to make some choices

for both the presentation and the content of this chapter. We decided to devote a large

part to the equi-expressivity result between recursion schemes and collapsible pushdown

automata. Indeed, it was a longstanding open question in the field; it allowed providing

an automata-based proof of the decidability of MSO for recursion schemes; and it gives

a tool to who wants to tackle the equivalence problem for recursion schemes (which is

interreducible to language equivalence for deterministic CPDA). The presentation of the

proof we give is novel and can be thought as a simplification of the original proof in

[32]. First, it introduces an alternative definition of schemes called labeled recursion

schemes by means of labeled transition systems. In these labeled transition systems, the

domain is composed of the ground terms built using the non-terminal of the scheme;

the relations come from the rewriting rules of the schemes and are labeled by terminals.

Second, it presents a transformation from a recursion scheme to a CPDA, which only uses

basic automata techniques, and does not appeal to objects from game semantics such as

traversals. Nevertheless, it is important to stress that, even if concepts like traversals are

Higher-order recursion schemes and their automata models 445

no longer present in our proof, the key ideas come from [32] and the CPDA one derives

from a scheme is the same as the one defined in [32].

The article is organised as follows. Section 2 introduces the main concepts — schemes

and CPDA — together with examples. Then in Section 3 we give a transformation from

CPDA to schemes and in Section 4 we provide the converse transformation. Finally,

Section 5 is devoted to the notion of safety.

2 Preliminaries

2.1 Trees and terms

Let A be a finite alphabet. We let A∗ denote the set of finite words over A, and we refer

to a subset of A∗ as a language over A. A tree t with directions in A (or simply a tree if

A is clear from the context) is a non-empty prefix-closed subset of A∗. Elements of t are

called nodes and ε is called the root of t. For a node u ∈ t, the subtree of t rooted at u,

denoted tu, is the tree {v ∈ A∗ | u · v ∈ t}. We let Trees∞(A) denote the set of trees

with directions in A.

A ranked alphabet A is an alphabet together with an arity function, ̺ : A → N. The

terms built over a ranked alphabet A are those trees with directions

−→
A

def
=

⋃

f∈A

−→
f where

−→
f = {f1, . . . , f̺(f)} if ̺(f) > 0 and

−→
f = {f} if ̺(f) = 0.

For a tree t ∈ Trees∞(
−→
A) to be a term, we require, for all nodes u, that the set Au =

{d ∈
−→
A | ud ∈ t} is empty if and only if u ends with some f ∈ A (hence ̺(f) = 0) and

if Au is non-empty, then it is equal to some
−→
f for some f ∈ A. We let Terms(A) denote

the set of terms over A.

For c ∈ A of arity 0, we let c denote the term {ε, c}. For f ∈ A of arity n > 0 and

for terms t1, . . . , tn, we let f(t1, . . . , tn) denote the term {ε} ∪
⋃

i∈[1,n]{fi} · ti. These

notions are illustrated in Figure 1.

•

•

•

•

•

•

c

f1 f2
•

•

c

f1 f2
f

f

•

c

c

Figure 1. Two representations of the infinite term f∗2 {f1c, f1, ε} =
f(c, f(c, f(· · ·))) over the ranked alphabet {f, c}, assuming that ̺(f) = 2 and

̺(c) = 0.

446 A. Carayol, O. Serre

2.2 Labeled transition systems

A rooted labeled transition system is an edge-labeled directed graph with a distinguished

vertex, called the root. Formally, a rooted labeled transition system L (LTS for short) is a

tuple 〈D, r,Σ, (
a

−→)a∈Σ 〉, where D is a finite or countable set called the domain, r ∈ D

is a distinguished element called the root, Σ is a finite set of labels, and for all a ∈ Σ,
a

−→⊆ D ×D is a binary relation on D.

For any a ∈ Σ and any pair (s, t) ∈ D2 we write s
a

−→ t to indicate that (s, t) ∈
a

−→, and

we refer to it as an a-transition with source s and target t. For a wordw = a1 · · · an ∈ Σ∗,

we define a binary relation
w

−→ on D by letting s
w

−→ t (meaning that (s, t) ∈
w

−→) if

there exists a sequence s0, . . . , sn of elements in D such that s0 = s, sn = t, and for all

i ∈ [1, n], si−1
ai−→ si. These definitions are extended to languages over Σ by taking, for

all L ⊆ Σ∗, the relation
L

−→ to be the union of all
w

−→ for w ∈ L.

When considering LTS associated with computational models, it is usual to allow

silent (or internal) transitions. The symbol for silent transitions is usually ε but here, to

avoid confusion with the empty word, we will use λ instead. Following [60, p. 31],

we forbid a vertex to be the source of both a silent transition and a non-silent transition.

Formally, an LTS with silent transitions is an LTS 〈D, r,Σ, (
a

−→)a∈Σ 〉 whose set of labels

contains a distinguished symbol, denoted λ ∈ Σ and such that for all s ∈ D, if s is the

source of a λ-transition, then s is not the source of any a-transition with a 6= λ. We let Σλ

denote the set Σ \ {λ} of non-silent transition labels. For all words w = a1 · · · an ∈ Σ∗
λ,

we let
w

=⇒ denote the relation
Lw−→, where Lw

def
= λ∗a1λ

∗ · · ·λ∗anλ
∗ is the set of words

over Σ obtained by inserting arbitrarily many occurrences of λ in w.

An LTS (with silent transitions) is said to be deterministic if for all s, t1 and t2 in D
and all a in Σ, if s

a
−→ t1 and s

a
−→ t2, then t1 = t2.

Caveat 2.1. From now on, we always assume that the LTS we consider are deterministic.

We associate a tree with every LTS with silent transitions L, denoted Tree(L), with

directions in Σλ, reflecting the possible behaviours of L starting from the root. For this we

let Tree(L)
def
= {w ∈ Σ∗

λ | ∃s ∈ D, r
w

=⇒ s}. As L is deterministic, Tree(L) is obtained

by unfolding the underlying graph of L from its root and contracting all λ-transitions.

Figure 2 presents an LTS with silent transitions together with its associated tree Tree(L).
As illustrated in Figure 2, the tree Tree(L) does not reflect the diverging behaviours of

L (i.e., the ability to perform an infinite sequence of silent transitions). For instance in the

LTS of Figure 2, the vertex s diverges, whereas the vertex t does not. A more informative

tree can be defined in which diverging behaviours are indicated by a ⊥-child for some

fresh symbol ⊥. This tree, denoted Tree⊥(L), is defined by letting

Tree⊥(L)
def
= Tree(L) ∪ {w⊥ ∈ Σ∗

λ⊥ | ∀n > 0, r
wλn

=⇒ sn for some sn}.

Higher-order recursion schemes and their automata models 447

r

t

u
λ

s

a b
c

λ

•

•

•

•

•

•

a b

c

•

a b
•

•

•

•

•

•

•

⊥

a b

c

•

•

⊥

a b

Figure 2. An LTS L with silent transitions of root r (on the left), the tree Tree(L)
(in the center) and the tree Tree⊥(L) (on the right).

2.3 Higher-order recursion schemes

Recursion schemes are grammars for simply typed terms, and they are often used to gen-

erate a possibly infinite term. Hence before introducing recursion schemes, we start with

some necessary definitions about simply typed terms.

Also note that recursion schemes are not traditionally associated with an LTS. Hence

we start with the standard definition of recursion schemes as generators for infinite terms,

and then we provide an alternative definition based on LTS.

2.3.1 Simply typed terms Types are generated by the grammar τ ::= o | τ → τ . Every

type τ 6= o can be uniquely written as τ1 → (τ2 → · · · (τn → o) . . .) where n > 0 and

τ1, . . . , τn are types. The number n is the arity of the type and is denoted by ̺(τ). To

simplify the notation, we adopt the convention that the arrow is associative to the right

and we write τ1 → · · · → τn → o (or (τ1, . . . , τn, o) to save space).

Intuitively, the base type o corresponds to base elements (such as int in ML). An

arrow type τ1 → τ2 corresponds to a function taking an argument of type τ1 and returning

an element of type τ2. Even if there are no specific types for functions taking more than

one argument, those functions are represented in their curried form. Indeed, a function

taking two arguments of type o and returning a value of type o, in its curried form, has the

type o → o → o = o → (o → o); intuitively, the function only takes its first argument

and returns a function expecting the second argument and returning the desired result.

The order measures the nesting of a type. Formally one defines ord(o) = 0 and

ord(τ1 → τ2) = max(ord(τ1)+ 1, ord(τ2)). Alternatively for a type τ = (τ1, . . . , τn, o)
of arity n > 0, the order of τ is the maximum of the orders of the arguments plus one,

i.e., ord(τ) = 1 +max{ord(τi) | 1 6 i 6 n}.

Example 2.1. The type o → (o → (o → o)) has order 1 while the type ((o → o) →
o) → o has order 3.

Let X be a set of typed symbols. For every symbol f ∈ X , and every type τ , we write

448 A. Carayol, O. Serre

f : τ to mean that f has type τ . The set of applicative terms1 of type τ generated from

X , denoted Termsτ (X), is defined by induction over the following rules. If f : τ is an

element of X then f ∈ Termsτ (X); if s ∈ Termsτ1→τ2(X) and t ∈ Termsτ1(X) then

the applicative term obtained by applying t to s, denoted s t, belongs to Termsτ2(X). For

every applicative term t, and every type τ , we write t : τ to mean that t is an applicative

term of type τ . By convention, the application is considered to be left-associative, and

thus we write t1t2t3 instead of (t1t2)t3 .

Example 2.2. Assuming that f and g are two function symbols of respective types (o →
o) → o → o and o → o and c is a constant symbol of type o, we have

g c : o, f g : o → o, f g c = (f g) c : o, f (f g) c : o.

The set of subterms of t, denoted Subs(t), is inductively defined by Subs(f) = {f}
for f ∈ X and Subs(t1 t2) = Subs(t1) ∪ Subs(t2) ∪ {t1 t2}. The subterms of the term

f (f g) c : o in Example 2.2 are f (f g) c , f , f g , f (f g) , c and g. A less permissive

notion is that of argument subterms of t, denoted ASubs(t), which only keep those sub-

terms that appear as an argument. The set ASubs(t) is inductively defined by letting

ASubs(t1t2) = ASubs(t1) ∪ ASubs(t2) ∪ {t2} and ASubs(f) = ∅ for f ∈ X . In par-

ticular if t = Ft1 · · · tn, ASubs(t) = ∪n
i=1(ASubs(ti) ∪ {ti}). The argument subterms

of f (f g) c : o are f g , c and g. In particular, for all terms t, one has |ASubs(t)| < |t|.

Fact 1. Any applicative term t over X can be uniquely written as F t1 · · · tn where F is

a symbol in X of arity ̺(F) > n and ti are applicative terms for all i ∈ [1, n]. More-

over if F has type (τ1, . . . , τ̺(F), 0) ∈ X , then for all i ∈ [1, n], ti has type τi and

t : (τn+1, . . . , τ̺(F), 0).

Remark 2.2. In the following, we will simply write “term” instead of “applicative term”

and let Terms(X) denote the set of applicative terms of ground type over X . It should

be clear from the context if we are referring to applicative terms over a typed alphabet

or terms over a ranked alphabet. Of course, a ranked alphabet A can be seen as a typed

alphabet by assigning the type o→ · · · → o→
︸ ︷︷ ︸

̺(f)

o to every symbol f of A. In particular,

every symbol in A has order 0 or 1. The finite terms over A (seen as a ranked alphabet)

are in bijection with the applicative ground terms over A (seen as a typed alphabet).

2.3.2 Recursion schemes For each type τ , we assume an infinite set Vτ of variables of

type τ , such that Vτ1 and Vτ2 are disjoint whenever τ1 6= τ2, and we write V for the union

of those sets Vτ as τ ranges over types. We use letters x, y, ϕ, ψ, χ, ξ, . . . to range over

variables.

A (deterministic) recursion scheme is a 5-tuple S = 〈A,N,R, Z,⊥〉 where

• A is a ranked alphabet of terminals and ⊥ is a distinguished terminal symbol of

arity 0 (and hence of ground type) that does not appear in any production rule,

• N is a finite set of typed non-terminals; we use upper-case letters F,G,H, . . . to

range over non-terminals,

1which should not be confused with terms over a ranked alphabet (cf. Remark 2.2).

Higher-order recursion schemes and their automata models 449

• Z ∈ N is a distinguished initial symbol of type o which does not appear in any

right-hand side of a production rule,

• R is a finite set of production rules, one for each non-terminal F : (τ1, · · · , τn, o),
of the form

F x1 · · · xn → e

where the xi are distinct variables with xi : τi for i ∈ [1, n] and e is a ground term

in Terms((A \ {⊥}) ∪ (N \ {Z}) ∪ {x1, . . . , xn }). Note that the expressions on

both sides of the arrow are terms of ground type.

The order of a recursion scheme is defined to be the highest order of (the types of) its

non-terminals.

2.3.3 Rewriting system associated with a recursion scheme A recursion scheme S
induces a rewriting relation, denoted →S , over Terms(A ∪N). Informally, →S replaces

any ground subterm F t1 · · · t̺(F) starting with a non-terminal F by the right-hand side of

the production rule F x1 · · · xn → e in which the occurrences of the “formal parameter”

xi are replaced by the actual parameter ti for i ∈ [1, ̺(F)].
The term M [t/x] obtained by replacing a variable x : τ by a term t : τ over A∪N in

a term M over A ∪N ∪ V is defined2 by induction on M by taking

(t1 t2)[t/x] = t1[t/x] t2[t/x],
ϕ[t/x] = ϕ for ϕ ∈ A ∪N ∪ V if ϕ 6= x,
x[t/x] = t.

The rewriting system →S is defined by induction using the following rules:

• (Substitution) Ft1 · · · tn →S e[t1/x1, . . . , tn/xn] where Fx1 · · ·xn → e is a pro-

duction rule of S .

• (Context) If t→S t
′ then (st) →S (st′) and (ts) →S (t′s).

Example 2.3. Consider S , the order-2 recursion scheme with the set of non-terminals

{Z : o, H : (o, o), F : ((o, o, o), o)}, variables {z : o, ϕ : (o, o, o)}, terminals A =
{f, a} of arity 2 and 0 respectively, and the following rewrite rules:

Z → f(H a)(F f)
H z → H (H z)
F ϕ → ϕa (F ϕ)

The figure below depicts the first rewriting steps of →S , starting from the initial symbolZ.

2Note that t does not contain any variables and hence we do not need to worry about capture of variables.

450 A. Carayol, O. Serre

Z

f

F

f

H

a

f

f

F

f

a

H

a

f

F

f

H

H

a

f

f

f

F

f

a

a

H

a

f

f

F

f

a

H

H

a

f

F

f

H

H

H

a

As illustrated above, the relation →S is confluent, i.e., for all ground terms t,t1 and

t2, if t →∗
S t1 and t →∗

S t2 (here →∗
S denotes the transitive closure of →S), then there

exists t′ such that t1 →∗
S t

′ and t2 →∗
S t

′. The proof of this statement is similar to proof

of the confluence of the lambda-calculus [6].

2.3.4 Value tree of a recursion scheme Informally the value tree of (or the tree gen-

erated by) a recursion scheme S , denoted [[S]], is a (possibly infinite) term, constructed

from the terminals in A, that is obtained as the “limit” of the set of all terms that can

obtained by iterative rewriting from the initial symbol Z.

The terminal symbol ⊥ : o is used to formally restrict terms over A ∪ N to their

terminal symbols. We define a map (·)⊥ : Terms(A ∪ N) −→ Terms(A) that takes an

applicative term and replaces each non-terminal, together with its arguments, by ⊥ : o.

We define (·)⊥ inductively as follows, where a ranges over A-symbols, and F over non-

terminals in N :

a⊥ = a,

F⊥ = ⊥,

(st)⊥ =

{

⊥ if s⊥ = ⊥,

(s⊥t⊥) otherwise.

Clearly if t ∈ Terms(A∪N) is of ground type then t⊥ ∈ Terms(A) is of ground type as

well.

Terms built over A can be partially ordered by the approximation ordering 4 defined

for all terms t and t′ over A by t 4 t′ if t∩ (
−→
A \{⊥})∗ ⊆ t′. In other terms, t′ is obtained

from t by substituting some occurrences of ⊥ by arbitrary terms over A.

The set of terms overA together with 4 form a directed complete partial order, mean-

Higher-order recursion schemes and their automata models 451

ing that any directed3 subset D of Terms(A) admits a supremum, denoted supD.

Clearly if s →S t then s⊥ 4 t⊥. The confluence of the relation →S implies that the

set { t⊥ | Z →∗
S t } is directed. Hence the value tree of (or the tree generated by) S can

be defined as its supremum,

[[S]] = sup{ t⊥ | Z →∗
S t }.

We write RecTreenA for the class of value trees [[S]], where S ranges over order-n
recursion schemes.

Example 2.4. The value tree of the recursion scheme S of Example 2.3 is as follows:

f

f

f

f

f

•a

a

a

a

⊥

= sup { ⊥ , f

⊥⊥

, f

f

⊥a

⊥

, . . . }

Remark 2.3. The relation →S is unrestricted, in the sense that any ground subterm start-

ing with a non-terminal can be rewritten. A more constrained rewriting policy referred to

as outermost-innermost (OI) only allows rewriting a ground non-terminal subterm if it is

not below any non-terminal symbols (i.e., it is outermost) [22]. The corresponding rewrit-

ing relation is denoted →S,OI. Note that using →S,OI instead of →S does not change the

value tree of the scheme, i.e., sup{ t⊥ | Z →∗
S t } = sup{ t⊥ | Z →∗

S,OI t }.

Another rewriting policy referred to as innermost-outermost (IO) only allows rewriting

a ground non-terminal subterm if this subterm does not contain a ground non-terminal

as subterm (i.e., it is innermost) [22]. The corresponding rewriting relation is denoted

→S,IO. Note that using →S,IO instead of →S may change the value tree of the scheme.

Indeed, consider as an example the recursion scheme S ′ obtained from the scheme S in

Example 2.3 by replacing its first production rule by the following two rules:

Z → K (H a)(F f)

K xy → f x y

Hence, we just added an intermediate non-terminal K, and one easily checks that [[S]] =
[[S ′]]. As the non-terminal H is not productive, following the IO policy, the second

production rule will never be used, and therefore sup{ t⊥ | Z →∗
S′,IO t } = ⊥.

2.3.5 Labeled recursion schemes A labeled recursion scheme is a recursion scheme

without terminal symbols but whose productions are labeled by a finite alphabet. This

slight variation in the definition allows us to associate a LTS with every labeled recursion

scheme.

A deterministic labeled recursion scheme is a 5-tuple S = 〈Σ, N,R, Z,⊥〉 where

3A set D is directed if D is not empty and for all x, y ∈ D, there exists z ∈ D such that x 4 z and y 4 z)

452 A. Carayol, O. Serre

Z

f

F

f

H

a

λ

F

f

H

a

f2

f1

f

F

f

a

H

H

a

λ

λ

a

· · ·

· · ·

f1

f2

λ

X
a

Z
λ

−→ f (H a) (F f) a
a

−→ X

H z
λ

−→ H (H z) f x y
f1
−→ x

F ϕ
λ

−→ ϕa (F ϕ) f x y
f2
−→ y

Figure 3. A labeled recursion scheme generating the same term as the scheme of

Example 2.3.

• Σ is a finite set of labels and ⊥ is a distinguished symbol in Σ,

• N is a finite set of typed non-terminals; we use upper-case letters F,G,H, . . . to

range over non-terminals,

• Z : o ∈ N is a distinguished initial symbol which does not appear in any right-hand

side,

• R is a finite set of production rules of the form

F x1 · · · xn
a

−→ e

where a ∈ Σ \ {⊥}, F : (τ1, · · · , τn, o) ∈ N , the xi are distinct variables, each xi
is of type τi, and e is a ground term over (N \ {Z}) ∪ {x1, . . . , xn }.

In addition, we require that there is at most one production rule starting with a given

non-terminal and labeled by a given symbol.

The LTS associated with S has the set of ground terms over N as domain, the initial

symbol Z as root, and, for all a ∈ Σ, the relation
a

−→ is defined by

F t1 · · · t̺(F)
a

−→ e[t1/x1, . . . , t̺(F)/x̺(F)] if F x1 · · · xn
a

−→ e is a production rule.

The tree generated by a labeled recursion scheme S , denoted Tree⊥(S), is the tree Tree⊥

of its associated LTS. To use labeled recursion schemes to generate terms over a ranked

alphabet A, it is enough to enforce that for every non-terminal F ∈ N :

• either there is a unique production starting with F which is labeled by λ,

• or there is a unique production starting with F which is labeled by some symbol c
of arity 0 and whose right-hand side starts with a non-terminal that comes with no

production rule in the scheme,

• or there exists a symbol f ∈ A with ̺(f) > 0 such that the set of labels of produc-

tion rules starting with F is exactly
−→
f .

Recursion schemes and labeled recursion schemes are equi-expressive for generating

terms.

Higher-order recursion schemes and their automata models 453

Theorem 2.4. The recursion schemes and the labeled recursion schemes generate the

same terms. Moreover the translations are linear and preserves order and arity.

Proof. Let S = 〈A,N,R, Z,⊥〉 be a recursion scheme. We define a labeled recursion

scheme S ′ = 〈
−→
A,N ′,R′, Z,⊥〉 generating the term [[S]]. For each terminal symbol

f ∈ A, we introduce a non-terminal symbol, denoted f : o→ · · · → o→
︸ ︷︷ ︸

̺(f)

o. The set of

non-terminal symbols of S ′ is N ∪{f | f ∈ A}∪{X}, where X is assumed to be a fresh

non-terminal. With a term t over A ∪ N , we associate the term t over N ′ obtained by

replacing every occurrence of a terminal symbol f by its nonterminal counterpart f . The

production rules of S ′ are as follows:

{F x1 · · · xn
λ

−→ e | F x1 · · · xn −→ e ∈ R}

∪ {f x1 · · · x̺(f)
fi
−→ xi | f ∈ A with ̺(f) > 0 and i ∈ [1, ̺(f)]}

∪ {c
c

−→ X | c ∈ A with ̺(c) = 0}.

Conversely, letA be ranked alphabet and let S = 〈
−→
A,N,R, Z,⊥〉 be a labeled recur-

sion scheme respecting the syntactic restrictions mentioned above. We define a recursion

scheme S ′ = 〈A,N,R′, Z,⊥〉 generating the same term as S . The set of production

rules of S ′ are defined as follows:

• If F x1 · · · xn
λ

−→ e belongs to R (in this case it is the only rule starting with F)

then F x1 · · · xn → e belongs to R′.

• If, for some c of arity 0, F x1 · · · xn
c

−→ e belongs to R (in this case it is the

only rule starting with F and e starts with a non-terminal that has no rule in R) then

F x1 · · · xn → c belongs to R′.

• If, for some f ∈ A of arity ̺(f) > 0, F x1 · · · xn
fi
−→ ei belongs to R for all

1 6 i 6 ̺(f), then F x1 · · · xn → f e1 · · · e̺(f) belongs to R′.

2.3.6 Examples of trees defined by labeled recursion schemes In this section, we pro-

vide some examples of trees defined by labeled recursion schemes. Given a language L
over Σ, we let Pref(L) denote the tree in Trees∞(Σ) containing all prefixes of words

in L.

The tree Pref({anbn | n > 0}). Let us start with the tree T0 corresponding to the

deterministic context-free language Pref({anbn | n > 0}). As is the case for all prefix-

closed deterministic context-free languages (see [16, 17] or Theorem 4.8 at order 1) , T0
is generated by an order-1 scheme S0.

Z
a

−→ HX H x
a

−→ H (B x)

B x
b

−→ x H x
b

−→ x

with Z,X : o and H,B : o→ o.

The tree generated by S0 is given below:

454 A. Carayol, O. Serre

Z H X

X

H (BX)

BX

X

H (B (BX))

B (BX)

BX

X

· · ·
a a

b

a

b

b

b

b

b

a

The tree Pref({anbncn | n > 0). Using order-2 schemes, it is possible to go beyond de-

terministic context-free languages and define, for instance the tree T1 = Pref({anbncn |
n > 0}). Consider the order-2 scheme S1 given by:

Z
a

−→ F I (K C I) F ϕψ
a

−→ F (KBϕ) (K C ψ)

B x
b

−→ x F ϕψ
b

−→ ψ(ϕX)

C x
c

−→ x K ϕψ x
λ

−→ ϕ(ψ(x))

I x
λ

−→ x

with Z,X : o, B,C, I : o → o, F : ((o → o), (o → o), o) and K : ((o → o), (o →
o), o, o).

Intuitively, the non-terminal K plays the role of the composition of functions of type

o → o (i.e., for any terms F1, F2 : o → o and t : o, K F1 F2t
λ

−→ F1(F2 t)). For any

term G : o→ o, we define Gn for all n > 0 by taking G0 = I and Gn+1 = KGGn. For

any ground term t, Gn t behaves as G (· · · (G
︸ ︷︷ ︸

n

(It)) · · ·) and, in particular BnX
bn

=⇒ X .

For all n > 0, we have

Z
an

−→ F Bn−1 Cn b
−→ Cn(Bn−1X)

bn−1cn

=⇒ X.

The tree Pref({ancb2
n

| n > 0}). Following the same ideas as for S1, the order-2

scheme Sexp given below defines the tree Texp = Pref({ancb2
n

| n > 0}).

Z
λ

−→ F B F ϕ
a

−→ F (Dϕ) Dϕx
λ

−→ ϕ (ϕx)

B x
b

−→ x F ϕ
c

−→ ϕX

with Z,X : o, B : o → o, D : (o → o, o, o) and F : (o → o, o). If we let DnB denote

the term of type o → o defined by D0B = B and Dn+1B = D (DnB) for n > 0, we

have Z
an

=⇒ F DnB. As, intuitively, D doubles its argument, DnB behaves like B2n

for n > 0. In particular, DnBX reduces by b2
n

to X .

For all n > 0, we have

Z
an

=⇒ F DnB
c

−→ DnBX
b2

n

=⇒ X.

The trees corresponding to the tower of exponentials of height k. At order k+ 1 > 1,

we can define the tree Texpk
= Pref({an c bexpk(n) | n > 0}) where we let exp0(n) = n

and expk+1(n) = 2expk(n) for k > 0. We illustrate the idea by giving an order-3 scheme

Higher-order recursion schemes and their automata models 455

generating Texp2
= Pref({an c b2

2n

| n > 0}).

Z
λ

−→ F D1 F ψ
a

−→ F (D2 ψ) D2 ψ ϕx
λ

−→ (ψ(ψ ϕ))x

B x
b

−→ x F ϕ
c

−→ ϕBX D1 ψ x
λ

−→ ψ (ψ x)

with Z,X : o, B : o → o, F : ((o → o, o, o), o), D1 : (o → o, o, o) and D2 : ((o →
o, o, o), o → o, o, o). If we let Dn

2 D1 denote the term of type (o → o, o, o) defined by

D0
2D1 = D1 and Dn+1

2 D1 = D2D
n
2 D1 for n > 0, we have Z

an

=⇒ F Dn
2 D1. As D2

intuitively double its argument with each application, Dn
2 D1 behaves as D2n

1 and hence

D2n

1 B behaves as B22
n

.

For all n > 0, we have

Z
an

=⇒ F Dn
2 D1

c
−→ Dn

2 D1BX
b2

2n

=⇒ X.

The tree of the Urzyczyn language

All schemes presented in this section satisfy a syntactic restriction, called the safety

condition, that will be discussed in the last section of this chapter. Paweł Urzyczyn conjec-

tured that (a slight variation) of the tree described below, though generated by a order-2

scheme, could not be generated by any order-2 scheme satisfying the safety condition.

This conjecture was proved by Paweł Parys in [49].

The tree TU has directions in { (,), ⋆ }. A word over { (,) } is well bracketed if it

has as many opening brackets as closing brackets and if, for every prefix, the number of

opening brackets is greater than the number of closing brackets.

The language U is defined as the set of words of the form w⋆n where w is a prefix of

a well-bracketed word and n is equal to |w| − |u|+ 1, where u is the longest suffix of w
that is well-bracketed. In other words, n equals 1 if w is well-bracketed, and otherwise it

is equal to the index of the last unmatched opening bracket plus one.

For instance, the words ()((()) ⋆ ⋆ ⋆ ⋆ and ()()()⋆ belong to U . The tree TU is simply

Pref(U). The following scheme SU generates TU .

Z
λ

−→ G (H X) F ϕx y
(

−→ F (Fϕx) y (Hy)

Gz
(

−→ F Gz (Hz) F ϕx y
)

−→ ϕ (H y)

Gz
⋆

−→ X F ϕxy
⋆

−→ x

H u
⋆

−→ u

with Z,X : o, G,H : o→ o and F : (o→ o, o, o).
To better explain the inner workings of this scheme, let us introduce some syntactic

sugar. With every integer, we associate a ground term by letting 0 = X and, for all n > 0,

n+ 1 = H n. With every sequence [n1 . . .nℓ] of integers, we associate a term of type

o → o by letting [] = G and [n1 . . .nℓ nℓ+1] = F [n1 . . .nℓ]nℓ+1. Finally we write

([n1 . . .nℓ],n) to denote the ground term [n1 . . .nℓ]n.

456 A. Carayol, O. Serre

The scheme can be revisited as follows:

Z
λ

−→ ([],1) ([],n+ 1)
⋆

−→ 0 ([n1 . . .nℓ],n)
⋆

−→ nℓ n+ 1
⋆

−→ n

([n1 . . .nℓ],n)
(

−→ ([n1 . . .nℓ n],n+ 1)

([n1 . . .nℓ],n)
)

−→ ([n1 . . .nℓ−1],n+ 1)

Let w = w0 . . . w|w|−1 be a prefix of a well-bracketed word. We have Z
w

=⇒
([n1 . . .nℓ], |w|+ 1) where [n1 . . . nℓ] is the sequence (in increasing order) of those

indices of unmatched opening brackets in w. In turn, ([n1 . . .nℓ], |w|)
⋆

−→ nℓ
⋆nℓ

−→ 0.

Hence, as expected, the number of ⋆ symbols is equal to 1 if w is well-bracketed (i.e.,

ℓ = 0), and otherwise it is equal to the index of the last unmatched opening bracket plus

one.

2.4 Higher-order pushdown automata

2.4.1 Higher-order stack and their operations Higher-order pushdown automata were

introduced by Maslov [45] as a generalisation of pushdown automata. First, recall that a

(order-1) pushdown automaton is a machine with a finite control together with an auxil-

iary storage given by a (order-1) stack whose symbols are taken from a finite alphabet.

A higher-order pushdown automaton is defined in a similar way, except that it uses a

higher-order stack as auxiliary storage. Intuitively, an order-n stack is a stack whose base

symbols are order-(n − 1) stacks, with the convention that order-1 stacks are just stacks

in the classical sense.

Fix a finite stack alphabet Γ and a distinguished bottom-of-stack symbol ⊥ 6∈ Γ. An

order-1 stack is a sequence ⊥, a1, . . . , aℓ ∈ ⊥Γ∗ which is denoted [⊥a1 · · · aℓ]1. An

order-k stack (or a k-stack), for k > 1, is a non-empty sequence s1, . . . , sℓ of order-

(k−1) stacks which is written [s1 · · · sℓ]k. For convenience, we may sometimes see an

element a ∈ Γ as an order-0 stack, denoted [a]0. We let Stacksk denote the set of all

order-k stacks and Stacks =
⋃

k>1 Stacksk the set of all higher-order stacks. The height

of the stack s denoted |s| is simply the length of the sequence. We denote by ord(s) the

order of the stack s.
A substack of an order-1 stack [⊥a1 · · · ah]1 is a stack of the form [⊥a1 · · · ah′]1

for some 0 6 h′ 6 h. A substack of an order-k stack [s1 . . . sh]k, for k > 1, is either

a stack of the form [s1 . . . sh′]k with 0<h′ 6 h or a stack of the form [s1 . . . sh′ s′]k
with 0 6 h′ 6 h− 1 and s′ a substack of sh′+1. We denote by s ⊑ s′ the fact that s is a

substack of s′.

Example 2.5. The stack

s = [[[⊥baac]1[⊥bb]1[⊥bcc]1[⊥cba]1]2[[⊥baa]1[⊥bc]1[⊥bab]1]2]3

is an order-3 stack of height 2.

In addition to the operations pusha1 and pop1 that respectively pushes and pops a

symbol in the topmost order-1 stack, one needs extra operations to deal with the higher-

order stacks: the popk operation removes the topmost order-k stack, while the pushk

Higher-order recursion schemes and their automata models 457

duplicates it.

For an order-n stack s = [s1 · · · sℓ]n and an order-k stack t with 0 6 k < n, we

define s++ t as the order-n stack obtained by pushing t on top of s:

s++ t =

{

[s1 · · · sℓ t]n if k = n− 1,

[s1 · · · (sℓ ++ t)]n otherwise.

We first define the (partial) operations popi and topi with i > 1: topi(s) returns the

top (i− 1)-stack of s, and popi(s) returns s with its top (i− 1)-stack removed. Formally,

for an order-n stack [s1 · · · sℓ+1]n with ℓ > 0

topi([s1 · · · sℓ+1]n) =

{

sℓ+1 if i = n,

topi(sℓ+1) if i < n.

popi([s1 · · · sℓ+1]n) =

{

[s1 · · · sℓ]n if i = n and ℓ > 1,

[s1 · · · sℓ popi(sℓ+1)]n if i < n.

By abuse of notation, we let topord(s)+1(s) = s. Note that popi(s) is defined if and

only if the height of topi+1(s) is strictly greater than 1. For example, pop2([[⊥ a b]1]2)
is undefined.

We now introduce the operations pushi with i > 2 that duplicates the top (i − 1)-
stack of a given stack. More precisely, for an order-n stack s and for 2 6 i 6 n, we let

pushi(s) = s++topi(s).
The last operation, pusha1 pushes the symbol a ∈ Γ on top of the top 1-stack. More

precisely, for an order-n stack s and for a symbol a ∈ Γ, we let pusha1(s) = s++[a]0.

Example 2.6. Let s be the order-3 stack of Example 2.5. Then we have

top3(s) = [[⊥baa]1[⊥bc]1[⊥bab]1]2,

pop3(s) = [[[⊥baac]1[⊥bb]1[⊥bcc]1[⊥cba]1]2]3.

Note that pop3(pop3(s)) is undefined.

We also have that

push2(pop3(s)) = [[[⊥baac]1[⊥bb]1[⊥bcc]1[⊥cba]1[⊥cba]1]2]3,

pushc1(pop3(s)) = [[[⊥baac]1[⊥bb]1[⊥bcc]1[⊥cbac]1]2]3.

2.4.2 Stacks with links and their operations We define a richer structure of higher-

order stacks where we allow links. Intuitively, a stack with links is a higher-order stack in

which any symbol may have a link that points to an internal stack below it. This link may

be used later to collapse part of the stack.

Order-n stacks with links are order-n stacks with a richer stack alphabet. Indeed, each

symbol in the stack can be either an element a ∈ Γ (i.e., not being the source of a link) or

an element (a, ℓ, h) ∈ Γ× {2, · · · , n} × N (i.e., being the source of an ℓ-link pointing to

the h-th (ℓ− 1)-stack inside the topmost ℓ-stack).

Formally, order-n stacks with links over the alphabet Γ are defined as order-n stacks4

4Note that we therefore slightly generalise our previous definition, as we implicitly use an infinite stack

458 A. Carayol, O. Serre

over alphabet Γ ∪ Γ× {2, · · · , n} × N.

Example 2.7. The stack s equals to

[[[⊥baac]1[⊥bb]1[⊥bc(c, 2, 2)]1]2[[⊥baa]1[⊥bc]1[⊥b(a, 2, 1)(b, 3, 1)]1]2]3

is an order-3 stack with links.

To improve readability when displaying n-stacks in examples, we shall explicitly draw

the links rather than using stacks symbols in Γ× {2, · · · , n} × N. For instance, we shall

rather represent s as follows:

[[[⊥baac]1[⊥bb]1[⊥bcc]1]2[[⊥baa]1[⊥bc]1[⊥bab]1]2]3

In addition to the previous operations popi, pushi and pusha1 , we introduce two extra

operations: one to create links, and the other to collapse the stack by following a link.

Link creation is made when pushing a new stack symbol, and the target of an ℓ-link

is always the (ℓ − 1)-stack below the topmost one. Formally, we define pusha,ℓ1 (s) =

push
(a,ℓ,h)
1 where we let h = |topℓ(s)| − 1 and require that h > 1.

The collapse operation is defined only when the topmost symbol is the source of an

ℓ-link, and results in truncating the topmost ℓ stack to only keep the component below the

target of the link. Formally, if top1(s) = (a, ℓ, h) and s = s′ ++ [t1 · · · tk]ℓ with k > h
we let collapse(s) = s′ ++ [t1 · · · th]ℓ.

For any n, we let Opn(Γ) denote the set of all operations over order-n stacks with

links.

Example 2.8. Take the 3-stack s = [[[⊥ a]1]2 [[⊥]1[⊥ a]1]2]3. We have

pushb,21 (s) = [[[⊥ a]1]2 [[⊥]1[⊥ a b]1]2]3

collapse (pushb,21 (s)) = [[[⊥ a]1]2 [[⊥]1]2]3

pushc,31 (pushb,21 (s))
︸ ︷︷ ︸

θ

= [[[⊥ a]1]2 [[⊥]1[⊥ a b c]1]2]3.

Then push2(θ) and push3(θ) are respectively

[[[⊥ a]1]2 [[⊥]1[⊥ a b c]1[⊥ a b c]1]2]3 and

[[[⊥ a]1]2 [[⊥]1[⊥ a b c]1]2 [[⊥]1[⊥ a b c]1]2]3.

We have collapse (push2(θ)) = collapse (push3(θ)) = collapse(θ) = [[[⊥ a]1]2]3.

2.4.3 Higher-order pushdown automata and collapsible automata An order-n (de-

terministic) collapsible pushdown automaton (n-CPDA) is a 5-tuple A = 〈Σ,Γ, Q, δ, q0 〉
where Σ is an input alphabet containing a distinguished symbol denoted λ, the set Γ
is a stack alphabet, Q is a finite set of control states, q0 ∈ Q is the initial state, and

alphabet, but this does not introduce any technical change in the definition.

Higher-order recursion schemes and their automata models 459

δ : Q× Γ× Σ → Q×Opn(Γ) is a (partial) transition function such that, for all q ∈ Q
and γ ∈ Γ, if δ(q, γ, λ) is defined then for all a 6= λ, the value δ(q, γ, a) is undefined,

i.e., if some λ-transition can be taken, then no other transition is possible. We require δ
to respect the convention that ⊥ cannot be pushed onto or popped from the stack.

In the special case where δ(q, γ, λ) is undefined for all q ∈ Q and γ ∈ Γ, we refer to

A as a λ-free n-CPDA.

In the special case where collapse /∈ δ(q, γ, a) for all q ∈ Q, γ ∈ Γ and a ∈ Σ, A is

called a higher-order pushdown automaton.

Let A = 〈Σ,Γ, Q, δ, q0 〉 be an n-CPDA. A configuration of an n-CPDA is a pair

of the form (q, s) where q ∈ Q and s is an n-stack with link over Γ; we let Config(A)
denote the set of configurations of A and we call (q0, [[· · · [⊥]1 · · ·]n−1]n) the initial

configuration. It is then natural to associate with A a deterministic LTS denoted LA =
〈D, r,Σ, (

a
−→)a∈Σ 〉 and defined as follows. We let D be the set of all configurations

of A and r be the initial one. Then, for all a ∈ Σ and all (q, s), (q′, s′) ∈ D we have

(q, s)
a

−→ (q′, s′) if and only if δ(q, top1(s), a) = (q′, op) and s′ = op(s).

The tree generated by an n-CPDA A, denoted Tree⊥(A), is the tree Tree⊥(LA) of

its LTS.

3 From CPDA to recursion schemes

In this section, we argue that, for any CPDA A, one can construct a labeled recursion

scheme (of the same order) that generates the same tree. For this, we first introduce a

representation of stacks and configurations of A by applicative terms. Then we define

a labeled recursion scheme S and finally we show that the LTS associated with S is the

same as the one associated with A, which shows that S and A define the same tree.

For the rest of this section we fix an order-n CPDA A = 〈Σ,Γ, Q, δ, q1 〉 and we let

the state-set of A be Q = {q1, . . . , qm} where m > 1. In order to treat in a uniform way

those stack symbols that come with a link and those that do not, we will attach fake links,

which we refer to as 1-links (recall that so far all links were ℓ-links with ℓ > 1) to those

symbols that have no link; moreover collapse(s) will be undefined for any stack s such

that top1(s) has a 1-link. In the following, we therefore write pusha,11 instead of pusha1 .

3.1 Term representation of stacks and configurations

We start by defining some useful types. First we identify the base type o with a new type

denoted n. Inductively, for each 0 6 k < n we define a type

k = (k+ 1)
m

→ (k+ 1)

where, for types A and B, we write Am → B as a shorthand for A→ · · · → A
︸ ︷︷ ︸

m

→ B. In

particular, for every 0 6 k 6 n, we have

k = (k+ 1)
m

→ (k+ 2)
m

→ · · · → n
m → n.

460 A. Carayol, O. Serre

We also introduce, for every 1 6 k 6 n a non-terminal Voidk of type k.

Assume s is an order-n stack and p is a control state of A. In the sequel, we will

define, for every 0 6 k 6 n, a term [|s|]pk : k that represents the behaviour of the topk
stack in s. To understand why [|s|]pk is of type k one can view an order-k stack as acting

on order-(k + 1) stacks: for every order-(k + 1) stack we can build a new order-(k + 1)
stack by pushing an order-k stack on top of it. This behaviour corresponds to the type

(k+ 1) → (k+ 1). However, for technical reasons, when dealing with control states

and configurations, we need to work with m copies of each stack (one per control state).

Hence we view a k-stack as mapping m copies of an order-(k + 1) stack to a single

order-(k + 1) stack. This explains why k is defined to be (k+ 1)
m

→ (k+ 1).
For every stack symbol a, every 1 6 ℓ 6 n and every state p ∈ Q, we introduce a

non-terminal

Fa,ℓ
p : ℓm → 1

m → · · · → n
m → n

For every 0 6 k 6 n, every state p and every order-n stack s whose top1 sym-

bol is some a with an ℓ-link, we define (inductively) the following term of order k =
(k+ 1)

m
→ · · · → n

m → n:

[|s|]pk = Fa,ℓ
p [|collapse(s)|]q1···qmℓ

[|pop1(s)|]
q1···qm
1 [|pop2(s)|]

q1···qm
2 · · · [|popk(s)|]

q1···qm
k

where

• [|t|]q1···qmh is a shorthand for (the sequence) [|t|]q1h [|t|]q2h · · · [|t|]qmh
• [|popi(s)|]

qj
i = Voidi for all j ∈ [1,m] if popi(s) is undefined.

• [|collapse(s)|]
qj
1 = Void1 for all j ∈ [1,m]; note that it corresponds to the case

where top1(s) has a 1-link (i.e., a fake link); hence collapse(s) is undefined.

Note that the previous definition is well-founded, as every stack in the definition of

[|s|]pk has fewer symbols than s. Intuitively, [|s|]pk represents the top k-stack of the config-

uration (p, s), i.e., top(k+1)(s).

Example 3.1. Consider the following order-2 stack

s = [[⊥ a]1[⊥ b]1[⊥ b c]1]2

and assume (for simplicity) that we have a unique control state p. Then one has

[|s|]p2 = Fc,1
p Void1 (Fb,2

p ζ (F⊥,1
p Void1Void1)) (Fb,2

p ζ (F⊥,1
p Void1Void1) ζ))

where

ζ = [|[[⊥ a]1]2|]
p
2 = Fa,1

p Void1 (F⊥,1
p Void1Void1) Void2.

Let s and t be two order-n stacks with links and let k > 1. We shall say that s and t
are topk-identical iff the following holds:

Higher-order recursion schemes and their automata models 461

• s and t are top1-identical if and only s and t have the same top1 symbol with an ℓ-
link (for some ℓ) and (if defined) collapse(s) and collapse(t) are topℓ+1-identical;

• and for k > 1, s and t are topk-identical if and only for all j > 0, popjk−1(s) is

defined iff popjk−1(t) is defined, and when defined, popjk−1(s) and popjk−1(t) are

top(k−1)-identical.

Note that the previous definition is well founded, as it always refer to stacks with fewer

symbols than s or t.

Lemma 3.1. Let s and t be order-n stacks with links, and let k > 0. If s and t are

top(k+1)-identical then [|s|]pk = [|t|]pk for every state p.

Proof. The proof is by induction on the maximal size (i.e., the number of stack symbols)

of s and t, and once the maximal size is fixed we reason by induction on k.

The base case of s and t containing only the bottom-of-stack symbol is trivial. Hence

assume that the property is established for any pair of stacks with less than N symbols

for some N > 0, and consider two stacks s and t whose maximal size is N + 1. Assume

that s and t are top(k+1)-identical for some k > 0.

If s and t are top1-identical, then, by definition, we have that top1(s) = (a, ℓ, k)
and top1(t) = (a, ℓ, k′) for some a ∈ Γ, 1 6 e 6 n and k, k′ ∈ N, and that (when

defined) collapse(s) and collapse(t) are topℓ+1-identical. As collapse(s) and collapse(t)
are both of size 6 N , we have, by induction hypothesis, that [|collapse(s)|]q1···qmℓ =
[|collapse(t)|]q1···qmℓ . Thus it immediately follows that [|s|]p0 = [|t|]p0.

We now consider some k > 0 and assume that the property is established for any

h 6 k. We consider the case (k + 1) and thus assume that s and t are top(k+2)-identical:

in particular pop(h−1)(s) and pop(h−1)(t) are also toph-identical for any h 6 (k + 1),

and by induction hypothesis, we have, for any h 6 k and any state q, that [|s|]qh = [|t|]qh.

By definition, we also have that top1(s) = (a, ℓ, k) and top1(t) = (a, ℓ, k′) for some

a ∈ Γ, 1 6 e 6 n and k, k′ ∈ N, and that (when defined) collapse(s) and collapse(t)
are top(ℓ+1)-identical. As collapse(s) and collapse(t) are both of size 6 N , we have, by

induction hypothesis, that [|collapse(s)|]q1···qmℓ = [|collapse(t)|]q1···qmℓ .

We let js = jt be the maximal j such that popj(k+1)(s) (equiv. popj(k+1)(t)) is defined.

By definition

[|s|]p(k+1) = Fa,ℓ
p [|collapse(s)|]q1···qmℓ [|pop1(s)|]

q1···qm
1 · · · [|pop(k+1)(s)|]

q1···qm
(k+1) ,

and

[|t|]p(k+1) = Fa,ℓ
p [|collapse(t)|]q1···qmℓ [|pop1(t)|]

q1···qm
1 · · · [|pop(k+1)(t)|]

q1···qm
(k+1) .

Now if js = 0, we have

[|pop(k+1)(s)|]
q1···qm
(k+1) = [|pop(k+1)(t)|]

q1···qm
1 = Void(k+1) · · ·Void(k+1),

and thus [|s|]p(k+1) = [|t|]p(k+1). If js > 0, we note that jpop(k+1)(s)
= jpop(k+1)(t)

= js−1

and pop(k+1)(s) and recall that pop(k+1)(t) are top(k+2)-identical. Thus, by induction

on js, we have that [|pop(k+1)(s)|]
q

(k+1) = [|pop(k+1)(t)|]
q

(k+1) for any state q, and we

conclude that [|s|]p(k+1) = [|t|]p(k+1).

462 A. Carayol, O. Serre

3.2 The labeled recursion scheme associated with A

We let S = 〈Σ, N,R, Z,⊥〉 where

N = {Fa,ℓ
p | p ∈ Q, a ∈ Γ, and 1 6 ℓ 6 n} ∪ {Voidk | 0 6 k 6 n}.

The set of productions R contains the production Z
λ

−→
S

[|[· · ·[⊥]1 · · ·]n|]
q1
n and the

production Fa,ℓ
p ΦΨ1 · · ·Ψn

a
−→
S

Ξq,op if δ(p, a, a) = (q, op) and the term Ξq,op is equal

to:

Fa′,ℓ′

q Ψℓ′ 〈F
a,ℓ
⋆ ΦΨ1〉Ψ2 · · · Ψn if op = pusha

′,ℓ′

1 for ℓ′ > 1,

Fa′,1
q Voidm1 〈Fa,ℓ

⋆ ΦΨ1〉Ψ2 · · · Ψn if op = pusha
′,1

1 ,

Fa,ℓ
q ΦΨ1 · · ·Ψ(k−1)〈F

a,ℓ
⋆ ΦΨ1 · · ·Ψk〉Ψ(k+1) · · ·Ψn if op = pushk,

Ψk,q Ψk−1 · · ·Ψn if op = popk,

Φq Ψℓ−1 · · ·Ψn if op = collapse and ℓ > 1.

where 〈Fa,ℓ
⋆ ΦΨ1 · · ·Ψk〉 as a shorthand for the sequence

Fa,ℓ
q1

ΦΨ1 · · ·Ψk Fa,ℓ
q2

ΦΨ1 · · ·Ψk · · · Fa,ℓ
qm

ΦΨ1 · · ·Ψk

and Voidm1 is a a shorthand for Void1 · · ·Void1
︸ ︷︷ ︸

m

.

3.3 Correctness of the representation

The following proposition relates the LTS defined by A with the one defined by S .

Proposition 3.2. Let (p, s) be a configuration of A and let a ∈ Σ. Then

(p, s)
a

−→
A

(q, t) if and only if [|s|]pn
a

−→
S

[|t|]qn

Proof. Let a be the top symbol in s and let 0 6 ℓ 6 n be such that a has an (ℓ+ 1) link.

By definition, the head non-terminal symbol of [|s|]pn is Fa,ℓ
p .

Remark that δ(p, a, a) is defined, i.e., there exists some (q, t) with (p, s)
a

−→
A

(q, t), iff

there is some term ζ such that [|s|]pn
a

−→
S

ζ. Hence it suffices to show, when δ(p, a, a) =

(q, op) is defined, that ζ = [|op(s)|]qn, and for this we do a case analysis.

First, we let

[|s|]pn = Fa,ℓ
p Cq1 · · ·Cqm T q1

1 · · ·T qm
1 · · · T q1

n · · ·T qm
n

where Cqi = [|collapse(s)|]qiℓ : ℓ and T qi
k = [|popk(s)|]

qi
k : k for every 1 6 i 6 m and

every 1 6 k 6 n.

Then we distinguish the five possible cases for op.

Higher-order recursion schemes and their automata models 463

• Assume that op = pusha
′,ℓ′

1 , with ℓ′ > 1. Then, by definition we have

[|pusha
′,ℓ′

1 (s)|]qn = Fa′,ℓ′

q [|collapse(pusha
′,ℓ′

1 (s))|]q1···qmℓ′

[|pop1(push
a′,ℓ′

1 (s))|]q1···qm1 · · · [|popn(push
a′,ℓ′

1 (s))|]q1···qmn .

For every j > 1, one has popj(push
a′,ℓ′

1 (s)) = popj(s), and therefore, we have

[|popj(push
a′,ℓ′

1 (s))|]q1···qmj = T q1
j · · ·T qm

j .

One has collapse(pusha
′,ℓ′

1 (s)) = popℓ′(s), and therefore, we have

[|collapse(pusha
′,ℓ′

1 (s))|]q1···qmℓ′ = T q1
ℓ′ · · ·T qm

ℓ′ .

Finally, we have that pop1(push
a′,ℓ′

1 (s)) = s, and therefore, we have

[|pop1(push
a′,ℓ′

1 (s))|]qi1 = Fa,ℓ
qi
Cq1 · · ·CqmT q1

1 · · ·T qm
1 .

Hence, it follows that

[|pusha
′,ℓ′

1 (s)|]qn = Fa′,ℓ′

q T q1
ℓ′ · · ·T qm

ℓ′

Fa,ℓ
q1
Cq1 · · ·CqmT q1

1 · · ·T qm
1 · · · Fa,ℓ

qm
Cq1 · · ·CqmT q1

1 · · ·T qm
1

T q1
2 · · ·T qm

2 · · · T q1
n · · ·T qm

n .

On the other hand, it follows syntactically from the definition of S that the right

hand side of the previous expression is the term ζ such that [|s|]pn
a

−→
S

ζ.

• Assume that op = pusha
′,1

1 . Then, by definition we have

[|pusha
′,1

1 (s)|]qn = Fa′,1
q Void1 · · ·Void1

[|pop1(push
a′,1
1 (s))|]q1···qm1 · · · [|popn(push

a′,1
1 (s))|]q1···qmn .

For every j > 1, one has popj(push
a′,1
1 (s)) = popj(s), and therefore

[|popj(push
a′,ℓ′

1 (s))|]q1···qmj = T q1
j · · ·T qm

j .

Finally, we have that pop1(push
a′,1
1 (s)) = s, and therefore

[|pop1(push
a′,1
1 (s))|]qi1 = Fa,ℓ

qi
Cq1 · · ·CqmT q1

1 · · ·T qm
1 .

Hence, it follows that

[|pusha
′,ℓ′

1 (s)|]qn = Fa′,ℓ′

q Void1 · · ·Void1

Fa,ℓ
q1
Cq1 · · ·CqmT q1

1 · · ·T qm
1 · · · Fa,ℓ

qm
Cq1 · · ·CqmT q1

1 · · ·T qm
1

T q1
2 · · ·T qm

2 · · · T q1
n · · ·T qm

n .

On the other hand, it follows syntactically from the definition of S that the right

hand side of the previous expression is the term ζ such that [|s|]pn
a

−→
S

ζ.

464 A. Carayol, O. Serre

• Assume that op = pushk. Then, by definition we have

[|pushk(s)|]
q
n = Fa,ℓ

q [|collapse(pushk(s))|]
q1···qm
ℓ

[|pop1(pushk(s))|]
q1···qm
1 · · · [|popn(pushk(s))|]

q1···qm
n .

Note that we used the fact that the top1 element in pushk(s) is a a and has an

(ℓ+ 1)-link. Now, note that for every j > k, one has popj(pushk(s)) = popj(s),
and therefore

[|popj(pushk(s))|]
q1···qm
j = T q1

j · · ·T qm
j .

We also have that popk(pushk(s)) = s, and therefore, for every 1 6 i 6 m,

[|popk(pushk(s))|]
qi
k = Fa,ℓ

qi
Cq1 · · ·CqmT q1

1 · · ·T qm
1 · · ·T q1

k · · ·T qm
k .

Now, for j < k, popj(pushk(s)) and popj(s) are topj+1-identical and, thanks to

Lemma 3.1, we have that [|popj(pushk(s))|]
qi
j = [|s|]qij = T qi

j .

If ℓ = 1, both collapse(s) and collapse(pushk(s)) are undefined, hence we have

[|collapse(pushk(s))|]
qi
ℓ = Void1 = Cqi .

If 1 < ℓ 6 k, collapse(pushk(s)) and s are topℓ+1-identical and, thanks to Lemma

3.1 we have that [|collapse(pushk(s))|]
qi
ℓ = [|collapse(s)|]qiℓ = Cqi .

If ℓ > k, collapse(s) = collapse(pushk(s)) hence [|collapse(pushk(s))|]
qi
ℓ =

Cqi .

Therefore, it follows that

[|pushk(s)|]
q
n = Fa,ℓ

q Cq1 · · ·CqmT q1
1 · · ·T qm

1 · · · T q1
(k−1) · · ·T

qm
(k−1)

Fa,ℓ
q1
Cq1 · · ·CqmT q1

1 · · ·T qm
1 · · ·T q1

k · · ·T qm
k · · ·

Fa,ℓ
qm
Cq1 · · ·CqmT q1

1 · · ·T qm
1 · · ·T q1

k · · ·T qm
k

T q1
(k+1) · · ·T

qm
(k+1) · · · T q1

n · · ·T qm
n .

On the other hand, it follows syntactically from the definition of S that the right

hand side of the previous expression is the term ζ such that [|s|]pn
a

−→
S

ζ.

• Assume that op = popk. Then, by definition we have

[|popk(s)|]
q
n = Fa′,ℓ′

q [|collapse(popk(s))|]
q1···qm
ℓ

[|pop1(popk(s))|]
q1···qm
1 · · · [|popn(popk(s))|]

q1···qm
n

where the top1 element in popk(s) is a a′ and has an (ℓ′ + 1)-link. Equivalently,

we have

[|popk(s)|]
q
n = [|popk(s)|]

q
k

[|pop(k+1)(popk(s))|]
q1···qm
(k+1) · · · [|popn(popk(s))|]

q1···qm
n .

For every j > k, one has popj(popk(s)) = popj(s), and therefore, we have

[|popj(popk(s))|]
q1···qm
j = T q1

j · · ·T qm
j . Moreover, by definition we have that

T q
k = [|popk(s)|]

q
k. Hence, it follows that

[|popk(s)|]
q
n = T q

kT
q1
k+1 · · ·T

qm
k+1 · · ·T

q1
n · · ·T qm

n .

Higher-order recursion schemes and their automata models 465

On the other hand, it follows syntactically from the definition of S that the right

hand side of the previous expression is the term ζ such that [|s|]pn
a

−→
S

ζ.

• Assume that op = collapse. Then, by definition we have

[|collapse(s)|]qn = Fa′,ℓ′

q [|collapse(collapse(s))|]q1···qmℓ

[|pop1(collapse(s))|]
q1···qm
1 · · · [|popn(collapse(s))|]

q1···qm
n

where the top1 element in collapse(s) is a′ and has an (ℓ′ + 1)-link. Equivalently,

one has

[|collapse(s)|]qn = [|collapse(s)|]qℓ
[|pop(ℓ+1)(collapse(s))|]

q1···qm
(k+1) · · · [|popn(collapse(s))|]

q1···qm
n .

For every j > e, one has popj(collapse(s)) = popj(s), and therefore we have

[|popj(collapse(s))|]
q1···qm
j = T q1

j · · ·T qm
j . Moreover, by definition we have that

Cq = [|collapse(s)|]qℓ .

On the other hand, it follows syntactically from the definition of S that the right-

hand side of the previous expression is the term ζ such that [|s|]pn
a

−→
S

ζ.

Corollary 3.3. The LTS defined by A is isomorphic to the one defined by S . In particular,

A and S generate the same tree.

Proof. Immediate from Proposition 3.2.

4 From recursion schemes to collapsible pushdown

automata

In this section, we construct, for any labeled recursion scheme S , a collapsible pushdown

automaton A of the same order defining the same tree as S – i.e., Tree⊥(S) = Tree⊥(A).
Recall that a silent production rule is a production rule labeled by λ. To simplify the

presentation we assume that S does not contain any such production rule. If S were to

contain silent transitions, we would treat the symbol λ as any other symbol5 in Σ. For the

rest of this section, we fix a labeled recursion scheme 〈Σ, N,R, Z,⊥〉 of order n > 1
without silent transitions.

The automaton A has a distinguished state, denoted q⋆, and we associate a ground

term overN denoted by [[s]] with a configuration of the form (q⋆, s). Other configurations

correspond to internal steps of the simulation and are only the source of silent transitions.

5Formally, one labels all silent production rules of S by a fresh symbol e to obtain a labeled scheme S′

without silent transitions. The construction presented in this section produces an automaton A′ such that

Tree⊥(S′) = Tree⊥(A′). The automaton A obtained by replacing all e-labeled rules of A by λ is such

that Tree⊥(S) = Tree⊥(A).

466 A. Carayol, O. Serre

To show that the two LTS define the same trees, we will establish that, for any reachable

configuration of the form (q⋆, s) and for any a ∈ Σ, the following holds:

• if (q⋆, s)
aλ∗

−→
A

(q⋆, s
′) then [[s]]

a
−→
S

[[s′]];

• if [[s]]
a

−→
S

t then (q⋆, s)
aλ∗

−→
A

(q⋆, s
′) and [[s′]] = t.

Hence, the main ingredient of the construction is the partial mapping [[·]] associating

a ground term over N with an order-n stack. The main difficulty is to guarantee that any

rewriting rule of S applicable to the encoded term [[s]] can be simulated by applying a

sequence of stack operations to s. In Section 4.1, we present the mapping [[·]] together

with its basic properties; in Section 4.2, we give the definition of A and prove the desired

properties.

To simplify the presentation, we assume, without loss of generality, that all produc-

tions starting with a non-terminal A have the same left-hand side (i.e., they use the same

variables in the same order) and that two productions starting with different non-terminals

do not share any variables. Hence a variable x ∈ V appears in a unique left-hand side

Ax1 . . . , x̺(A) and we denote by rk(x) the index of x in the sequence x1 · · ·x̺(A) (i.e.,

x = xrk(x)).

Example 4.1. Throughout the whole section, we will illustrate definitions and construc-

tions using the order-2 scheme SU generating the tree TU presented at the end of Sec-

tion 2.3.6 as a running example. We recall its definition below.

Z
λ

−→ G (H X) F ϕx y
(

−→ F (Fϕx) y (Hy)

Gz
(

−→ F Gz (Hz) F ϕx y
)

−→ ϕ (H y)

Gz
∗

−→ X F ϕxy
⋆

−→ x

H u
⋆

−→ u

withZ,X : o,G,H : o→ o and F : (o→ o, o, o). We have rk(ϕ) = rk(z) = rk(u) = 1,

rk(x) = 2 and rk(y) = 3.

4.1 Stacks representing terms.

The stack alphabet Γ consists of the initial symbol and of the right-hand sides of the

production rules in R and their argument subterms (cf. Section 2.3.1), i.e., Γ
def
= {Z } ∪

⋃

F x1···x̺(x)
a

−→ e
{ e } ∪ASubs(e).

Example 4.2. For the scheme SU , one gets the following stack alphabet:

Γ = { Z , G (H X) , H X , X , F (F ϕx) y (Hy) , F ϕx , Hy , F Gz (Hz) ,

G , Hz , ϕ (Hy)} ∪ {x, y, z, u, ϕ}.

Notation 4.1. For ϕ ∈ V ∪N , a ϕ-stack designates a stack whose top symbol starts with

ϕ. By extension, a stack s is said to be an N -stack (resp., a V -stack) if it is a ϕ-stack for

some ϕ ∈ N (resp., ϕ ∈ V).

Higher-order recursion schemes and their automata models 467

In order to represent a term in Terms(N), a stack over Γ must be well-formed, i.e., it

must satisfy syntactic conditions given in the following definition.

Definition 4.2 (Well-formed stack). A non-empty stack of order-n over Γ is well-formed

if every non-empty substack r of s satisfies the following two conditions:

• if top1(r) is not equal toZ then pop1(r) is anA-stack for someA ∈ N and top1(r)
belongs to an A-production rule,

• if top1(r) is of type τ of order k > 0 then top1(r) is the source of an (n−k+1)-link

and collapse(r) is a ϕ-stack for some variable ϕ ∈ V of type τ .

We let WStacks denote the set of all well-formed stacks.

Example 4.3. For the scheme SU , the following order-2 stacks are well-formed.

Z

G (H X)

F Gz (H z)

F (F ϕx) y (H y)

ϕ (H y)

s1

Z

G (H X)

F Gz (H z)

F (F ϕx) y (H y)

ϕ (H y)

Z

G (H X)

F Gz (H z)

F ϕx

s2

Z

G (H X)

F Gz (H z)

F (F ϕx) y (H y)

ϕ (H y)

Z

G (H X)

F Gz (H z)

F ϕx

F (F ϕx) y (H y)

y

s3

Notation 4.3. We write s :: t for s ∈ WStacks and t ∈ Γ to mean that if t belongs

to the r.h.s. of a production starting with A ∈ N then s is an A-stack. In particular, if

s ∈ WStacks then pop1(s) :: top1(s). We let CStacks denote the set of such s :: t, and

define the size of an element s :: t as the pair (|s|, |t|), where |s| denotes the number of

stack symbols in s and |t| the length of the term t. When comparing sizes, we use the

standard lexicographic (total) order over N× N.

In Definition 4.5, we will associate a ground term over N with any well-formed stack

s that we refer to as the value of s. To define this value, we first associate, with any

element s :: t in CStacks, a value denoted [[s :: t]]. This value is a term over N of the

same type as t. Intuitively, it is obtained by replacing the variables appearing in the term

t by values encoded in the stack s, and one should therefore understand [[s :: t]] as the

value of the term t in the context (or environment) of s.
For all ϕ ∈ V ∪ N , all k ∈ [1, ̺(ϕ)] and all ϕ-stack s ∈ WStacks, we define

an element of CStacks, denoted Argk(s), representing the k-th argument of the term

represented by s. More precisely if the top symbol of s is ϕ t1 · · · tℓ, we take
{

Argk(s) = pop1(s) :: tk if k 6 ℓ,

Argk(s) = Argk−ℓ(collapse(s)) otherwise.

Definition 4.4. For all s :: t ∈ CStacks, we take:







[[s :: t1t2]] = [[s :: t1]][[s :: t2]] if t1, t2 ∈ Γ,

[[s :: A]] = A if A ∈ N,

[[s :: x]] = [[Argrk(x)(s)]] if x ∈ V.

468 A. Carayol, O. Serre

Let us provide some intuition regarding the definition of [[s :: t]]. Unsurprisingly,

[[s :: t]] is defined by structural induction on t, and the induction cases for the application

and the non-terminal symbols are straightforward.

It remains to consider the case where t is a variable x appearing in the rk(x)-th po-

sition in the left-hand side Ax1 · · ·x̺(A). As s :: t ∈ CStacks, top1(s) is of the form

At1 · · · tℓ for some ℓ 6 ̺(A). Note that ℓ is not necessarily equal to ̺(A), meaning that

some arguments of A might be missing. There are now two cases — corresponding to the

two cases in the definition of Argk(s) — depending on whether x references one of the

ti’s (i.e., rk(x) 6 ℓ) or one of the missing arguments (i.e., rk(x) > ℓ):
• If rk(x) 6 ℓ then the term associated with x in s is equal to the term associated

with trk(x) in pop1(s), i.e., [[s :: x]] = [[pop1(s) :: trk(x)]].
• If rk(x) > ℓ then the term [[s :: x]] is obtained by following the link attached to

top1(s). Recall that, as s is a well-formed stack and top1(s) is not of ground type

(as ℓ < ̺(A)), there exists a link attached to top1(s). Moreover, collapse(s), the

stack obtained by following the link, has a top-symbol of the form ϕ t′1 · · · t
′
m for

some ϕ ∈ V and m > 0. Intuitively, t′i corresponds to the (ℓ + i)-th argument of

A. If rk(x) belongs to [ℓ + 1, ℓ +m], then the term [[s :: x]] is defined to be the

term [[pop1(collapse(s)) :: t
′
rk(x)−ℓ]]. If rk(x) is greater than ℓ +m then the link

attached to the top symbol of collapse(s) is followed and the process is reiterated.

As the size of the stack strictly decreases at each step, this process terminates.

Now, if s is a well-formed ϕ-stack, its value is obtained by applying the value of all

its ̺(ϕ) arguments to the value of ϕ in the context of pop1(s). This leads to the following

formal definition.

Definition 4.5. The term associated with a well-formed ϕ-stack s ∈ WStacks with ϕ ∈
N ∪ V is

[[s]]
def
= [[pop1(s) :: ϕ]][[Arg1(s)]] · · · [[Arg̺(ϕ)(s)]].

Fact 2. Let s be a well-formed ϕ-stack. If top1(s) : o then

[[s]] = [[pop1(s) :: top1(s)]].

If top1(s) : τ1 → · · · → τℓ → o then

[[s]] = [[pop1(s) :: top1(s)]] [[Arg1(collapse(s))]] · · · [[Argℓ(collapse(s))]].

Proof. The first case (i.e., top1(s) : o) is immediate. Assume that top1(s) is equal to

ϕ t1 · · · tn with ϕ ∈ N ∪ V of type τ1 → · · · → τ̺(ϕ) → o and ti ∈ Γ of type τi, for all

i ∈ [1, n]. Note that ℓ = ̺(ϕ)− n. We have

[[s]]
def
= [[pop1(s) :: ϕ]][[Arg1(s)]] · · · [[Argn(s)]]

︸ ︷︷ ︸

[[pop1(s)::ϕ t1···tn]]

[[Argn+1(s)]] · · · [[Arg̺(ϕ)(s)]]

= [[pop1(s) :: top1(s)]] [[Arg1(collapse(s))]] · · · [[Argℓ(collapse(s))]].

Example 4.4. Let us consider the well-formed stacks s1, s2, and s3 presented in Exam-

ple 4.3. In the representation below, the association between variables and their “values”

are made explicit by the red arrows.

Higher-order recursion schemes and their automata models 469

Z

G (H X)

F Gz (H z)

F (F ϕx) y (H y)

ϕ (H y)

s1

Z

G (H X)

F Gz (H z)

F (F ϕx) y (H y)

ϕ (H y)

Z

G (H X)

F Gz (H z)

F ϕx

s2

Z

G (H X)

F Gz (H z)

F (F ϕx) y (H y)

ϕ (H y)

Z

G (H X)

F Gz (H z)

F ϕx

F (F ϕx) y (H y)

y

s3

[[s1]] = [[s2]] = F G (H X) (H(H(H(H X))))

[[s3]] = H(H(H(H X)))

The following lemma states the basic properties of the encoding [[·]] and Argk(·).

Lemma 4.1. We have the following properties:

(1) For all ϕ-stacks s ∈ WStacks with ϕ ∈ V ∪N of type τ1 → · · · → τ̺(ϕ) → o and

for all k ∈ [1, ̺(ϕ)], the stack Argk(s) is equal to some r :: t ∈ CStacks with t of

type τk.

(2) For all s :: t ∈ CStacks with t : τ ∈ Γ, the term [[s :: t]] belongs to Termsτ (N).
(3) For all s ∈ WStacks, the term [[s]] belongs to Terms(N).

Proof. We start proving the first point and then use it to obtain the second one. Combining

them, we finally prove the last point.

(1) We proceed by induction on the size of s ∈ WStacks. The base case considers the

stack [· · · [⊥Z]1 · · ·]n. As ̺(Z) = 0, there is nothing to prove.

Fix some stack s and assume that the property holds for all stacks smaller than s ∈
WStacks. Let ϕ t1 · · · tℓ : τ be the top symbol of s with ϕ ∈ N ∪ V and ti ∈ Γ for all

i ∈ [1, ℓ]. If ϕ is of type τ1 → · · · → τ̺(ϕ) → o then for all i ∈ [1, ℓ], ti is of type τi and

τ is the type τℓ+1 → · · · → τ̺(ϕ) → o.

If k 6 ℓ, then Argk(s)
def
= pop1(s) :: tk and there is nothing to prove. If ̺(ϕ) > k > ℓ,

then Argk(s)
def
= Argk−ℓ(collapse(s)). To conclude the result by induction, the only thing

we have to prove is that Argk−ℓ(collapse(s)) is well defined. As ord(τ) > 0, we have by

definition of WStacks that collapse(s) is well-defined and that its top symbol starts with

a symbol ψ of type τ . As |collapse(s)| < |s| and as ̺(ψ) = ̺(ϕ) − ℓ > k − ℓ > 1, we

have by the induction hypothesis that Argk−ℓ(collapse(s)) is well-defined and is equal to

some r :: t ∈ CStacks with t ∈ Γ of type τk−ℓ+ℓ = τk.

(2) We proceed by induction on the size of s :: t. The base case deals with the stack

[· · · [⊥]1 · · ·]n :: Z. As [[[]n :: Z]]
def
= Z, the property holds.

Assume that the property holds for all elements of CStacks smaller than some s :: t ∈
CStacks with t : τ . Let us show that [[s :: t]] is of type τ . The case where t ∈ N is

trivial. The one where t = t1t2 is immediate by induction, as both [[s :: t2]] and [[s :: t1]]
have a size smaller than [[s :: t]]. The last case is when t is a variable x ∈ V . Assume

that the variable x appears in an A-production for some A : τ = τ1 → · · · → τ̺(A) → o

in N . In particular, the variable x is of type τrk(x). We have [[s :: x]]
def
= [[Argrk(x)(s)]].

By definition of CStacks, s is an A-stack and using point (1), Argrk(x)(s) is equal to

470 A. Carayol, O. Serre

r :: t′ with r ∈ Stacks and t′ : τrk(x) ∈ Γ. Thus [[s :: x]] = [[r :: t′]] for some r
smaller than s, and using the induction hypothesis, one concludes that [[s :: x]] is a term

in Termsτrk(x)
(N).

(3) Let s ∈ WStacks whose top symbol starts with ϕ : τ = τ1 → · · · → τ̺(ϕ) → o.

Clearly pop1(s) :: ϕ belongs to CStacks and by point (2), [[pop1(s) :: ϕ]] is of type τ .

Points (1) and (2) imply that, [[Argk(s)]] is of type τk, for all k ∈ [1, ̺(ϕ)]. Hence, from

Definition 4.5 it directly follows that [[s]] is of type o.

We conclude with two fundamental properties of Argk(·) that will allow us to simulate

the rewriting of the scheme using stack operations and finite memory.

The first property is that the arguments represented by a well-formed stack are not

modified when performing a pushk operation. More precisely, for all ϕ-stacks s ∈
WStacks with ϕ ∈ N ∪V , we have [[Argℓ(pushk(s))]] = [[Argℓ(s)]] for all ℓ ∈ [1, ̺(ϕ)]
and all k ∈ [2,m]. This follows (by letting r = topk(s)) from the following slightly more

general result.

Lemma 4.2. Let k ∈ [2,m] and let s = s′ ++topk(s) ∈ WStacks. For all non-empty

ϕ-stacks r ⊑ topk(s), we have [[Argℓ(s
′ ++ r)]] = [[Argℓ(s++ r)]] for all ℓ ∈ [1, ̺(ϕ)].

Proof. We show, by induction on the size of r, that s ++ r and s′ ++ r are well-formed

and [[Argℓ(s
′ ++ r)]] = [[Argℓ(s++ r)]] for all ℓ ∈ [1, ̺(ϕ)], where ϕ ∈ N ∪ V denotes

the head symbol of top1(r).
The base case (which considers [· · · [⊥Z]1 · · ·]k) is immediate. Assume that the prop-

erty holds for all substacks of topk(s) smaller than some ϕ-stack r ⊑ topk(s). We will

show that it holds for r.

The key observation is that: top2(s++ r) = top2(s
′ ++ r) and either

collapse(s++ r) = collapse(s++ r)

if the link attached to topmost symbol of r is order greater than k, or

collapse(s++ r) = s++collapse(r) and collapse(s′ ++ r) = s′ ++collapse(r)

otherwise.

As s′ ++ r is a substack of s (which is well-formed), s′ ++ r is well-formed as well.

To prove that s ++ r is well-formed, we need to show that every non-empty substack

of s ++ r satisfies the two properties expressed in Definition 4.2. The case of a proper

substack immediately follows the induction hypothesis. We can deduce that s++ r satisfies

these two properties from the above observations. Indeed the first property only depends

on the top most order-1 stack (and top2(s++ r) = top2(s
′++ r)) and the second property

follows from the fact that top1(s ++ r) = top1(s
′ ++ r) and top1(collapse(s ++ r)) =

top1(collapse(s
′ ++ r)).

Assume that the top symbol of r is equal to ϕ t1 · · · tn. Let ℓ ∈ [1, ̺(ϕ)] and let us

show that [[Argℓ(s++ r)]] = [[Argℓ(s
′ ++ r)]].

If ℓ 6 n then we have [[Argℓ(s++ r)]] = [[s++pop1(r) :: tℓ]] = [[s′++pop1(r) :: tℓ]].
By the induction hypothesis, we have that [[s++ r′ :: t]] = [[s′ ++ r′ :: t]] for any proper

substack r′ of r, and in particular for r′ = pop1(r).

Higher-order recursion schemes and their automata models 471

If ℓ > n then [[Argℓ(s ++ r)]] is equal to both [[Argℓ−n(collapse(s ++ r))]] and

[[Argℓ−n(collapse(s ++ r))]]. From the above observation, we either have that the stack

collapse(s++ r) is equal to collapse(s′ ++ r) and the equality trivially holds, or we have

collapse(s++ r) = s++collapse(r) and collapse(s′ ++ r) = s′ ++collapse(r) in which

case the equality follows by the induction hypothesis as | collapse(r) | < | r |.

The next property will later been use to prove that any rewriting step can be simulated

by a finite number of transitions in the automaton.

Lemma 4.3. Let s be a ϕ-stack in WStacks for some ϕ : τ1 → · · · → τ̺(ϕ) → o in

V ∪N and let ℓ ∈ [1, ̺(ϕ)] with τℓ of order k > 0. If Argℓ(s) is equal to r :: t ∈ CStacks
with t starting with ψ ∈ N ∪ V then

popn−k+1(s) = popn−k+1(r) and | topn−k+1(s) | > | topn−k+1(r) |.

Proof. We proceed by induction of the size of s. The base case, which considers the stack

[· · · [⊥Z]1 · · ·]n, is immediate as ̺(Z) = 0.

Assume that the property holds for all stacks in WStacks smaller than some stack

s ∈ WStacks. Let ϕ t1 . . . tm be the top symbol of s with ϕ : τ1 → · · · → τ̺(ϕ) → o
in V ∪N and m ∈ [0, ̺(ϕ)]. Let ℓ ∈ [1, ̺(ϕ)] and let k be the order of τℓ. Assume that

Argℓ(s) = r :: t.
If ℓ 6 m, then Argℓ(s) = pop1s :: tℓ. In particular, r is equal to pop1(s) and

the property holds because popn−k+1(r) = popn−k+1(pop1(s)) = popn−k+1(s) as

n− k + 1 > 2 (indeed k < n by definition of n).

If ℓ > m, Argℓ(s) = Argℓ−m(collapse(s)). By the induction hypothesis, we have

popn−k+1(collapse(s)) = popn−k+1(r).

To conclude the result, it is enough to show that popn−k+1(collapse(s)) = popn−k+1(s).
Let k′ be the order of top1(s). As top1(s) = ϕ t1 · · · tm is of type τm+1 → · · · →
τ̺(ϕ) → o, we have k′ > k. By definition of well-formed stacks, the order of the link

attached to top symbol is equal to n − k′ + 1. In particular, popn−k+1(collapse(s)) =
popn−k+1(s).

4.2 Simulating the LTS of S on stacks

As an intermediate step, we define an LTS M over well-formed stacks and we prove

that it generates the same tree as S (i.e., Tree⊥(M) = Tree⊥(S)). From M, a CPDA

generating Tree⊥(M) is then easily defined.

We let M = 〈WStacks, [· · · [⊥Z] · · ·]n,Σ, (
a

−→
M

)a∈Σ 〉 and define the transitions as

follows:

472 A. Carayol, O. Serre







s
a

−→
M

pusht1(s) if s is an A-stack with A ∈ N

and Ax1 · · ·x̺(A)
a

−→ t ∈ R,

s
λ

−→
M

pusht1(r) if s is a ϕ-stack with ϕ : o ∈ V

and Argrk(ϕ)(pop1(s)) = r :: t,

s
λ

−→
M

pusht,n−k+1
1 (r) if s is a ϕ-stack with ϕ : τ ∈ V of order k > 0

and Argrk(ϕ)(pop1(pushn−k+1(s))) = r :: t.

Example 4.5. In the figure below, we illustrate the definition of M on the scheme SU .

Z
λ

Z

G (H X) (
Z

G (H X)

FGz(Hz)

(
Z

G (H X)

FGz(Hz)

F (Fϕx)y(Hy)

)
Z

G (H X)

FGz(Hz)

F (Fϕx)y(Hy)

ϕ (H y)

λ
Z

G (H X)

FGz(Hz)

F (Fϕx)y(Hy)

ϕ (H y)

Z

G (H X)

FGz(Hz)

F ϕx

⋆
Z

G (H X)

FGz(Hz)

F (Fϕx)y(Hy)

ϕ (H y)

Z

G (H X)

FGz(Hz)

F ϕx

x

λ
Z

G (H X)

FGz(Hz)

F (Fϕx)y(Hy)

ϕ (H y)

Z

G (H X)

FGz(Hz)

x

λ
Z

G (H X)

FGz(Hz)

F (Fϕx)y(Hy)

ϕ (H y)

Z

G (H X)

z

λ
Z

G (H X)

FGz(Hz)

F (Fϕx)y(Hy)

ϕ (H y)

Z

H X
⋆

Z

G (H X)

FGz(Hz)

F (Fϕx)y(Hy)

ϕ (H y)

Z

H X

x

λ
Z

G (H X)

FGz(Hz)

F (Fϕx)y(Hy)

ϕ (H y)

Z

X

The first line of the definition of −→
M

corresponds to the case of an N -stack. To

simulate the application of a production rule Ax1 · · ·xn
a

−→ e on the term encoded by

an A-stack s, we simply push the right-hand side e of the production on top of s. The

correctness of this rule directly follows from the definition of [[·]] (cf. Lemma 4.4 below).

Doing so, a term starting with a variable may be pushed on top of the stack, e.g., when

applying the production rule F ϕx y
)

−→ ϕ (H y). Indeed, we need to retrieve the value

of the head variable in order to simulate the next transition of S: the second and third

lines of the definition are normalization rules that aim at replacing the variable at the head

of the top of the stack (in Example 4.5 ϕ) by its definition (hence not changing the value

of the associated term). By iterative application, we eventually end up with an N -stack

encoding the same term and we can apply again the first rule.

The following lemma states the soundness of the first line of the definition of −→
M

.

Lemma 4.4. Let s be an N -stack in WStacks and a ∈ Σ.






∃t ∈ Terms(N), [[s]]
a

−→ t ⇒ ∃s′ ∈ WStacks, s
a

−→
M

s′ and [[s′]] = t

∃s′ ∈ WStacks, s
a

−→
M

s′ ⇒ [[s]]
a

−→ [[s′]]

Higher-order recursion schemes and their automata models 473

Proof. Let s ∈ WStacks be an A-stack for some A ∈ N and let a ∈ Σ. By definition of

[[s]], [[s]] is equal to A [[Arg1(s)]] · · · [[Arg̺(A)(s)]].

Assume that [[s]]
a

−→ t for some t ∈ Terms(N). By definition of
a

−→, there exists a

production Ax1 · · ·x̺(A)
a

−→ t′ in R such that t is equal to

t′[x1/[[Arg1(s)]], . . . , x̺(A)/[[Arg̺(A)(s)]]].

By definition of
a

−→
M

, we have s
a

−→
M

pusht
′

1 (s) hence we only need to note that the

term [[pusht
′

1 (s)]] is equal to t′[x1/[[Arg1(s)]], . . . , x̺(A)/[[Arg̺(A)(s)]]]. Indeed, as

t′ is of ground type, [[pusht
′

1 (s)]] is equal to [[s :: t′]] which is by definition equal to

t′[x1/[[Arg1(s)]], . . . , x̺(A)/[[Arg̺(A)(s)]]].

Now, assume that s
a

−→
M

s′ for some s′ ∈ WStacks. By definition of
a

−→
M

, there

exists a production Ax1 · · ·x̺(A)
a

−→ t′ ∈ R such that s′ = pusht
′

1 (s). As s is an

A-stack, we have [[s]] = A [[Arg1(s)]] · · · [[Arg̺(A)(s)]]. Furthermore [[s′]] is equal to

t′[x1/Arg1(s), . . . , x̺(A)/Arg̺(A)(s)]. Hence by definition of
a

−→, [[s]]
a

−→ [[s′]].

The next lemma states the soundness of the second and third lines of the definition of

M. It also permits concluding that there are no infinite paths labeled by λ in M.

Lemma 4.5. We have the following properties:

(1) Let s ∈ WStacks be a ϕ-stack with ϕ ∈ V and s′ ∈ WStacks be a ψ-stack

with ψ ∈ V ∪ N . If s
λ

−→
M

s′ then ord(ϕ) 6 ord(ψ) and [[s]] = [[s′]] with

| topn−ord(ϕ)+1(s) | > | topn−ord(ϕ)+1(s
′) |.

(2) For all stack s ∈ WStacks there exists a unique N -stack s′ ∈ WStacks such that

s
λ∗

−→
M

s′.

Proof. (1) Let ϕ be a variable in V and let s be a ϕ-stack in WStacks.We distinguish two

cases depending on the order of the ϕ.

Assume that ϕ is of ground type and that Argrk(ϕ)(pop1(s)) is some r :: t ∈ CStacks.

We have by definition of M that s
λ

−→
M

s′ = pusht1(r). To show that [[s]] is equal to

[[s′]], we simply unfold the definitions.

[[s]]
def
= [[pop1(s) :: ϕ]]

def
= [[Argrk(ϕ)(pop1(s))]]

def
= [[r :: t]]

Def 4.5
= [[pusht1(r)]]

def
= [[s′]].

Assume that s′ = pusht1(r) is a ψ-stack for some ψ ∈ N ∪ V . We have ord(ψ) >

ord(ϕ) = 0. As |Argk(pop1(s)) | 6 | s | − 2, we have that | topn+1(s) = s | >
| topn+1(s

′) = s′ |.
Assume that ϕ is of type τ = τ1 → · · · → τ̺(ϕ) → o of order k > 0. Assume

that Argrk(ϕ)(pop1(pushn−k+1(s))) is equal to r :: t ∈ CStacks. First recall that, from

Lemma 4.1, we have that t : τ . We have by definition that s −→
M

s′ = pusht,n−k+1
1 (r).

Let us show that [[s]] = [[s′]]. Using Fact 2, we have that:

474 A. Carayol, O. Serre

[[s′]] = [[pop1(s
′) :: top1(s

′)]]
︸ ︷︷ ︸

= [[pop1(s)::ϕ]] (4.1)

[[Arg1(collapse(s
′))]]

︸ ︷︷ ︸

= [[Arg1(s)]] (4.2)

. . . [[Arg̺(ϕ)(collapse(s
′))]]

︸ ︷︷ ︸

= [[Arg̺(ϕ)(s)]] (4.2)

= [[pop1(s) :: ϕ]][[Arg1(s)]] · · · [[Arg̺(ϕ)(s)]] = [[s]].

The equalities denoted (4.1) and (4.2) are proven below:

[[pop1(s
′) :: top1(s

′)]]
def
= [[r :: t]] = [[Argrk(ϕ)(pop1(pushn−k+1(s)))]]

Lemma 4.2

= [[Argrk(ϕ)(pop1(s))]] = [[pop1(s) :: ϕ]] (4.1)

and for all i ∈ [1, ̺(ϕ)],

[[Argi(collapse(s
′))]] = [[Argi(collapse(push

t,n−k+1
1 (r)))]]

= [[Argi(popn−k+1(r))]]
Lemma 4.3

= [[Argi(popn−k+1(pop1(pushn−k+1(s))))]]

= [[Argi(s)]].

(4.2)

As both ϕ and t have type τ , and as t is of the form ψ t1 · · · tℓ for some ℓ > 0, it

directly follows that ord(ϕ) 6 ord(ψ).
The inequality | topn−ord(ϕ)+1(s) | > | topn−ord(ϕ)+1(s

′) | follows from Lemma 4.3.

(2) Assume, to get a contradiction, that there exists an infinite sequence (si)i>0 of stacks

in WStacks such that for all i > 0, si
λ

−→
M

si+1. For all i > 0, we let ti denote the top

symbol of si and ϕi the head symbol of ti. According to (1), the order of the ϕi increases

and hence is ultimately constant. Let j and k be such that, for all i > j, ord(ϕi) is equal

to k. Using (1), the size of the topn−k+1(si) is strictly decreasing starting from j, which

provides the contradiction.

From Lemma 4.4 and 4.5, M and S generate the same trees.

Proposition 4.6.

Tree⊥(S) = Tree⊥(M).

Proof. By definition of M, only well-formed N -stacks can be the source of non-silent

transitions. Let s be a well-formed N -stack. If [[s]]
a

−→
S

t for some a ∈ Σ, then the

N -stack s′ such that s
aλ∗

−→
M

s′ is such that [[s′]] = t. Conversely if s
aλ∗

−→
M

s′ for some

N -stack s′, then [[s]]
a

−→
S

[[s′]].

From M we now define an n-CPDA A = 〈Σ,Γ, Q, δ, q0 〉 generating the same tree

as M. The set of states Q is equal to { q0, q1, . . . , q̺(S), q∗, qV } where ̺(S) denotes

the maximal arity appearing in S . Intuitively, the initial state q0 is only used to go from

(q0, [. . . [⊥]1 . . .]n) to (q∗, [. . . [⊥Z]1 . . .]n); the state q∗ is used to mark N -stacks; for

k ∈ [1, ̺(S)], the state qk is used to the compute Argk(· · ·). The state qV is used to signal

stacks that appear in the derivation of system M that are V -stacks. The transitions are

given below.

Higher-order recursion schemes and their automata models 475

• δ(q0,⊥, λ) = (q∗, push
Z
1),

• If t starts with F ∈ N and F x1 · · ·x̺(F)
a

−→ e ∈ R:

– δ(q∗, t, a) = (q∗, push
e
1) if e starts with a symbol in N ,

– δ(q∗, t, a) = (qa, push
e
1) if e starts with a variable.

• If t is a term of the form ϕ t1 · · · tℓ for some ϕ ∈ V :

– δ(qV , t, λ) = (qrk(ϕ), pop1) if ϕ is an order-0 variable,

– δ(qV , t, λ) = (qrk(ϕ), pushn−k+1; pop1) if ϕ is a variable of order k > 0.

• If t is a term of the form ϕ t1 · · · tℓ for some ϕ ∈ V ∪N :

– δ(qk, t, λ) = (qrk(tk), pop1; push
tk
1) if k 6 ℓ and tk : o,

– δ(qk, t, λ) = (qrk(tk), pop1; push
tk,n−h+1
1) if k 6 ℓ and tk has order h > 0,

– δ(qk, t, λ) = (qk−ℓ, collapse) if k > ℓ.

where, for all t ∈ Γ, qrk(t) designates the state qrk(x) if t starts with a variable x and q∗
otherwise, and op1; op2 means applying op1 followed by op2. An equivalent CPDA using

only one operation per transition may be obtained by adding intermediary states.

Remark 4.7. The previously given CPDA uses several operations per transition. An

equivalent CPDA using only one operation per transition may be obtained by adding

intermediary states.

Theorem 4.8. For every labeled recursion scheme S of order-n, there is an n-CPDA A
that generates the same tree. Moreover, the number of states in A is linear in the maximal

arity appearing in S , and its alphabet is of size linear in the one of S .

Proof (sktech). Let s be a well-formed stack. We denote by 〈〈 s 〉〉 the configuration of

A defined by 〈〈 s 〉〉 = (q∗, s) if s is an N -stack and 〈〈 s 〉〉 = (qrk(x), s) if s is a V -stack

whose topmost symbol starts with a variable x.

Clearly for any well-formed N -stack s, s
a

−→
M

s′ if and only if 〈〈 s 〉〉
a

−→
A

〈〈 s′ 〉〉.

For any V -stack s, if s
λ

−→
M

s′ then 〈〈 s 〉〉
λ∗

−→
A

〈〈 s′ 〉〉 as intuitively −→
A

combines

the definition of both −→
M

and Argk(·). Conversely, for all V -stacks, if s
λ

−→
M

s′ and

〈〈 s 〉〉
λ

−→
A

〈〈 s2 〉〉 then 〈〈 s2 〉〉
λ∗

−→
A

〈〈 s′ 〉〉.

5 Safe higher-order recursion schemes

In this last section, we consider a syntactic subfamily of recursion schemes called safe

recursion schemes. The safety constraint was introduced in [36], but was already implicit

in the work of Damm [22] (also see [24, p. 44] for a detailed presentation). This restriction

constrains the way variables are used to form argument subterms of the rules’ right-hand

sides.

Definition 5.1 ([36]). A recursion scheme is safe if none of its right-hand sides contains

an argument-subterm of order k containing a variable of order strictly less than k.

476 A. Carayol, O. Serre

Other than the scheme SU generating the tree of the Urzyczyn language, all examples

we gave are safe schemes. The scheme SU is not safe, as the production

F ϕx
(

−→ F (Fϕx)y(Hy)

contains in its right-hand side the argument subterm Fϕx : o → o of order-1, which

contains the variable x : o of order-0. Urzyczyn conjectured that (a slight variation)

of the tree TU generated by SU , though generated by a order-2 scheme, could not be

generated by any safe scheme. This conjecture was recently proved by Parys [49, 50].

Remark 5.1. In [36], the notion of safety is only defined for homogeneous schemes. A

type is said to be homogeneous if it is either ground or equal to τ1 → · · · → τn → o
where the τi’s are homogeneous and ord(τ1) > · · · > ord(τn). By extension, a scheme

is homogeneous if all its non-terminal symbols have homogeneous types. For instance,

(o → o) → o → o is an homogeneous type whereas o → (o → o) → o is not. In

Proposition 5.5, we will see that dropping the homogeneity constraint in the definition of

safety does not change the family of generated trees.

5.1 Safety and the Translation from Schemes to CPDA

In [36, 37], the motivation for considering the safety constraint was that safe schemes can

be translated into a subfamily of the collapsible automata, namely higher-order pushdown

automata. Recall that an order-k pushdown automaton is an order-k CPDA that does not

use the collapse operation (hence, links are useless).

Theorem 5.2 below shows that the translation of recursion schemes into collapsible

automata presented in Section 4, when applied to a safe scheme, yields an automaton

in which links are not really needed. Obviously the automaton performs the collapse

operations but whenever it is applied to an order-k link, its target is the (k − 1)-stack

below the top (k − 1)-stack. Hence any collapse operation can safely be replaced by a

popk operation. This notion is captured by the notion of link-free CPDA.

Definition 5.2. A CPDA is link-free if for every configuration (p, s) reachable from the

initial configuration and for every transition δ(p, top1(s), a) = (q, collapse), we have

collapse(s) = popℓ(s), where ℓ is the order of the link attached to top1(s).

Theorem 5.2. The translation of Section 4 applied to a safe recursion scheme yields a

link-free collapsible automaton.

We get the following corollary extending a previous result from [36], by dropping the

homogeneity assumption.

Corollary 5.3. Order-k safe schemes and order-k pushdown automata generate the same

trees.

Higher-order recursion schemes and their automata models 477

5.2 Damm’s view of safety

The safety constraint may seem unnatural and purely ad hoc. Inspired by the constraint

of derived types of Damm, we introduce a more natural constraint, Damm safety, which

leads to the same family of trees [22].

Damm safety syntactically restricts the use of partial application: in any argument

subterm of a right-hand side, if one argument of some order-k is provided, then all ar-

guments of order-k must also be provided. For instance if f : o → o, c : o and

ϕ : (o → o) → (o → o) → o → o → o, the terms ϕ, ϕf f and ϕf f c c can ap-

pear as argument subterms in a Damm-safe scheme, but ϕf and ϕf f c are forbidden.

Definition 5.3 ([22]). A recursion scheme is Damm safe if it is homogeneous and all

argument-subterms appearing in a right hand-side are of the form ϕ t1 · · · tk with ϕ :
τ1 → · · · → τn → o and either k ∈ {0, n} or ord(τk) > ord(τk+1).

Remark 5.4. The second constraint in the definition of Damm safety can be reformulated

as follows: all argument subterms of an argument subterm of order-k appearing in a right-

hand side have at least order-k.

Using Remark 5.4, it is easy to see that Damm-safety implies the safety constraint.

However, the safety constraint, even when restricted to homogeneous schemes, is less

restrictive than Damm safety. Consider, for instance, a variable x : o and non-terminals

G : o → o → o and C : o. Then Gx cannot appear as an argument-subterm in a

safe scheme, but GC can. As GC does not satisfy the Damm-safety constraint, safety

is syntactically more permissive than Damm-safety. However unsurprisingly, any safe

scheme can be transformed into an equivalent Damm-safe scheme of the same order.

The transformation consists of converting the safe scheme into a higher-order pushdown

automaton (Corollary 5.3) and then converting this automaton back to a scheme using the

translation of [36]. In fact, this translation of higher-order pushdown automata into safe

schemes produces Damm-safe schemes.

Proposition 5.5. Damm-safe schemes are safe and for every safe scheme, there exists a

Damm-safe scheme of the same order generating the same tree.

This proposition in particular shows that any safe scheme can be transformed into an

equivalent homogeneous one. Broadbent, using the translation from schemes into CPDA,

showed that any scheme (possibly unsafe) can be converted into an equivalent one that is

homogeneous [7]. Recently, Parys gave a new proof of this result by directly manipulating

the scheme; he also provided another construction that preserves safety [51].

References

[1] K. Aehlig. A finite semantics of simply-typed lambda terms for infinite runs of automata. In

Z. Ésik, editor, Proc. 20th Workshop on Computer Science Logic, volume 4207 of Lecture

Notes in Comput. Sci., pages 104–118. Springer-Verlag, 2006. 443

478 A. Carayol, O. Serre

[2] K. Aehlig, J. de Miranda, and L. Ong. Safety is not a restriction at level 2 for string languages.

In V. Sassone, editor, Proc. 8th Int. Conf. on Foundations of Software Science and Computa-

tion Structures, volume 3411 of Lecture Notes in Comput. Sci., pages 490–501. Springer-

Verlag, 2005. 442, 443

[3] A. Arnold and D. Niwiński. Rudiments of mu-calculus, volume 146 of Studies in Logic and

the Foundations of Mathematics. Elsevier, 2001. 442

[4] T. Ball and S. K. Rajamani. The SLAM project: Debugging system software via static anal-

ysis. In J. Launchbury and J. C. Mitchell, editors, Proc. 29th ACM Symp. on Principles of

Programming Languages, pages 1–3. ACM, 2002. 443

[5] V. Bárány, E. Grädel, and S. Rubin. Automata-based presentations of infinite structures. In

Finite and Algorithmic Model Theory, volume 379 of London Math. Soc. Lect. Note Ser.,

pages 1–76. Cambridge University Press, 2011. 442

[6] H. P. Barendregt. The lambda Calculus: its syntax and semantics, volume 103. North Holland,

revised edition, 1984. 450

[7] C. Broadbent. On collapsible pushdown automata, their graphs and the power of links. PhD

thesis, University of Oxford, 2011. 477

[8] C. Broadbent, A. Carayol, C.-H. L. Ong, and O. Serre. Recursion schemes and logical reflex-

ion. In Proc. 25th IEEE Symp. on Logic in Computer Science, pages 120–129. IEEE Computer

Society, 2010. 443

[9] C. H. Broadbent, A. Carayol, M. Hague, and O. Serre. C-SHORe: a collapsible approach to

higher-order verification. In G. Morrisett and T. Uustalu, editors, Proc. 18th ACM SIGPLAN

Int. Conf. on Functional Programming, pages 13–24. ACM, 2013. 444

[10] C. H. Broadbent and N. Kobayashi. Saturation-based model checking of higher-order recur-

sion schemes. In S. R. D. Rocca, editor, Proc. 22nd Annual Conf. of the European Associa-

tion for Computer Science Logic, volume 23 of LIPIcs, pages 129–148. Schloss Dagstuhl –

Leibniz-Zentrum für Informatik, 2013. 444

[11] T. Cachat. Higher order pushdown automata, the Caucal hierarchy of graphs and parity games.

In J. C. M. Baeten, J. K. Lenstra, J. Parrow, and G. J. Woeginger, editors, Proc. 30th Int.

Conf. on Automata, Languages, and Programming (ICALP), volume 2719 of Lecture Notes in

Comput. Sci., pages 556–569. Springer-Verlag, 2003. 443

[12] A. Carayol, A. Meyer, M. Hague, C.-H. L. Ong, and O. Serre. Winning regions of higher-order

pushdown games. In Proc. 23rd IEEE Symp. on Logic in Computer Science, pages 193–204.

IEEE Computer Society, 2008. 443

[13] A. Carayol and O. Serre. Collapsible pushdown automata and labeled recursion schemes:

Equivalence, safety and effective selection. In Proc. 27th IEEE Symp. on Logic in Computer

Science, pages 165–174. IEEE Computer Society, 2012. 443

[14] A. Carayol and S. Wöhrle. The Caucal hierarchy of infinite graphs in terms of logic and

higher-order pushdown automata. In P. K. Pandya and J. Radhakrishnan, editors, Proc. 23rd

Conf. on Foundations of Software Technology and Theoretical Computer Science, volume

2914 of Lecture Notes in Comput. Sci., pages 112–123. Springer-Verlag, 2003. 442

[15] D. Caucal. On infinite terms having a decidable monadic theory. In K. Diks and W. Rytter,

editors, Proc. 27th Symp., Mathematical Foundations of Computer Science 2002, volume 2420

of Lecture Notes in Comput. Sci., pages 165–176. Springer-Verlag, 2002. 442, 443

[16] B. Courcelle. A representation of trees by languages I. Theoret. Comput. Sci., 6:255–279,

1978. 441, 453

Higher-order recursion schemes and their automata models 479

[17] B. Courcelle. A representation of trees by languages II. Theoret. Comput. Sci., 7:25–55, 1978.

441, 453

[18] B. Courcelle. The monadic second-order logic of graphs IX: machines and their behaviours.

Theoret. Comput. Sci., 151:125–162, 1995. 442

[19] B. Courcelle and M. Nivat. The algebraic semantics of recursive program schemes. In

J. Winkowski, editor, Proc. 7th Symp., Mathematical Foundations of Computer Science 1978,

volume 64 of Lecture Notes in Comput. Sci., pages 16–30. Springer-Verlag, 1978. 441

[20] W. Damm. Higher type program schemes and their tree languages. In H. Tzschach, H. Wald-

schmidt, and H. K. Walter, editors, Theoretical Computer Science, Proc. 3rd GI Conf., vol-

ume 48 of Lecture Notes in Comput. Sci., pages 51–72. Springer-Verlag, 1977. 441

[21] W. Damm. Languages defined by higher type program schemes. In A. Salomaa and

M. Steinby, editors, Proc. 4th Colloq. on Automata, Languages, and Programming (ICALP),

volume 52 of Lecture Notes in Comput. Sci., pages 164–179. Springer-Verlag, 1977. 441

[22] W. Damm. The IO- and OI-hierarchies. Theoret. Comput. Sci., 20:95–207, 1982. 441, 451,

475, 477

[23] W. Damm and A. Goerdt. An automata-theoretical characterization of the OI-hierarchy. In-

form. Comput., 71:1–32, 1986. 441

[24] J. de Miranda. Structures generated by higher-order grammars and the safety constraint. PhD

thesis, University of Oxford, 2006. 440, 475

[25] J. Engelfriet. Iterated pushdown automata and complexity classes. In D. S. Johnson, R. Fagin,

M. L. Fredman, D. Harel, R. M. Karp, N. A. Lynch, C. H. Papadimitriou, R. L. Rivest, W. L.

Ruzzo, and J. I. Seiferas, editors, Proc. 15th Ann. ACM Symp. Theor. Comput., STOC 1983.

ACM, 1983. 441

[26] J. Engelfriet. Iterated stack automata and complexity classes. Inform. Comput., 95(1):21–75,

1991. 441

[27] J. Engelfriet and E. M. Schmidt. IO and OI. I. J. Comput. System Sci., 15(3):328–353, 1977.

441

[28] J. Engelfriet and E. M. Schmidt. IO and OI. II. J. Comput. System Sci., 16(1):67–99, 1978.

441

[29] J. Flum, E. Grädel, and T. Wilke. Logic and automata: history and perspectives. Amsterdam

University Press, 2007. 442

[30] S. Garland and D. Luckham. Program schemes, recursion schemes and formal languages. J.

Comput. System Sci., 7(2):119–160, 1973. 440

[31] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite Games: A

Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], volume 2500 of

Lecture Notes in Comput. Sci. Springer-Verlag, 2002. 442

[32] M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre. Collapsible pushdown automata and

recursion schemes. In Proc. 23rd IEEE Symp. on Logic in Computer Science, pages 452–461.

IEEE Computer Society, 2008. 442, 444, 445

[33] J. M. E. Hyland and C.-H. L. Ong. On Full Abstraction for PCF: I. Models, observables and

the full abstraction problem, II. Dialogue games and innocent strategies, III. A fully abstract

and universal game model. Inform. Comput., 163:285–408, 2000. 443

[34] K. Inaba and S. Maneth. The complexity of tree transducer output languages. In R. Hariharan,

M. Mukund, and V. Vinay, editors, Proc. 28th Conf. on Foundations of Software Technology

and Theoretical Computer Science, volume 2 of LIPIcs, pages 244–255. Schloss Dagstuhl –

Leibniz-Zentrum für Informatik, 2008. 441

480 A. Carayol, O. Serre

[35] K. Indermark. Schemes with recursion on higher types. In A. W. Mazurkiewicz, editor, Proc.

5th Symp., Mathematical Foundations of Computer Science 1976, volume 45 of Lecture Notes

in Comput. Sci., pages 352–358. Springer-Verlag, 1976. 441

[36] T. Knapik, D. Niwiński, and P. Urzyczyn. Deciding monadic theories of hyperalgebraic trees.

In S. Abramsky, editor, 5th Int. Conf. on Typed Lambda Calculi and Applications, TLCA’01,

volume 2044 of Lecture Notes in Comput. Sci., pages 253–267. Springer-Verlag, 2001. 442,

475, 476, 477

[37] T. Knapik, D. Niwiński, and P. Urzyczyn. Higher-order pushdown trees are easy. In M. Nielsen

and U. Engberg, editors, Proc. 5th Int. Conf. on Foundations of Software Science and Com-

putation Structures, volume 2303 of Lecture Notes in Comput. Sci., pages 205–222. Springer-

Verlag, 2002. 442, 443, 476

[38] T. Knapik, D. Niwiński, P. Urzyczyn, and I. Walukiewicz. Unsafe grammars and panic au-

tomata. In L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung, editors, Proc.

32nd Int. Conf. on Automata, Languages, and Programming (ICALP), volume 3580 of Lecture

Notes in Comput. Sci., pages 1450–1461. Springer-Verlag, 2005. 442, 443

[39] N. Kobayashi. Model-checking higher-order functions. In A. Porto and F. J. López-Fraguas,

editors, Proc. 11th Int. ACM SIGPLAN Conf. on Principles and Practice of Declarative Pro-

gramming, pages 25–36. ACM, 2009. 444

[40] N. Kobayashi. Types and higher-order recursion schemes for verification of higher-order

programs. In Z. Shao and B. C. Pierce, editors, Proc. 36th ACM Symp. on Principles of

Programming Languages, pages 416–428. ACM, 2009. 443

[41] N. Kobayashi. A practical linear time algorithm for trivial automata model checking of higher-

order recursion schemes. In M. Hofmann, editor, Proc. 14th Int. Conf. on Foundations of

Software Science and Computation Structures, volume 6604 of Lecture Notes in Comput. Sci.,

pages 260–274. Springer-Verlag, 2011. 444

[42] N. Kobayashi. Model checking higher-order programs. J. Assoc. Comput. Mach., 60(3):20:1–

20:62, 2013. 444

[43] N. Kobayashi and C.-H. L. Ong. A type system equivalent to the modal mu-calculus model

checking of higher-order recursion schemes. In Proc. 24th IEEE Symp. on Logic in Computer

Science, pages 179–188. IEEE Computer Society, 2009. 443

[44] A. N. Maslov. The hierarchy of indexed languages of an arbitrary level. Sov. math. Dokl.,

15:1170–1174, 1974. 441

[45] A. N. Maslov. Multilevel stack automata. Probl. Inf. Transm., 12:38–43, 1976. 441, 456

[46] R. P. Neatherway, S. J. Ramsay, and C.-H. L. Ong. A traversal-based algorithm for higher-

order model checking. In P. Thiemann and R. B. Findler, editors, Proc. 17th ACM SIGPLAN

Int. Conf. on Functional Programming, pages 353–364. ACM, 2012. 444

[47] M. Nivat. Langages algébriques sur le magma libre et sémantique des schémas de programme.

In M. Nivat, editor, Automata, Languages, and Programming: Proceedings of a Symposium,

pages 293–308. North-Holland, 1972. 440

[48] C.-H. L. Ong. On model-checking trees generated by higher-order recursion schemes. In

Proc. 21st IEEE Symp. on Logic in Computer Science, pages 81–90. IEEE Computer Society,

2006. 443

[49] P. Parys. Collapse operation increases expressive power of deterministic higher order push-

down automata. In T. Schwentick and C. Dürr, editors, STACS 2011, Proc. 28th Symp. Theo-

retical Aspects of Comp. Sci., volume 9 of LIPIcs, pages 603–614. Schloss Dagstuhl – Leibniz-

Zentrum für Informatik, 2011. 455, 476

Higher-order recursion schemes and their automata models 481

[50] P. Parys. On the significance of the collapse operation. In Proc. 27th IEEE Symp. on Logic in

Computer Science, pages 521–530. IEEE Computer Society, 2012. 476

[51] P. Parys. Homogeneity without loss of generality. In H. Kirchner, editor, Proc. 21st Int. Conf.

on Foundations of Software Science and Computation Structures, volume 108 of LIPIcs, pages

27:1–27:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. 477

[52] P. Parys. Recursion schemes and the WMSO+U logic. In R. Niedermeier and B. Vallée, edi-

tors, STACS 2018, Proc. 35th Symp. Theoretical Aspects of Comp. Sci., volume 96 of LIPIcs,

pages 53:1–53:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. 443

[53] M. Rabin. Decidability of second-order theories and automata on infinite trees. Trans. Amer.

Math. Soc., 141:1–35, 1969. 442

[54] S. J. Ramsay, R. P. Neatherway, and C. L. Ong. A type-directed abstraction refinement ap-

proach to higher-order model checking. In S. Jagannathan and P. Sewell, editors, Proc. 41st

ACM Symp. on Principles of Programming Languages, pages 61–72. ACM, 2014. 444

[55] S. Salvati and I. Walukiewicz. Krivine machines and higher-order schemes. In L. Aceto,

M. Henzinger, and J. Sgall, editors, Proc. 38th Int. Conf. on Automata, Languages, and Pro-

gramming (ICALP), volume 6756 of Lecture Notes in Comput. Sci., pages 162–173. Springer-

Verlag, 2011. 443

[56] S. Salvati and I. Walukiewicz. Recursive schemes, Krivine machines, and collapsible push-

down automata. In A. Finkel, J. Leroux, and I. Potapov, editors, Reachability Problems, Proc.

6th Int. Workshop, RP 2012, volume 7550 of Lecture Notes in Comput. Sci., pages 6–20.

Springer-Verlag, 2012. 443

[57] S. Schwoon. Model-checking pushdown systems. PhD thesis, Technical University of Munich,

2002. 443, 444

[58] G. Sénizergues. The equivalence problem for deterministic pushdown automata is decidable.

In P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela, editors, Proc. 24th Int. Conf. on

Automata, Languages, and Programming (ICALP), volume 1256 of Lecture Notes in Comput.

Sci., pages 671–681. Springer-Verlag, 1997. 441

[59] G. Sénizergues. L(A)=L(B)? a simplified decidability proof. Theoret. Comput. Sci., 281(1-

2):555–608, 2002. 441

[60] C. Stirling. Decidability of bisimulation equivalence for pushdown processes. Technical

Report EDI-INF-RR-0005, School of Informatics, University of Edinburgh, 2000. 441, 446

[61] C. Stirling. Schema revisited. In P. Clote and H. Schwichtenberg, editors, Proc. 14th Workshop

on Computer Science Logic, volume 1862 of Lecture Notes in Comput. Sci., pages 126–138.

Springer-Verlag, 2000. 441

[62] C. Stirling. Decidability of DPDA equivalence. Theoret. Comput. Sci., 255(1-2):1–31, 2001.

441

[63] W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa, editors,

Handbook of formal language theory, volume III, pages 389–455. Springer-Verlag, 1997. 442

[64] I. Walukiewicz. Pushdown processes: games and model-checking. Inform. Comput., 157:234–

263, 2001. 443

