
Collapsible Pushdown Automata and Labeled Recursion Schemes

Equivalence, Safety and Effective Selection

Arnaud Carayol
LIGM (Université Paris Est & CNRS), Paris, France

Olivier Serre
LIAFA (Université Paris Diderot – Paris 7 & CNRS), Paris,France

Abstract—Higher-order recursion schemes are rewriting sys-
tems for simply typed terms and they are known to be equi-
expressive with collapsible pushdown automata (CPDA) for
generating trees. We argue that CPDA are an essential model
when working with recursion schemes. First, we give a new
proof of the translation of schemes into CPDA that does not
appeal to game semantics. Second, we show that this translation
permits to revisit the safety constraint and allows CPDA to be
seen as Krivine machines. Finally, we show that CPDA permit
one to prove the effective MSO selection property for schemes,
subsuming all known decidability results for MSO on schemes.

Keywords-Recursion Schemes, Collapsible Pushdown Au-
tomata, Safety Constraint, MSO Effective Selection

I. INTRODUCTION

Higher-order recursion schemes are rewriting systems for
simply typed terms and in recent years they have received
much attention as a method of constructing rich and robust
classes of possibly infinite ranked trees. Remarkably these
trees have decidable monadic second-order (MSO) theories,
subsuming most of the examples of structures for which
MSO is decidable. Since the original proof of Ong [15]
based on traversals (a tool from game semantics), several
alternative proofs (and extensions) were obtained using
different techniques: automata [9], [2], intersection types
[13], the Krivine machine [18].

In this article we focus on the automata approach. In [9],
schemes were shown to be equi-expressive with an exten-
sion of the standard model of pushdown automata, called
collapsible pushdown automata (CPDA). The translation
from schemes into CPDA crucially relied on traversals. The
decidability of MSO was obtained by solving parity games
played on transition graphs of CPDA. In [2] a refinement of
this proof was used to show that the family of trees generated
by schemes is MSO-reflective, i.e. for any scheme S and any
MSO formula ϕpxq with one first-order free variable x, one
can build another scheme that produces the same tree as S

except that now all nodes satisfying ϕpxq are marked.
In this article, we focus on the merits of CPDA for

studying recursion schemes. As CPDA are more naturally
associated with a labeled transition system (LTS) than with
a tree, we introduce a variant of recursion schemes, labeled
recursion schemes, that admit a canonical LTS. In both

cases, the tree generated is simply the unfolding of the LTS.
Although not technically difficult, we think that this notion
and the associated family of LTS can be the subject of further
studies.

Our first main result is a simplified and syntactic proof of
the translation of a scheme into an equivalent CPDA. This
is the first proof of the equi-expressivity result of [9] that
does not use game semantics. A comparison of the obtained
CPDA can be found at the beginning of Section III.

Furthermore this translation also permits one to view a
CPDA as a Krivine machine, hence inheriting the simplified
proof of [18] for decidability of µ-calculus model-checking.

We also show that when translating a safe scheme we
obtain a CPDA that does not need to use the links. This
result, independently obtained by Blum and Broadbent [1],
unifies the work of [10] on safe schemes and sheds a new
light on safety. As a spin-off result, we give a more natural
definition of safety based on Damm’s original work [6].

Finally, the true gain of the apparently more involved
CPDA model is demonstrated by showing that the trees
defined by recursion schemes enjoy the effective MSO
selection property: for any scheme S and any formula
DX ϕpXq if the tree t generated by S satisfies DX ϕpXq,
one can build another scheme generating the tree t where a
set of nodes U satisfying ϕpXq is marked. This new result
subsumes all previously known MSO-decidability results on
recursion schemes (while keeping the same complexity, in
particular the one of [13]) and relies on a careful analysis
of the winning strategies in CPDA parity games.

II. PRELIMINARIES

A. Trees and Terms

Let A be a finite alphabet. We denote by A˚ the set of
finite words over A. A tree t (with directions in A) is a non-
empty prefix-closed subset of A˚. Elements of t are called
nodes and ε is called the root of t. For any node u P t and
any direction a P A, we refer to ua, when it belongs to t,
as the a-child of u. A node with no child is a leaf.

A ranked alphabet A is an alphabet that comes together
with an arity function, ϱ : A Ñ N. The terms built over
a ranked alphabet A are those trees with directions

ÝÑ
A

def

“Ť
fPA

ÝÑ
f where

ÝÑ
f “ tf1, . . . , fϱpfqu if ϱpfq ą 0 and

ÝÑ
f “

tfu if ϱpfq “ 0. For a tree t with directions in
ÝÑ
A to be a

term, we require, for all nodes u, that the set Au “ td P
ÝÑ
A | ud P tu is empty iff u ends with some f P A (hence
ϱpfq “ 0) and if Au is non-empty then it is equal to some
ÝÑ
f P

ÝÑ
A . We denote by TermspAq the set of terms over A.

For c P A of arity 0, we denote by c the term tε, cu. For
f P A of arity n ą 0 and for terms t1, . . . , tn, we denote by
fpt1, . . . , tnq the term tεu Y

Ť
iPr1,nstfiu ¨ ti. These notions

are illustrated in Figure 1.

‚

‚

‚

‚

‚

‚

c

f1 f2
‚

‚

c

f1 f2
f

f

‚

c

c

Figure 1. Two representations of the infinite term f˚
2

tf1c, f1, εu “
fpc, fpc, fp¨ ¨ ¨ qqq over the ranked alphabet tf, cu assuming that ϱpfq “ 2

and ϱpcq “ 0.

B. Labeled Transition Systems

A rooted labeled transition system (LTS for short) is
an edge-labeled directed graph with a distinguished vertex,
called the root. When considering LTS associated with
computational models, it is usual to allow silent transitions.
The symbol for silent transitions is usually ε but here, to
avoid confusion with the empty word, we will instead use e .
We forbid a vertex to be the source of both a silent transition
and of a non-silent transition. When Σ is an alphabet we let
Σe “ Σzteu.

Formally, a rooted labeled transition system with silent
transitions L is a tuple xD, r,Σ, p

a
ÝÑqaPΣ y where D is

a finite or countable set called the domain, r P D is a
distinguished element called the root, Σ is a finite set of
labels that contains a distinguished symbol denoted e and
for all a P Σ, a

ÝÑ Ď D ˆ D is a binary relation on D.

For any a P Σ and any ps, tq P D2 we write s
a

ÝÑ t
to indicate that ps, tq P

a
ÝÑ, and we refer to it as an a-

transition with source s and target t. Moreover, we require
that for all s P D, if s is the source of a e-transition, then s
is not the source of any a-transition with a ‰ e . For a word
w “ a1 ¨ ¨ ¨ an P Σ˚, we define a binary relation w

ÝÑ on D
by letting s

w
ÝÑ t (meaning that ps, tq P

w
ÝÑ) if there exists

a sequence s0, . . . , sn of elements in D such that s0 “ s,
sn “ t, and for all i P r1, ns, si´1

aiÝÑ si. These definitions
are extended to languages over Σ by taking, for all L Ď Σ˚,
the relation L

ÝÑ to be the union of all w
ÝÑ for w P L.

For all words w “ a1 ¨ ¨ ¨an P Σ˚
e

, we denote by
w

ùñ

the relation LwÝÑ where Lw
def

“ e
˚a1e

˚ ¨ ¨ ¨ e˚ane
˚ is the

set of words over Σ obtained by inserting arbitrarily many
occurrences of e in w.

An LTS is said to be deterministic if for all s, t1 and t2
in D and all a in Σ, if s a

ÝÑ t1 and s
a

ÝÑ t2 then t1 “ t2.

Caveat 1. From now on, we always assume that the LTS

we consider are deterministic.

We associate a tree to every LTS L, denoted TreepLq,
with directions in Σe , reflecting the possible behaviours of
L starting from the root. For this we let TreepLq

def

“ tw P
Σ˚

e
| Ds P D, r

w
ùñ su. As L is deterministic, TreepLq is

obtained by unfolding the underlying graph of L from its
root and contracting all e-transitions. Figure 2 presents an
LTS with silent transitions together with its associated tree
TreepLq.

As illustrated in Figure 2, the tree TreepLq does not reflect
the diverging behaviours of L (i.e. the ability to perform an
infinite sequence of silent transitions). For instance in the
LTS of Figure 2, the vertex s diverges whereas the vertex t
does not. A more informative tree can be defined in which
diverging behaviours are indicated by a K-child for some
fresh symbol K. This tree, denoted TreeKpLq, is defined by

letting TreeKpLq
def

“ TreepLqYtwK P Σ˚
e

K | @n ě 0, r
we

n

ùñ

sn for some snu.

r

t

u
e

s

a b
c

e

‚

‚

‚

‚

‚

‚

a b

c

‚

a b
‚

‚

‚

‚

‚

‚

‚
K

a b

c

‚

‚
K

a b

Figure 2. An LTS L with silent transitions of root r (on the left), the tree
TreepLq (in the center) and the tree TreeKpLq (on the right).

C. Types, Applicative Terms

Types are generated by the grammar τ ::“ o | τ Ñ τ .
Every type τ ­“ o can be uniquely written as τ1 Ñ pτ2 Ñ
¨ ¨ ¨ pτn Ñ oq . . .q where n ě 0 and τ1, . . . , τn are types. The
number n is the arity of the type and is denoted by ϱpτq. To
simplify the notation, we take the convention that the arrow
is associative to the right and we write τ1 Ñ ¨ ¨ ¨ Ñ τn Ñ o
(or pτ1, . . . , τn, oq to save space).

The order measures the nesting of a type: ordpoq “ 0 and
ordpτ1 Ñ τ2q “ maxpordpτ1q ` 1, ordpτ2qq.

Let X be a set of typed symbols. Every symbol f P X
has associated a type τ ; we write f : τ to mean that f has
type τ . The set of applicative terms of type τ generated
from X , denoted Termsτ pXq, is defined by induction over
the following rules. If f : τ is an element of X then f P
Termsτ pXq; if s P Termsτ1Ñτ2pXq and t P Termsτ1pXq
then the applicative term obtained by applying s to t,
denoted s t, belongs to Termsτ2pXq. For every applicative
term t, and every type τ , we write t : τ to mean that t is an
applicative term of type τ . By convention, the application is
considered to be left-associative, thus we write t1t2t3 instead
of pt1t2qt3 .

2

Example 1. Assuming that f : po Ñ oq Ñ o Ñ o, g : o Ñ o
and c : o, we have g c : o, f g : o Ñ o, f g c “ pf gq c : o
and f pf gq c : o.

The set of subterms of t, denoted Subsptq, is inductively
defined by Subspfq “ tfu for f P X and Subspt1 t2q “
Subspt1q Y Subspt2q Y tt1 t2u. The subterms of the term
f pf gq c : o in Example 1 are f pf gq c , f , f g , f pf gq , c
and g. A less permissive notion is that of argument subterms
of t, denoted ASubsptq, which only keep those subterms
that appear as an argument. The set ASubsptq is inductively
defined by letting ASubspt1t2q “ ASubspt1qYASubspt2qY
tt2u and ASubspfq “ ∅ for f P X . In particular if
t “ Ft1 ¨ ¨ ¨ tn, ASubsptq “ Yn

i“1pASubsptiq Y ttiuq. The
argument subterms of f pf gq c : o are f g , c and g. In
particular, for all terms t, one has |ASubsptq| ă |t| (the
size |t| of a term is the length of the word representation of
t).

Remark 1. A ranked alphabet A can be seen as a typed
alphabet by assigning to every symbol f of A the type
o Ñ ¨ ¨ ¨ Ñ o Ñloooooooomoooooooon

ϱpfq

o. In particular, every symbol in A has order

0 or 1. The finite terms over A (seen as a ranked alphabet)
are in bijection with the applicative ground terms over A
(seen as a typed alphabet).

D. Labeled Recursion Schemes

Recursion schemes are grammars for simply typed terms,
and they are often used to generate a possibly infinite term.
Traditionally, recursion schemes are not associated with an
LTS. Here we provide an alternative definition based on LTS.

For each type τ , we assume an infinite set Vτ of variables
of type τ , such that Vτ1 and Vτ2 are disjoint whenever τ1 ­“
τ2, and we write V for the union of those sets Vτ as τ
ranges over types. We use letters x, y,ϕ,ψ, . . . to range over
variables.

A deterministic labeled recursion scheme is a 5-tuple S “
xΣ, N,R, Z,K y where

‚ Σ is a finite set of labels and K is a distinguished
symbol in Σ,

‚ N is a finite set of typed non-terminals; we use upper-
case letters F,G,H, . . . to range over non-terminals,

‚ Z : o P N is a distinguished initial symbol which does
not appear in any right-hand side,

‚ R is a finite set of production rules of the form

F x1 ¨ ¨ ¨ xn
a

ÝÑ e

where a P ΣztKu, F : pτ1, ¨ ¨ ¨ , τn, oq P N , the xis
are distinct variables, each xi is of type τi, and e is a
ground term over pNztZuq Y tx1, . . . , xn u.
In addition, we require that there is at most one
production rule starting with a given non-terminal and
labeled by a given symbol.

Z

f

F

f

H

a

e

F

f

H

a

f2

f1

f

F

f

a

H

H

a

e

e

a

¨ ¨ ¨

¨ ¨ ¨

f1

f2

e

X
a

f

f

f

f

‚a

a

a

K

Figure 3. The LTS and the tree associated with the scheme S of Example 2.

The LTS associated with S has the set of ground terms
over N as domain, the initial symbol Z as root, and, for all
a P Σ, the relation a

ÝÑ is defined by:

F t1 . . . tϱpF q
a

ÝÑ ert1{x1, . . . , tϱpF q{xϱpF qs

if F x1 ¨ ¨ ¨ xn
a

ÝÑ e is a production rule.
The tree generated by a labeled recursion scheme S,

denoted TreeKpSq, is the tree TreeK of its associated LTS.
To use labeled recursion schemes to generate terms over
ranked alphabet A, it is enough to enforce that for every
non-terminal F P N :

‚ either there is a unique production starting with F
which is labeled by e ,

‚ or there is a unique production starting with F which is
labeled by some symbol c of arity 0 and whose right-
hand side starts with a non-terminal that comes with
no production rule in the scheme,

‚ or there exists a symbol f P A with ϱpfq ą 0 such that
the set of labels of production rules starting with F is
exactly

ÝÑ
f .

Example 2. Consider the order-1 scheme
S “ xΣ, N,R, Z,K y where Σ “ ta, f1, f2,Ku, N
consists of Z,X, a : o, H : po, oq, f : po, o, oq and
F : ppo, o, oq, oq, and R is given below

Z
e

ÝÑ f pH aq pF fq a
a

ÝÑ X

H z
e

ÝÑ H pH zq f x y
f1ÝÑ x

F ϕ
e

ÝÑ ϕ a pF ϕq f x y
f2ÝÑ y

The LTS and the tree associated with S are depicted in
Figure 3.

Remark 2. A more standard definition of recursion schemes
[9] comes with a ranked alphabet A of terminal symbols
that can be used in the right hand side of the rewriting rules;
moreover the rules are no longer labeled. Applying rewriting
rules from the initial symbol one derives finite terms over
the set of terminal and non-terminal symbols. Replacing in
such a term t any non-terminal, together with its argument,
by a fresh symbol K : o leads a term tK over A Y tKu.
As the rewriting is confluent, there exists a supremum of all
terms tK where t ranges over terms that can be rewritten
from the initial symbol, and this (possibly infinite) term is
defined as the value term of the scheme.

3

It is easily seen that labeled recursion schemes and
(usual) recursions schemes generate the same terms; the
translations are linear and preserve both order and arity.

E. Examples of Trees Defined by Labeled Recursion
Schemes

We provide some examples of trees defined by labeled
recursion schemes. Given a language L over Σ, we denote
by PrefpLq the tree containing all prefixes of words in L.

Example 3. Using order-2 schemes, it is possible to go
beyond deterministic context-free languages and to define for
instance the tree T1 “ Prefptanbncn | n ě 0uq. Consider
for instance the order-2 scheme S1 given by:

Z
a

ÝÑ F I pKC Iq B x
b

ÝÑ x

F ϕψ
a

ÝÑ F pKB ϕq pKC ψq C x
c

ÝÑ x

F ϕψ
b

ÝÑ ϕpψXq I x
e

ÝÑ x

Kϕψ x
e

ÝÑ ϕpψpxqq

with Z,X : o, B,C, I : o Ñ o, F : ppo Ñ oq, po Ñ oq, oq
and K : ppo Ñ oq, po Ñ oq, o, oq.

Intuitively, the non-terminal K plays the role of the
composition of functions of type o Ñ o (i.e. for any terms
F1, F2 : o Ñ o and t : o, KF1 F2t

e
ÝÑ F1pF2 tq).

For any term G : o Ñ o, we define Gn for all n ě
0 by taking G0 “ I and Gn`1 “ KGGn. For any
ground term t, Gn t behaves as G p. . . pGlooomooon

n

pItqq . . .q and

in particular Bn X
bn

ùñ X . For all n ě 0, we have:

Z
an

ÝÑ F Bn´1 Cn b
ÝÑ Bn´1pCn Xq

bn´1cn

ùñ X.

Example 4. We present a tree TU proposed by Urzyczyn
which exemplify the full expressivity of order-2 schemes (see
Section IV). The tree TU has directions in t p, q, ‹ u. A word
over t p, q u is well bracketed if it has as many opening
brackets as closing brackets and if for every prefix the
number of opening brackets is not smaller than the number
of closing brackets.

The language U is defined as the set of words of the form
w‹n where w is a prefix of a well-bracketed word and n
is equal to |w| ´ |u| ` 1 where u is the longest suffix of w
which is well-bracketed. In other words, n equals 1 if w is
well-bracketed, and otherwise it is equal to the index of the
last unmatched opening bracket plus one.

For instance, the words pqpppqq ‹ ‹ ‹ ‹ and pqpqpq‹ belong
to U . The tree TU is simply PrefpUq. The following scheme
SU generates TU .

Z
e

ÝÑ G pH Xq F ϕx y
p

ÝÑ F pFϕxq y pHyq

Gz
p

ÝÑ F Gz pHzq F ϕx y
q

ÝÑ ϕ pH yq
Gz

‹
ÝÑ X F ϕx y

‹
ÝÑ x

H u
‹

ÝÑ u

with Z,X : o, G,H : o Ñ o and F : po Ñ o, o, oq.

To better explain the inner workings of this scheme, let
us introduce some syntactic sugar. With every integer, we
associate a ground term by letting 0 “ X and, for all n ě 0,
n ` 1 “ H n. With every sequence rn1 . . .nℓs of integers,
we associate a term of type o Ñ o by letting r s “ G
and rn1 . . .nℓ nℓ`1s “ F rn1 . . .nℓsnℓ`1. Finally we write
prn1 . . .nℓs,nq to denote the ground term rn1 . . .nℓsn.

The scheme can be revisited as follows (note that the two
rules labelled by p are now merged):

Z
e

ÝÑ pr s,1q pr s,nq
‹

ÝÑ 0

prn1 . . .nℓs,nq
‹

ÝÑ nℓ n ` 1
‹

ÝÑ n

prn1 . . .nℓs,nq
p

ÝÑ prn1 . . .nℓ ns,n ` 1q

prn1 . . .nℓs,nq
q

ÝÑ prn1 . . .nℓ´1s,n ` 1q

Let w “ w0 . . . w|w|´1 be a prefix of a well-bracketed
word. We have Z

w
ùñ prn1 . . .nℓ s, |w| ` 1q where

rn1 . . . nℓ s is the sequence (in increasing order) of those
indices of unmatched opening brackets in w. In turn,
prn1 . . .nℓ s, |w| ` 1q

‹
ÝÑ nℓ

‹nℓ

ÝÑ 0. Hence, as expected,
the number of ‹ symbols is equal to 1 if w is well-bracketed
(i.e. ℓ “ 0), and otherwise it is equal to the index of the last
unmatched opening bracket plus one.

F. Collapsible Pushdown Automata

Fix a finite stack alphabet Γ and a distinguished bottom-
of-stack symbol K R Γ. An order-1 stack is a sequence
K, a1, . . . , aℓ P KΓ˚ which is denoted [Ka1 . . . aℓ]1. An
order-k stack (or a k-stack), for k ą 1, is a non-empty
sequence s1, . . . , sℓ of order-pk´1q stacks which is writ-
ten [s1 . . . sℓ]k. For convenience, we may sometimes see
an element a P Γ as an order-0 stack, denoted [a]0.
We denote by Stacksk the set of all order-k stacks and
Stacks “

Ť
kě1 Stacksk the set of all higher-order stacks.

The height of the stack s denoted | s | is simply the length
of the sequence. We denote by ordpsq the order of the stack
s.

A substack of an order-1 stack [Ka1 . . . ah]1 is a stack of
the form [Ka1 . . . ah1]1 for some 0 ď h1 ď h. A substack
of an order-k stack [s1 . . . sh]k, for k ą 1 is either a stack
of the form [s1 . . . sh1]k with 0ăh1 ď h or a stack of the
form [s1 . . . sh1 s1]k with 0 ď h1 ď h´ 1 and s1 a substack
of sh1`1. We denote by s Ď s1 the fact that s is a substack
of s1.

In addition to the operations pusha
1 and pop1 that re-

spectively pushes and pops a symbol in the topmost order-1
stack, one needs extra operations to deal with the higher-
order stacks: the popk operation removes the topmost order-
k stack, while the pushk duplicates it.

For an order-n stack s “ [s1 . . . sℓ]n and an order-k
stack t with 0 ď k ă n, we define s `̀ t as the order-n
stack obtained by pushing t on top of s:

s `̀ t “

"
[s1 . . . sℓ t]n if k “ n ´ 1,
[s1 . . . psℓ `̀ tq]n otherwise.

4

We first define the (partial) operations popi and topi with
i ě 1: topipsq returns the top pi´1q-stack of s, and popipsq
returns s with its top pi ´ 1q-stack removed. Formally, for
an order-n stack [s1 ¨ ¨ ¨ sℓ`1]n with ℓ ě 0

topipsq “

"
sℓ`1 if i “ n
topipsℓ`1q if i ă n

popipsq “

"
[s1 ¨ ¨ ¨ sℓ]n if i “ n and ℓ ě 1
[s1 ¨ ¨ ¨ sℓ popipsℓ`1q] if i ă n

By abuse of notation, we let topordpsq`1psq “ s. Note that
popipsq is defined if and only if the height of topi`1psq is
strictly greater than 1. For example pop2p[[K a b]1]2q is
undefined.

We now introduce the operations pushi with i ě 2 that
duplicates the top pi ´ 1q-stack of a given stack. More
precisely, for an order-n stack s and for 2 ď i ď n, we
let pushipsq “ s `̀ topipsq.

The last operation, pusha
1 pushes the symbol a P Γ on

top of the top 1-stack. More precisely, for an order-n stack
s and for a symbol a P Γ, we let pusha

1psq “ s `̀ [a]0.

Example 5. Let s be the order-3 stack of height 2 given by
s “ [[[Kbaac]1[Kbb]1[Kbcc]1[Kcba]1]2[[Kbaa]1

[Kbc]1[Kbab]1]2]3. Then top3psq is the 2-stack
[[Kbaa]1[Kbc]1[Kbab]1]2 and pop3psq is the stack
s1 “ [[[Kbaac]1[Kbb]1[Kbcc]1[Kcba]1]2]3. Note
that pop3ppop3psqq is undefined. Then push2ps1q is the stack
[[[Kbaac]1[Kbb]1[Kbcc]1[Kcba]1[Kcba]1]2]3 and
pushc

1ps1q “ [[[Kbaac]1[Kbb]1[Kbcc]1[Kcbac]1]2]3.

We now define a richer structure of higher-order stacks
where we allow links. Intuitively, a stack with links is a
higher-order stack in which any symbol may have a link
that points to an internal stack below it. This link may be
used later to collapse part of the stack.

Order-n stacks with links are order-n stacks with a richer
stack alphabet. Indeed, each symbol in the stack can be
either an element a P Γ (i.e. not being the source of a link)
or an element pa, ℓ, hq P Γ ˆ t2, ¨ ¨ ¨ , nu ˆ N (i.e. being
the source of an ℓ-link pointing to the h-th pℓ ´ 1q-stack
inside the topmost ℓ-stack). Formally, order-n stacks with
links over alphabet Γ are defined as order-n stacks 1 over
alphabet Γ Y Γ ˆ t2, ¨ ¨ ¨ , nu ˆ N.

Example 6. The stack s below is an order-3 stack with links
[[[Kbaac]1[Kbb]1[Kbcpc, 2, 2q]1]2[[Kbaa]1[Kbc]1

[Kbpa, 2, 1qpb, 3, 1q]1]2]3.
To improve readability when displaying n-stacks in ex-

amples, we shall explicitly draw the links rather than using
stacks symbols in Γˆt2, ¨ ¨ ¨ , nuˆN. For instance, we shall
rather represent s as follows:

[[[Kbaac]1[Kbb]1[Kbcc]1]2[[Kbaa]1[Kbc]1[Kbab]1]2]3

1Note that we therefore slightly generalise our previous definition as we
implicitly use an infinite stack alphabet, but this does not introduce any
technical change in the definition.

In addition to the previous operations popi, pushi and
pusha

1 , we introduce two extra operations: one to create
links, and the other to collapse the stack by following a link.
Link creation is made when pushing a new stack symbol, and
the target of an ℓ-link is always the pℓ´ 1q-stack below the
topmost one. Formally, we define pusha,ℓ

1 psq “ push
pa,ℓ,hq
1

where we let h “ |topℓpsq| ´ 1 and require that h ą 1.
The collapse operation is defined only when the topmost

symbol is the source of an ℓ-link, and results in truncating
the topmost ℓ-stack to only keep the component below the
target of the link. Formally, if top1psq “ pa, ℓ, hq and
s “ s1 `̀ rt1 ¨ ¨ ¨ tksℓ with k ą h we let collapsepsq “
s1 `̀ rt1 ¨ ¨ ¨ thsℓ.

For any n, we let OpnpΓq denote the set of all operations
over order-n stacks with links.

Example 7. Let s “ [[[K a]1]2 [[K]1[K a]1]2]3.
We have

push
b,2
1 psq “ [[[K a]1]2 [[K]1[K a b]1]2]3

collapse ppushb,2
1 psqq “ [[[K a]1]2 [[K]1]2]3

push
c,3
1 ppushb,2

1 psqqloooooooooooomoooooooooooon
θ

“ [[[K a]1]2 [[K]1[K a b c]1]2]3.

Then push2pθq and push3pθq are respectively

[[[K a]1]2 [[K]1[K a b c]1[K a b c]1]2]3 and

[[[K a]1]2 [[K]1[K a b c]1]2 [[K]1[K a b c]1]2]3.

We have collapse ppush2pθqq “ collapse ppush3pθqq “
collapsepθq “ [[[K a]1]2]3.

An order-n (deterministic) collapsible pushdown automa-
ton (n-CPDA) is a 5-tuple A “ xΣ,Γ, Q, δ, q0 y where Σ is
an input alphabet containing a distinguished symbol denoted
e , Γ is a stack alphabet, Q is a finite set of control states,
q0 P Q is the initial state, and δ : Q ˆ pΓ Y tKuq ˆ Σ Ñ
Q ˆ OpnpΓq is a (partial) transition function such that, for
all q P Q and γ P Γ, if δpq, γ, eq is defined then for all
a ‰ e , δpq, γ, aq is undefined, i.e. if some e-transition can
be taken, then no other transition is possible. We require δ
to respect the convention that K cannot be pushed onto or
popped from the stack.

Let A “ xΣ,Γ, Q, δ, q0 y be an n-CPDA. A configu-
ration of an n-CPDA is a pair of the form pq, sq where
q P Q and s is an n-stack with link over Γ; we call
pq0, rr¨ ¨ ¨ rKs1 ¨ ¨ ¨ sn´1snq the initial configuration. It is then
natural to associate with A a deterministic LTS denoted
LA “ xD, r,Σ, p

a
ÝÑqaPΣ y and defined as follows. We let

D be the set of all configurations of A and r be the initial
one. Then for all a P Σ and all pq, sq, pq1, s1q P D we have
pq, sq

a
ÝÑ pq1, s1q if and only if δpq, top1psq, aq “ pq1, opq

and s1 “ oppsq.

5

The tree generated by an n-CPDA A, denoted TreeKpAq,
is simply the tree TreeKpLAq of its LTS.

III. FROM RECURSION SCHEMES TO COLLAPSIBLE

PUSHDOWN AUTOMATA

In this section, we present a translation of schemes into
CPDA. This translation generalizes at all orders the order-
2 translation of [A4]. The translation from [9] assumes a
normal form for the schemes but up to these normalisa-
tions, the CPDA obtained is the same as the one in [9].
Our contributions are to work direclty on schemes without
normalisation and more importantly to prove the correctness
of the translations without using game semantics as an
intermediary tool as in [9]. Note that the converse translation
from [9] (from CPDA into scheme) does not use game
semantics and is therefore not presented here.

We construct, for any labeled recursion scheme S, a col-
lapsible pushdown automaton A of the same order defining
the same tree as S – i.e. TreeKpSq “ TreeKpAq. To
simplify the presentation, we assume that S does not contain
any silent productions rule (i.e. production rule labeled by
e). If S were to contain silent transitions, we would treat
the symbol e as any other symbol2 in Σ. For the rest of this
section, we fix a labeled recursion scheme xΣ, N,R, Z,K y
of order n ě 1 without silent transitions.

The automaton A has a distinguished state, denoted q‹,
and with the configurations of the form pq‹, sq we will
associate a ground term over N denoted by rr s ss. Other
configurations correspond to internal steps of the simulation
and are only the source of silent transitions. To show that
the two LTS define the same trees, we will establish that,
for any reachable configuration of the form pq‹, sq and for
any a P Σ, the following holds:

‚ if pq‹, sq
ae

˚

ÝÑ
A

pq‹, s
1q then rr s ss

a
ÝÑ
S

rr s1 ss;

‚ if rr s ss
a

ÝÑ
S

t then pq‹, sq
ae

˚

ÝÑ
A

pq‹, s
1q and rr s1 ss “ t.

Hence, the main ingredient of the construction is the
partial mapping rr ¨ ss associating with any order-n stack a
ground term over N . The main difficulty is to guarantee
that any rewriting rule of S applicable to the encoded term
rr s ss can be simulated by applying a sequence of stack
operations to s. In Section III-A, we present the mapping
rr ¨ ss together with its basic properties; in Section III-B, we
give the definition of A and prove the desired properties.

To simplify the presentation we assume, without loss of
generality, that all productions starting with a non-terminal
A have the same left-hand side (i.e. they use the same
variables in the same order) and that two productions starting
with different non-terminals do not share any variables.

2Formally, one labels all silent production rules of S by a fresh symbol
e to obtain a labeled scheme S 1 without silent transitions. The construction
presented in this section produces an automaton A1 such that TreeKpS 1q “
TreeKpA1q. The automaton A obtained by replacing all e-labeled rules of
A by e is such that TreeKpSq “ TreeKpAq.

Hence a variable x P V appears in a unique left-hand side
Ax1 . . . , xϱpAq and we denote by rkpxq the index of x in
the sequence x1 ¨ ¨ ¨xϱpAq (i.e. x “ xrkpxq).

Throughout the whole section, we will illustrate defini-
tions and constructions using as a running example the order-
2 scheme SU generating the tree TU of Example 4.

A. Stacks Representing Terms.

The stack alphabet Γ consists of the initial symbol and of
the right-hand sides of the rules in R and their argument sub-
terms, i.e. Γ

def

“ tZ u Y
Ť

F x1¨¨¨xϱpxq
a

ÝÑ e
t e u YASubspeq.

For the scheme SU , one gets Γ “ tx, y, z, u,ϕu Y
t Z , G pH Xq , H X , X , F pF ϕxq y pHyq , F ϕx , Hy ,
F Gz pHzq , G , Hz , ϕ pHyqu.

Notation 1. For ϕ P V Y N , a ϕ-stack designates a stack
whose top symbol starts with ϕ. By extension a stack s is
said to be an N -stack (resp. a V -stack) if it is a ϕ-stack for
some ϕ P N (resp. ϕ P V).

In order to represent a term in TermspNq, a stack over
Γ must be well-formed, i.e. it must satisfy some syntactic
conditions.

Definition 1 (Well-formed stack). A non-empty stack of
order-n over Γ is well-formed if every non-empty substack
r of s satisfies the following two conditions:

‚ if top1prq is not equal to Z nor to K then pop1prq is
an A-stack for some A P N and top1prq belongs to an
A-production rule,

‚ if top1prq is of type τ of order k ą 0 then top1prq is
the source of an pn ´ k ` 1q-link and collapseprq is a
ϕ-stack for some variable ϕ P V of type τ .

We denote by WStacks the set of all well-formed stacks.

Example 8. For the scheme SU , the following order-2 stacks
are well-formed.

Z

G pH Xq

F Gz pH zq

F pF ϕxq y pH yq

ϕ pH yq

s1

loooooooooomoooooooooon
Z

G pH Xq

F Gz pH zq

F pF ϕxq y pH yq

ϕ pH yq

Z

G pH Xq

F Gz pH zq

F ϕx

loooooooooooooooooooomoooooooooooooooooooon
s2

Z

G pH Xq

F Gz pH zq

F pF ϕxq y pH yq

ϕ pH yq

Z

G pH Xq

F Gz pH zq

F ϕx

F pF ϕxq y pH yq

y

loooooooooooooooooooooooomoooooooooooooooooooooooon
s3

Notation 2. We write s :: t for s P WStacks and t P Γ to
mean that if t belongs to the r.h.s. of a production starting
with A P N then s is an A-stack. In particular, if s P
WStacks then pop1psq :: top1psq. We denote by CStacks
the set of such s :: t, and define the size of an element
s :: t as the pair p|s|, |t|q where |s| denotes the number of
stack symbols in s and |t| the length of the term t. When
comparing sizes, we use the standard lexicographic (total)
order over N ˆ N.

In Definition 4, we will associate, with any well-formed
stack s, a ground term over N that we refer to as the

6

value of s. To define this value, we first associate, with any
element s :: t in CStacks, a value denoted rr s :: t ss. This
value is a term over N of the same type as t. Intuitively,
it is obtained by replacing the variables appearing in the
term t by values encoded in the stack s, and one should
therefore understand rr s :: t ss as the value of the term t in
the context (or environment) of s. See Remark 3 below for
natural connections with Krivine machine.

Definition 2. For all ϕ P V Y N , all k P r1, ϱpϕqs and
all ϕ-stack s P WStacks, we define an element of CStacks,
denoted Argkpsq, representing the k-th argument of the term
represented by s. More precisely if the top symbol of s is
ϕ t1 ¨ ¨ ¨ tℓ, we take:

"
Argkpsq “ pop1psq :: tk if k ď ℓ,
Argkpsq “ Argk´ℓpcollapsepsqq otherwise.

Definition 3. For all s :: t P CStacks, we define the value
of t in the context of s:
$
&

%

rr s :: t1t2 ss “ rr s :: t1 ssrr s :: t2 ss if t1, t2 P Γ
rr s :: A ss “ A if A P N
rr s :: x ss “ rr Argrkpxqpsq ss if x P V

Let us provide some intuitions regarding the definition of
rr s :: t ss. Unsurprisingly rr s :: t ss is defined by structural
induction on t, and the cases for the application and the
non-terminal symbols are straightforward. It remains to
consider the case where t is a variable x appearing in
rkpxq-th position in the left-hand side Ax1 ¨ ¨ ¨xϱpAq. As
s :: t P CStacks, top1psq is of the form At1 . . . tℓ for
some ℓ ď ϱpAq. Note that ℓ is not necessarily equal to ϱpAq
meaning that some arguments of A might be missing. There
are now two cases — that correspond to the two cases in the
definition of Argkpsq — depending on whether x references
to one of the ti’s (i.e. rkpxq ď ℓ) or one of the missing
arguments (i.e. rkpxq ą ℓ):

‚ If rkpxq ď ℓ then the term associated with x in s is
equal to the term associated with trkpxq in pop1psq, i.e.
rr s :: x ss “ rr pop1psq :: trkpxq ss.

‚ If rkpxq ą ℓ then the term rr s :: x ss is obtained by
following the link attached to top1psq. Recall that, as s
is a well-formed stack and top1psq is not of ground type
(as ℓ ă ϱpAq), there exists a link attached to top1psq.
Moreover, collapsepsq, the stack obtained by following
the link, has a top-symbol of the form ϕ t1

1 . . . t
1
m for

some ϕ P V and m ě 0. Intuitively, t1
i corresponds

to the pℓ ` iq-th argument of A. If rkpxq belongs to
rℓ ` 1, ℓ ` ms then the term rr s :: x ss is defined to
be the term rr pop1pcollapsepsqq :: t1

rkpxq´ℓ ss. If rkpxq
is greater than ℓ ` m then the link attached to the top
symbol of collapsepsq is followed and the process is
reiterated. As the size of the stack strictly decreases at
each step this process terminates.

Now, if s is a well-formed ϕ-stack, its value is obtained
by applying the value of ϕ in the context of pop1psq to the

value of all its ϱpϕq arguments. This leads to the following
formal definition.

Definition 4. The term associated with a well-formed ϕ-
stack s P Stacks with ϕ P N Y V is

rr s ss
def

“ rr pop1psq :: ϕ ssrr Arg1psq ss ¨ ¨ ¨ rr Argϱpϕqpsq ss.

Equiv., if top1psq : o then: rr s ss “ rr pop1psq :: top1psq ss.
If top1psq : τ1 Ñ . . . Ñ τℓ Ñ o then:
rr s ss “ rr pop1psq :: top1psq ss rr Arg1pcollapsepsqq ss ¨ ¨ ¨
rr Argℓpcollapsepsqq ss.

Example 9. Let us consider the well-formed stacks s2 and
s3 presented in Example 8. In the representation below the
association between variables and their "values" are made
explicit by the red arrows.

Z

G pH Xq

F Gz pH zq

F pF ϕxq y pH yq

ϕ pH yq

Z

G pH Xq

F Gz pH zq

F ϕx

s2

looooooooooooooooooooooooomooooooooooooooooooooooooon
Z

G pH Xq

F Gz pH zq

F pF ϕxq y pH yq

ϕ pH yq

Z

G pH Xq

F Gz pH zq

F ϕx

F pF ϕxq y pH yq

y

looooooooooooooooooooooooooomooooooooooooooooooooooooooon
s3

rr s1 ss “ rr s2 ss “ F G pH Xq pHpHpHpHXqqqq
rr s3 ss “ HpHpHpHpHXqqq

The following lemma states the basic properties of the
encoding rr ¨ ss and Argkp ¨ q.

Lemma 1. We have the following properties:

1) For all ϕ-stacks s P WStacks with ϕ P V Y N of
type τ1 Ñ . . . Ñ τϱpϕq Ñ o and for all k P r1, ϱpϕqs,
Argkpsq is equal to some r :: t P CStacks with t of
type τk .

2) For all s :: t P CStacks with t : τ P Γ, rr s :: t ss is a
term in Termsτ pNq.

3) For all s P WStacks, rr s ss belongs to TermsopNq.

We conclude with two fundamental properties of Argkp¨q
that will allow us to simulate the rewriting of the scheme
using stack operations and finite memory.

The first property is that the arguments represented
by a well-formed stack are not modified when perform-
ing a pushk operation. More precisely, for all ϕ-stacks
s P WStacks with ϕ P N Y V , rr Argℓppushkpsqq ss “
rr Argℓpsq ss for all ℓ P r1, ϱpϕqs and all k P r2,ms. This
follows (by letting r “ topkpsq) from the following slightly
more general result.

Lemma 2. Let k P r2,ms and let s “ s1 `̀ topkpsq P
WStacks. For all non-empty ϕ-stacks r Ď topkpsq,
rr Argℓps

1 `̀ rq ss “ rr Argℓps `̀ rq ss for all ℓ P r1, ϱpϕqs.

The next property will later be used to prove that any
rewriting step can be simulated by a finite number of
transitions in the automaton.

7

Lemma 3. Let s be a ϕ-stack in WStacks for some ϕ :
τ1 Ñ . . . Ñ τϱpϕq Ñ o in V YN and let ℓ P r1, ϱpϕqs with τℓ
of order k ą 0. If Argℓpsq is equal to r :: t P CStacks with t
starting with ψ P NYV then popn´k`1psq “ popn´k`1prq,
| topn´k`1psq | ą | topn´k`1prq |.

B. Simulating the LTS of S on Stacks

As an intermediate step, we define an LTS M over well-
formed stacks and we prove that it generates the same tree
as S (i.e. TreeKpMq “ TreeKpSq). From M, a CPDA
generating TreeKpMq is then defined at the end of this
section.

We let M “ xWStacks, r. . . r KZ s . . .sn,Σ, p
a

ÝÑ
M

qaPΣ y

and define the transitions as follows
‚ s

a
ÝÑ
M

pusht
1psq if s is an A-stack with A P N and

Ax1 ¨ ¨ ¨xϱpAq
a

ÝÑ t P R,
‚ s

e
ÝÑ
M

pusht
1prq if s is a ϕ-stack with ϕ : o P V

and Argrkpϕqppop1psqq “ r :: t,

‚ s
e

ÝÑ
M

pusht,n´k`1
1 prq if s is a ϕ-stack with ϕ : τ P V

of order k ą 0 and Argrkpϕqppop1ppushn´k`1psqqq “
r :: t.

Example 10. In the figure below, we illustrate the definition
of M on the scheme SU .

Z
e

Z

G pH Xq p
Z

G pH Xq

FGzpHzq

p
Z

G pH Xq

FGzpHzq

F pFϕxqypHyq

q
Z

G pH Xq

FGzpHzq

F pFϕxqypHyq

ϕ pH yq

e

Z

G pH Xq

FGzpHzq

F pFϕxqypHyq

ϕ pH yq

Z

G pH Xq

FGzpHzq

F ϕx

‹
Z

G pH Xq

FGzpHzq

F pFϕxqypHyq

ϕ pH yq

Z

G pH Xq

FGzpHzq

F ϕx

x

e

Z

G pH Xq

FGzpHzq

F pFϕxqypHyq

ϕ pH yq

Z

G pH Xq

FGzpHzq

x

e

Z

G pH Xq

FGzpHzq

F pFϕxqypHyq

ϕ pH yq

Z

G pH Xq

z

e

Z

G pH Xq

FGzpHzq

F pFϕxqypHyq

ϕ pH yq

Z

H X
‹

Z

G pH Xq

FGzpHzq

F pFϕxqypHyq

ϕ pH yq

Z

H X

u

e

Z

G pH Xq

FGzpHzq

F pFϕxqypHyq

ϕ pH yq

Z

X

The first line of the definition of ÝÑ
M

corresponds to
the case of an N -stack. To simulate the application of a
production rule Ax1 ¨ ¨ ¨xn

a
ÝÑ e on the term encoded by

an A-stack s, we simply push the right-hand side e of the
production on top of s. The correctness of this rule directly
follows from the definition of rr ¨ ss. Doing so, a term starting
with a variable may be pushed on top of the stack, e.g. when

applying the production rule F ϕx y
q

ÝÑ ϕ pH yq. Indeed,
we need to retrieve the value of the head variable in order
to simulate the next transition of S: the second and third
lines of the definition are normalisation rules that aim at
replacing the variable at the head of the top of the stack (for
instance, in the 5th stack of Example 10 the variable ϕ) by
its definition (hence not changing the value of the associated
term). By iterative application, we eventually end up with

an N -stack encoding the same term and we can apply again
the first rule.

Proposition 1. TreeKpSq “ TreeKpMq.

Sketch: One easily concludes after establishing the
following soundness result about the definition of ÝÑ

M
.

‚ Let s be an N -stack in WStacks and a P Σ.
For any t P TermspNq, if rr s ss

a
ÝÑ t then Ds1 P

WStacks, s
a

ÝÑ
M

s1 and rr s1 ss “ t.

If Ds1 P WStacks, s
a

ÝÑ
M

s1 then rr s ss
a

ÝÑ rr s1 ss.
‚ Let s P WStacks be a ϕ-stack for ϕ P V and let
s1 P WStacks be a ψ-stack for ψ P V Y N .
If s

e
ÝÑ
M

s1 then rr s ss “ rr s1 ss, ordpϕq ď ordpψq and

| topn´ordpϕq`1psq | ą | topn´ordpϕq`1ps1q |.
‚ For all s P WStacks there exists a unique N -stack

s1 P WStacks such that s e
˚

ÝÑ
M

s1.

From M we now define an n-CPDA A “ xΣ,Γ, Q, δ, q0 y
generating the same tree as M. The set of states Q
is equal to t q0, q1, . . . , qϱpSq, q˚ u where ϱpSq denotes
the maximal arity appearing in S. Intuitively the initial
state q0 is only used to go from pq0, r. . . r K s1 . . .snq to
pq˚, r. . . r KZ s1 . . .snq; the state q˚ is used to mark N -
stacks; for k P r1, ϱpSqs, the state qk is used to the compute
Argkp¨ ¨ ¨ q. The transitions are given below.

‚ δpq0,K, eq “ pq˚, push
Z
1 q,

‚ If t starts with F P N and F x1 ¨ ¨ ¨xϱpF q
a

ÝÑ e P R:

– δpq˚, t, aq “ pq˚, push
e
1q if e starts with a symbol

in N ,
– δpq˚, t, aq “ pqrkpxq, idq if e is a variable x : o

(here id is the identity function),
– δpq˚, t, aq “ pqrkpxq, push

e
1; pushn´k`1; pop1q if

e starts with a variable x of order k ą 0.

‚ If t is a term of the form ϕ t1 ¨ ¨ ¨ tℓ for some ϕ P V YN :

– δpqk, t, eq “ pqrkptkq, pop1; push
tk
1 q if k ď ℓ and

tk : o,
– δpqk, t, eq “ pqrkptkq, pop1; push

tk,n´h`1
1 q if k ď

ℓ and tk has order h ą 0,
– δpqk, t, eq “ pqk´ℓ, collapseq if k ą ℓ.

where, for all t P Γ, qrkptq designates the state qrkpxq if
t starts with a variable x and q˚ otherwise, and op1; op2
means applying op1 followed by op2. An equivalent CPDA
using only one operation per transition may be obtained by
adding intermediary states.

Theorem 1. For every labeled recursion scheme S of order-
n, there is an n-CPDA A that generates the same tree.
Moreover, the number of states in A is linear in the maximal
arity appearing in S, and its alphabet is of size linear in

8

the one of S3.

Remark 3. In [18], the authors use Krivine machines [14]
as an abstract model to represent the sequence of rewrit-
ing of a scheme4. A Krivine machine computes the weak
head normal form of a λY -term, using explicit substitu-
tions (called here environments). Environments are functions
assigning closures to variables, and closures themselves
are pairs consisting of a term and an environment. This
mutually recursive definition is schematically represented
by the grammar C :“ pt, ρq and ρ :“ ∅ | ρrx Ñ Cs
where t is an term of the λY -calculus with free-variable
and ∅ designates the empty environment. The λY -term tC
represented by a closure C “ pt, ρq is inductively defined as
t in which every occurrence of a free variable x is replaced
by the term tρpxq.

A pair s :: t (cf. Notation 2) can be seen as a closure5

pt, ρq where ρpxq is defined for all variables x occurring
in t by ρpxq “ Argrkpxqpsq. With this view in mind and up
to the translation of schemes into equivalent λY -terms, the
LTS M faithfully simulates the Krivine machine presented
in [18]. Note that the correspondence is facilitated by the
use of labeled schemes.

This remark also allows us to inherit the simplifications
of [18] for the decidability of CPDA parity games.

IV. SAFE HIGHER-ORDER RECURSION SCHEMES

In this section, we consider a syntactic subfamily of
recursion schemes called the safe recursion schemes. The
safety constraint was introduced in [10] but was already
implicit in the work of Damm [6] (see also [7, p. 44] for
a detailed presentation). This restriction constrains the way
variables are used to form argument subterms of the rules’
right-hand sides.

Definition 5 ([10]). A recursion scheme is safe if no
right-hand side contains an argument-subterm of order k
containing a variable of order strictly less than k.

For instance, the scheme in Example 3 is safe. On the
other hand, the scheme SU of Example 4 is not because

the production F ϕx y
p

ÝÑ F pFϕxqypHyq contains in its
right-hand side the argument subterm Fϕx : o Ñ o of order-
1 which contains the variable x : o of order-0. Urzyczyn
conjectured that (a slight variation of) the tree TU generated
by SU , though generated by a order-2 scheme, could not be
generated by any safe scheme. This conjecture was recently
proved by Parys [16].

Remark 4. In [10], [11], the notion of safety is only defined
for homogeneous schemes. A type is said to be homogeneous

3The size of a scheme is defined as the sum of the sizes of the left and
right hand sides of the rewriting rules. In particular it is larger than the
sum of the sizes of all argument subterms of right hand sides of the rules.

4The authors work with the equivalent formalism of the λY -calculus.
5to represent applicative terms over N instead of λY -terms.

if it is either ground or equal to τ1 Ñ ¨ ¨ ¨ Ñ τn Ñ o where
the τi’s are homogeneous and ordpτ1q ě ¨ ¨ ¨ ě ordpτnq. By
extension, a scheme is homogeneous if all its non-terminal
symbols have homogeneous types. For instance po Ñ oq Ñ
o Ñ o is an homogeneous type whereas o Ñ po Ñ oq Ñ
o is not. We will see in Proposition 2 that dropping the
homogeneity constraint in the definition of safety does not
change the family of generated trees.

A. Safety and the Translation from Schemes to CPDA

In [10], [11], the motivation for considering the safety
constraint was that safe schemes can be translated into a
subfamily of the collapsible automata, namely higher-order
pushdown automata. An order-k pushdown automaton is
an order-k CPDA that does not use the collapse operation
(hence, links are useless).

Theorem 2 below shows that the translation of recursion
schemes into collapsible automata presented in Section III,
when applied to a safe scheme, yields an automaton in
which links are not really needed. Obviously the automaton
performs the collapse operations but whenever it is applied
to an order-k link its target is the pk´1q-stack below the top
pk ´ 1q-stack. Hence any collapse operation can safely be
replaced by a popk operation. In doing so, we re-obtain the
translation of safe (homogeneous) schemes into higher-order
pushdown automata presented in [11].

Definition 6. A CPDA is link-free if for every configura-
tion pp, sq reachable from the initial configuration and for
every transition δpp, top1psq, aq “ pq, collapseq, we have
collapsepsq “ popℓpsq where ℓ is the order of the link
attached to top1psq.

Theorem 2. The translation of Section III applied to a safe
recursion scheme yields a link-free collapsible automaton.

Sketch: We present the ingredients of the proof only at
order-2. For the general case, the ideas are similar but lead
to more technicalities.

Let us first introduce some notations. Let pq, s “
rs1 . . . sms2q be a configuration of A reachable from the
initial configuration. For i P r1,ms and j P r1, |si|s, we
denote by rpi, jq, tpi, jq and opi, jq respectively the j-th
symbol of stack si, the target (if defined) in r1, i ´ 1s of
its link and the order (if defined) of this link. By definition
of A, tpi, jq and opi, jq are defined iff rpi, jq is a term of
order k ą 0 and in this case opi, jq is equal to 2 ´ k ` 1

Moreover for i P r2,ms, we let ℓi be the smallest index
at which si´1 and si have a different symbol (or |si| ` 1 if
no such index exists).

The stack s satisfies the following properties:
1) for all i P r1, |s1|s, tp1, iq is undefined;
2) for all i P r2,ms, ℓi ď |si´1| and for all i P r2,m´1s,

ℓi ď |si|;
3) for all i P r2,ms and 1 ď j ă ℓi, tpi, jq “ tpi ´ 1, jq;

9

4) for all i P r2,ms with ℓi ď |si|, rpi, ℓiq does not
contain a variable of order 0 and is an argument
subterm of rpi ´ 1, ℓiq and if rpi, ℓiq is of order 1
then tpi, ℓiq “ i ´ 1;

5) for all i P r2,ms with j P rℓi ` 1, |si|s, tpi, jq is
undefined;

6) if m ě 2 then ℓm “ |sm| ` 1 iff top1psq “ ϕt1 . . . th,
q “ qk for some k P r1, hs such that ordptkq “ 1.

These properties are proved by induction on the length of
the shortest path in the LTS from the initial configuration to
pq, sq and by inspection of the transitions of A.

Inspecting the transitions of A, a collapse operation can
only be performed if q “ qk and top1psq “ ϕ t1 . . . th with
k ą h and ϕ : pτ1, . . . , τm, oq. Thanks to Definition 1,
ϕ t1 . . . th is of order-1. Property 5 implies that ℓm is
either equal to |sm| or to |sm| ` 1. Property 6 implies
ℓm ‰ |sm|`1 as otherwise we would have k ď h. Thus, we
have ℓm “ |sm| and by Property 4, collapsepsq “ pop2psq.

We get the following corollary extending (by dropping the
homogeneity assumption) a previous result from [11].

Corollary 1. Order-k safe schemes and order-k pushdown
automata generate the same trees.

B. Damm’s View of Safety

The safety constraint may seem unnatural and purely ad-
hoc. Inspired by the constraint of derived types of Damm,
we introduce a more natural constraint, Damm-safety, which
leads the same family of trees [6].

Damm-safety syntactically restricts the use of partial
application: in any argument subterm of a right-hand side
if one argument of some order-k is provided then all
arguments of order-k must also be provided. For instance
if ϕ : po Ñ oq Ñ po Ñ oq Ñ o Ñ o Ñ o, f : o Ñ o and
c : o, the terms ϕ, ϕ f f and ϕ f f c c can appear as argument
subterms in a Damm-safe scheme but ϕ f and ϕ f f c are
forbidden.

Definition 7 ([6]). A recursion scheme is Damm-safe if it
is homogeneous and all argument-subterms appearing in a
right hand-side are of the form ϕ t1 ¨ ¨ ¨ tk with ϕ : τ1 Ñ
¨ ¨ ¨ Ñ τn Ñ o and either k “ 0, k “ n or ordpτkq ą
ordpτk`1q.

As in Damm-safe scheme all argument subterms of an
argument subterm of order-k appearing in a right-hand side
have at least order-k, it is easy to see that Damm-safety
implies the safety constraint. However, the safety constraint,
even when restricted to homogeneous schemes, is less re-
strictive than Damm-safety. Consider for instance a variable
x : o and non-terminals G : o Ñ o Ñ o and C : o, then Gx
cannot appear as an argument-subterm in a safe scheme but
GC can. As GC does not satisfy Damm-safety constraint,
safety is syntactically more permissive than Damm-safety.

However unsurprisingly, any safe scheme can be transformed
into an equivalent Damm-safe scheme of the same order.
The transformation consists in converting the safe scheme
into a higher-order pushdown automaton (Corollary 1) and
then converting this automaton back to a scheme using the
translation of [11]. In fact, this translation of higher-order
pushdown automata into safe schemes produces Damm-safe
schemes.

Proposition 2. Damm-safe schemes are safe and for every
safe scheme, there exists a Damm-safe scheme of the same
order generating the same tree.

V. EFFECTIVE SELECTION

Let ϕpX1, ¨ ¨ ¨ , Xℓq be a monadic second order (MSO)
formula with ℓ second-order free variables, and let
t be a term over a ranked alphabet Σ. The MSO
selection problem is to decide whether the formula
DX1 . . . DXℓ ϕpX1, ¨ ¨ ¨ , Xℓq holds in t, and in this case to
give a term tϕ over the ranked alphabet Ξ “ Σ ˆ t0, 1uℓ

(we take ϱpa, pb1, . . . , bℓqq “ ϱpaqq such that the following
holds:

1) t “ πptϕq where π is the alphabetical morphism from
ÝÑ
Ξ to

ÝÑ
Σ defined by πppa, bqq “ a for a P Σ with

ϱpaq “ 0 and πppa, bqiq “ ai for a P Σ with ϱpaq ą 0
and i P r1, ϱpaqs. Intuitively, tϕ is obtained by marking
every node in t by a vector of ℓ booleans. Indeed
for all non-leaf node u, there exists a unique element
pc, bq P Ξ such that for all x P

ÝÝÑ
pc, bq, ux is in tϕ. The

tuple b P t0, 1uℓ is the label of the node u of t. The
label of a non-leaf node u of t is denoted bu

2) The formula ϕpX1 Ð U1, . . . , Xℓ Ð Uℓq holds in t
where @1 ď i ď ℓ, Ui “ tu P t | bupiq “ 1u.

Intuitively, the second point states that this marking exhibits
a valuation of the Xi for which ϕ holds in t. We refer to tϕ
as a selector for ϕ in t.

Let R be a class of generators of terms. We say that R has
the effective MSO selection property if there is an algorithm
that transforms any pair pR,ϕpX1, . . . , Xℓqq with R P R

into some Rϕ P R (if exists) such that the term generated
by Rϕ is a selector for ϕ in the term generated by R.

Theorem 3. Labeled recursion schemes as well as CPDA
have the effective MSO selection property.

The proof of Theorem 3 is highly non-trivial and requires
a precise analysis of winning strategies in parity games
played over terms generated by CPDA (the key argument
is that winning strategies can be embedded into the CPDA
generating the term). We do not believe that a proof of the
statement for labeled recursion schemes can be obtained
without using an automaton model, and we think that it
shows the usefulness of CPDA in the study of logical
properties of schemes.

10

Remark 5. A similar statement for safe schemes can be
deduced from [8], [3], [5]. However the machinery for
general schemes is much more involved.

In [2] a much weaker notion, MSO-reflectivity, was con-
sidered. A class of generators of terms is MSO-reflective if
it has the effective MSO selection property for those formula
ϕpXq of the form ϕpXq ” x P X ô ψpxq where ψpxq is
an MSO formula with a single first-order free variable (note
that in this case, there is a unique valuation of X that makes
ϕpXq holds). The main result of [2] follows from Theorem
3.

Corollary 2. Labeled recursion schemes as well as CPDA
have the effective MSO-reflectivity property.

Remark 6. A variant of selection [17] ask for exis-
tence of a formula ψpX1, . . .Xℓq that is a selector for
ϕpX1, . . .Xℓq in t in the following sense. Either nei-
ther of the formulas DX1 . . . DXℓ ϕpX1, ¨ ¨ ¨ , Xℓq and
DX1 . . . DXℓ ψpX1, ¨ ¨ ¨ , Xℓq holds in t or ψ defines a unique
tuple pU1, ¨ ¨ ¨ , Uℓq and this tuple also satisfies ϕ. In [4] it
is shown that a selector does not always exist in general,
and the counter-example is for a tree generated by a (safe)
recursion scheme.

A degenerated version of selection is model-checking.
Theorem 1 together with a careful analysis of the complexity
of parity games on CPDA lead the same complexity as in
[13].

Corollary 3. The µ-calculus model-checking of trees gener-
ated by recursion schemes is polynomial under the assump-
tion that the arity of types and the formula are bounded
above by a constant.

Acknowledgements: This work was supported by the
following projects: AMIS (ANR 2010 JCJC 0203 01 AMIS)
and FREC (ANR 2010 BLAN 0202 02 FREC).

REFERENCES

[1] C. Broadbent. On Collapsible Pushdown Automata, their
Graphs and the Power of Links. PhD thesis, University of
Oxford, Forthcoming.

[2] C. Broadbent, A. Carayol, C.-H. L. Ong, and O. Serre.
Recursion schemes and logical reflexion. In Proc. of LICS’10,
pages 120–129. IEEE, 2010.

[3] A. Carayol. Automates infinis, logiques et langages. PhD
thesis, Université de Rennes 1, 2006.

[4] A. Carayol, C. Löding, D. Niwiński, and I. Walukiewicz.
Choice functions and well-orderings over the infinite binary
tree. Central European Journal of Mathematics, 8(4):662–
682, 2010.

[5] A. Carayol and M. Slaats. Positional strategies for higher-
order pushdown parity games. In Proc. of MFCS’08, volume
5162 of LNCS, pages 217–228. Springer, 2008.

[6] W. Damm. The IO- and OI-hierarchies. Theoret. Comput.
Sci., 20:95–207, 1982.

[7] J. de Miranda. Structures generated by higher-order gram-
mars and the safety constraint. PhD thesis, University of
Oxford, 2006.

[8] S. Fratani. Automates à piles de piles . . . de piles. PhD thesis,
Université de Bordeaux, 2006.

[9] M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre.
Collapsible pushdown automata and recursion schemes. In
Proc. of LICS’08, pages 452–461. IEEE, 2008.

[10] T. Knapik, D. Niwiński, and P. Urzyczyn. Deciding monadic
theories of hyperalgebraic trees. In Proc. of TLCA’01, volume
2044 of LNCS, pages 253–267. Springer, 2001.

[11] T. Knapik, D. Niwiński, and P. Urzyczyn. Higher-Order
Pushdown Trees Are Easy. In Proc. of FoSSaCS’02, volume
2303 of LNCS, pages 205–222. Springer, 2002.

[12] T. Knapik, D. Niwiński, P. Urzyczyn, and I. Walukiewicz.
Unsafe grammars and panic automata. In Proc. of ICALP’05,
volume 3580 of LNCS, pages 1450–1461. Springer, 2005.

[13] N. Kobayashi and C.-H. L. Ong. A type system equivalent
to the modal mu-calculus model checking of higher-order
recursion schemes. In Proc. of LICS’09, pages 179–188.
IEEE, 2009.

[14] J.-L. Krivine. A call-by-name lambda-calculus machine.
Higher-Order and Symbolic Computation, 20(3):199–207,
2007.

[15] C.-H. L. Ong. On model-checking trees generated by higher-
order recursion schemes. In Proc. of LICS’06, pages 81–90.
IEEE, 2006.

[16] P. Parys. On the Significance of the Collapse Operation. In
Proc. of LiCS’12. IEEE, 2012.

[17] A. Rabinovich and A. Shomrat. Selection and uniformization
problems in the monadic theory of ordinals: A survey. In
Pillars of Computer Science, volume 4800 of LNCS, pages
571–588. Springer, 2008.

[18] S. Salvati and I. Walukiewicz. Krivine machines and higher-
order schemes. In Proc. of ICALP’11, volume 6756 of LNCS,
pages 162–173. Springer, 2011.

11

