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1
Introduction

This document presents a selection of the contributions obtained since my PhD

thesis in 2006 at IRISA in Rennes. This research was conducted during my post-

doc in RWTH Aachen under the guidance of Wolfgang Thomas (September 2006 -

September 2007), my very brief stay in LIAFA (now IRIF) (September 2007 - October

2007) and since November 2007 at LIGM in the Modèles et algorithmes team.

All my work was done with colleagues and friends. My main co-authors are

Zoltan Ésik, Matthew Hague, Christof Loeding and Olivier Serre with whom I

wrote the majority of the material presented here. I also collaborated with Luca

Aceto, Laurent Braud, Christopher Broadbent, Stefan Göller, Axel Haddad, Anna

Ingólfsdóttir, Antoine Meyer, Cyril Nicaud, Damian Niwiński, Luke Ong, Mikhaela

Slaats and Igor Walukiewicz. They will be more properly acknowledge in each

chapter. After this introduction, I will drop the "I" for the more honest "We".

My research is in algorithmic model theory. This domain studies the algorithmic

properties of in�nite structures (graphs, trees, linear orders, relational structures, . . . )

that arise in theoretical computer science. As these in�nite structures are described

by �nite objects (automata, functional programs, systems of equations, . . . ), they are

amenable to automated treatment. Logic provides a formalism to express properties

of these structures. My line of research is to understand what type of properties can

be checked on these structures, how these di�erent structures relate to one another

and how they can automatically be transformed or generated. Algorithmic model

theory has a strong connection with program veri�cation which is the most natural

sources of models and of problems.

The tools of algorithmic model theory come from automata theory, logic and

games. In the case of the monadic second order logic which is the logic of choice

in my work, these three areas are strongly connected providing di�erent angles of

attack for each problem.

To give some structure to this document, I organized my contributions into two

parts. Chapter 3 presents my work on recursion schemes which are an abstract

model for functional programs. Chapter 4 contains my contributions related to the

model of tree automaton on in�nite trees and its extensions. Tree automata on

in�nite trees are a central tool in algorithmic model theory and are at the heart of the
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above mention connexion between automata, logic and games. Each chapter contain

an introduction providing the motivation and the summary of my contributions.

Chapter 5 presents some directions for future research.

The results published in [51, 38, 47, 37, 36, 39, 50, 40]The references of articles
I co-authored appear in

red in this document.

did not �nd a place in this

presentation. However I would like to brie�y present two of these results which I

particularly like although they are not in my �eld of expertize. I am fortunate to be

part of a research team at LIGM covering a large spectrum of topics including ana-

lytic combinatorics, bio-informatics, combinatorics on words, algorithmic geometry,

theory of databases, ... This proximity with other �elds has been and continues to be

a tremendous asset. These two results certainly would not have seen the day of light

in a more standard environment.

The �rst result obtained with Cyril Nicaud in [51] gives an algorithm to uniformly

generate a deterministic and complete �nite automaton (DFA) in which all states are

accessible from the initial state. The algorithm has an expected run time in O(n3/2)
to generate an accessible automaton of size n. It is easy to generate uniformly a

DFA with n states over an alphabet with k letters. The di�culty comes from the

accessibility constraint which is not local.

The idea of our algorithm is to randomly generate a DFA A with βkn states

where βk > 1 is a well-chosen constant depending on the size of the k of the

alphabet. Then we extract the sub-DFA A containing the states reachable from

the initial state. It is easy to see that A is an accessible DFA which is uniformly

chosen amongst the accessible DFA with the same number of states. We reiterate

this process until the number of states of A is exactly n. We showed that if we take

βk = (1 + 1
k
W0(−ke−k))

−1
The classical Lam-
bert functionW0 is

implicitly de�ned by
W0(x)e

W0(x) = x

andW0(x) ⩾ −1

for all x ⩾ −e
−1

, the expected number of tries is in O(√n). Indeed, as

hinted by Figure 1.1, the distribution of the size of A resemble a Gaussian law which

we proved, in the appropriate probabilistic setting. Also, we proved that expected

value of the size of A for a random DFA A of size m is equivalent to β−1k m with a

standard deviation equivalent to σk
√
m where σk is a constant depending on the

size of the alphabet.

n 1000 10000

E[Xn](k=2) 796.663 7967.41

E[Xn](k=3) 940.489 9404.40

E[Xn](k=4) 980.137 9801.89

k 2 3 4

β−1k 0.79681 0.94047 0.98017

Size of the accessible automata
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Figure 1.1. On the top left, an approximation of the average size Xn of the accessible

automaton based on 10000 randomly generated structures DFAs over an alphabet

of size k. On the bottom left, the values of the constant β−1k = 1 + 1
k
W0(−ke−k) for

di�erent values of k. On the right, the graphical representation of X100.

The second result obtained with Stefan Göller in [53, 40] is in word combinatorics.

This result concerns unavoidable patterns in in�nite words. More precisely it con-
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cerns patterns that must appear in every su�ciently long word over an arbitrary

alphabet.

A pattern is a �nite word over some set of pattern variables. A pattern matches

a word if the word can be obtained by substituting each variable appearing in the

pattern by a non-empty word. The pattern xx matches the word nana when x is

replaced by the word na. A word encounters a pattern if the pattern matches some

in�x of the word. For example, the word banana encounters the pattern xx (as the

word nana is one of its in�xes).

Unavoidable patterns have been characterized using the Zimin patterns (Zn)n⩾0
de�ned by:

Z1 = x1 and Zn+1 = Znxn+1Zn for all n ⩾ 1.

A pattern over n distinct pattern variables is unavoidable if, and only if, the pattern

itself is encountered in the n-th Zimin pattern Zn. Zimin patterns can therefore be

viewed as the canonical patterns for unavoidability.

A natural question is how long can a word over a k-letters alphabet be while not

encountering the n-th Zimin pattern. The associated length is denoted f(n,k) for

n ⩾ 1 and k ⩾ 2 and has been the subject of several recent articles. However before

[53], the best lower-bound for f(n,k) was doubly exponential. In [53], we show that

for n ⩾ 4:

f(n, 2) > 22
2⋅
⋅
⋅
p

}n − 3 times

We use Stockmeyer’s yardstick construction [136] to construct for each n ⩾ 1, a

family of words of length at least Tower(n − 1, 2) that does not encounter Zn (if

n ⩾ 3). As these words are over an alphabet of size 2n−1, this immediately establishes

that f(n, 2n−1)>Tower(n−1, 2). By using a carefully chosen encoding in binary we

were able to prove the announced lower bound for f(n, 2). Independently, a similar

(but slightly worst) bound was obtained using the probabilistic method in [67].





2
Preliminaries

This chapter collects some de�nitions which are used throughout the document

and can safely be skipped at �rst. The notes in the margin highlight non-standard

de�nitions.

2.1 Orders

We only recall basic de�nitions on partial and total orders. For a more detailed

presentation, we refer the reader to [76, 126].

2.1.1 Partial orders

A partial order ⩽ over a set D is a binary relation in D × D which is re�exive,

antisymmetric and transitive. We write < for the strict version of ⩽ (i.e., x < y if

and only if x ⩽ y and x ≠ y). Two elements x and y of D are incomparable if neither

x ⩽ y nor y ⩽ x hold. An ω-chain (for ⩽) is an in�nite sequence (di)i⩾0 such that

d0 ⩽ d1 ⩽ d2 ⩽ . . . A directed subset of D is a subset X of D such that every �nite

subset of X has an upper bound. For example, ω-chains are directed subsets.

The product of two partial orders C and D is denoted C ×D. The order < on pairs

of elements of C × D is de�ned by (c1,d1) ⩽ (c2,d2) if and only if c1 ⩽C c2 and

d1 ⩽D d2.

A function f ∶ C↦ D between two partial orders ismonotonous (or order-preserving)

if x ⩽C y implies that f(x) ⩽D f(y).

A complete partial order (or cpo for short) What we call cpo is some-
times called directed ω-
cpo.

is a pair (D,⩽) where ⩽ is a partial order

on D with a least element, usually denoted �, and such that every ω-chain has a

least upper bound (or supremum).

The product of two cpos is a cpo.

A function f ∶ C↦ D between two cpos is continuous if it is monotonous and its

preserves the least upper-bounds of ω-chains.

A directed complete partial order (or dcpo for short) is a pair (D,⩽) where ⩽ is

a partial order on D and such that every �nite subset has a least upper bound (or

supremum).
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2.1.2 Linear orders

A linear order (or total order) ⩽ over a set D is a partial order on D which is total (i.e.,

for all x,y ∈ D, either x ⩽ y or y ⩽ x).
A sub-order of a linear order (D,⩽) is a subset of D with the order induced by ⩽

on D.

Given two linear orders (A,⩽A) and (B,⩽B) with A ∩ B = ∅, we de�ne their sum
A + B as the linear order (A ⊎ B,⩽) where for all x,y ∈ A ⊎ B,

x ⩽ y ⇔
x,y ∈ A and x ⩽A y

or x,y ∈ B and x ⩽B y
or x ∈ A and y ∈ B

Intuitively we make all the elements of A smaller than the elements of B. The sum

generalises to a family (Li)i∈I of linear orders indexed by elements of a linear order

(I,<I) and is denoted ∑i∈I Li.
Given two linear orders (A,⩽A) and (B,⩽B), we de�ne their product A ⋅ B as the

linear order (A×B,⩽) where ⩽ is the reversed lexicographic order (x1,y1) ⩽ (x2,y2)
if y1 <B y2 or y1 = y2 and x1 ⩽A x2. Intuitively, the product is obtained by replacing

each element of B by a copy of A.

2.1.3 Ordinals

A linear order (D,⩽) is well-founded if every subset of D has a least element.

Ordinals are the isomorphism classes of well-founded linear orders. For all n ⩾ 0,
the ordinal corresponding to the �nite linear order with n elements is denoted by n.

The isomorphism class of (N,⩽) is denoted by ω. The isomorphism class of (Z,⩽) is

denoted by ζ.

The class of ordinals is closed under sum and product. Note that sum (and the

product) are not commutative. For instance 1 +ω = ω but ω + 1 ≠ ω.

An initial segment of well-founded order (D,⩽) is a suborder induced by a set of

the form {y ∣ y ⩽ x} for some x ∈ D.

Ordinals can be totally ordered by taking α ⩽ β if α is isomorphic to an initial

segment of β.

An ordinal of the form α + 1 is called a successor ordinal. Non-successor ordinals

are called limit ordinals. A limit ordinal β satisfy that β = ({α ∣ α < β},<).

Ordinal induction can be used to prove that a property P holds for all ordinals. It

is enough to show that it holds for 0, if it holds for α, it also holds for α + 1 and if it

holds for all α < β for some limit ordinal β then it holds for β.

For every ordinal α, we de�ne ωα by taking:

ωα+1 = ωα ⋅ω
ωβ = sup({ωα ∣ α < β}) for β a limit ordinal.

Let ε0 be the smallest ordinal such that ε0 = ωε0 . Every ordinal α < ε0The Cantor normal form
can be de�ned for all ordi-
nals. However it becomes
less informative above ε0
as we lose α > β1 which

is replace by α ⩾ β1.

can

uniquely be written as:

α = ωβ1 ⋅ c1 +⋯ +ωβk ⋅ ck

with c1,⋯, ck < ω and α > β1 > ⋯ > βk. This presentation is called the Cantor
normal form of the ordinal.
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2.1.4 Sca�ered linear orders

A dense linear order ⩽ over a set D is such that for all x < y, there exists z such that

x < z < y.

A scattered order ⩽ over a set D is a linear order which does not contain any dense

sub-order.

For countable scattered orders, a more constructive characterisation is provided

by Hausdor�’s theorem which also gives a measure of the complexity of such orders.

Theorem 2.1 (Hausdor� [Hausdor�08])
A countable linear order is scattered if and only if it belongs to

S = ⋃
α

Vα

where

V0 = {0,1} and Vβ = {∑
i∈ζ

Li ∣ ∀i,Li ∈ ⋃
α<β

Vα} .

The Hausdor� rank The standard de�nition
considers the smallest α
such that L belongs to Vα.
It is easy to see that this
two ranks can only di�er
by at most one.

of a scattered order L, written rH(L), is the smallest α such

that L can be expressed as a �nite sum of elements of Vα. For instance, we have

rH(ζ) = rH(ω) = 1 and rH(ω2) = 2.
The Hausdor� rank of the ordinal ωα is equal to α. In particular if α is written

∑ki=1ωαi with α1 ⩾ . . . ⩾ αk in Cantor’s normal form then rH(α) = α1.

2.2 Terms and trees

2.2.1 Trees

Let A be a �nite alphabet. We let A∗ denote the set of �nite words over A, and

we refer to a subset of A∗ as a language over A. A tree t with directions in A (or

simply a tree if A is clear from the context) is a non-empty pre�x-closed subset of

A∗. Elements of t are called nodes and the empty word ε is called the root of t. For

a node u ∈ t, the subtree of t rooted at u, denoted tu, is the tree {v ∈ A∗ ∣ u ⋅ v ∈ t}.

We let Trees
∞(A) denote the set of trees with directions in A.

2.2.2 Terms

A ranked alphabet is a set of symbols together with an arity ρ(a) ⩾ 0 for each symbol

a. Symbols of arity 0 are called constants. The set of �nite terms TermsΣ build over a

ranked alphabet Σ is the smallest set satisfying that:

• a ∈ TermsΣ for all constant a ∈ Σ,

• if t1, . . . , tk ∈ TermsΣ then f(t1, . . . , tk) ∈ TermsΣ for all f ∈ Σ with arity k > 0.

The in�nite terms The in�nite terms could be
de�ned co-inductively in
a similar way as the �nite
terms. For our purpose,
it is more convenient to
de�ne them as a sub-class
of in�nite trees.

built over a ranked alphabet A are those trees with directions

−→
A

def= ⋃
f∈A

−→
f where

−→
f = {f1, . . . , fρ(f)} if ρ(f) > 0 and

−→
f = {f} if ρ(f) = 0.

For a tree t ∈ Trees
∞(−→A) to be a term, we require, for all nodes u, that the set

Au = {d ∈ −→A ∣ ud ∈ t} is empty if and only if u ends with some f ∈ A (hence ρ(f) = 0)
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and if Au is non-empty, then it is equal to some

−→
f for some f ∈ A. We let Terms(A)

denote the set of terms over A.

For c ∈ A of arity 0, we let c denote the term {ε, c}. For f ∈ A of arity n > 0 and

for terms t1, . . . , tn, we let f(t1, . . . , tn) denote the term {ε}∪⋃i∈[1,n]{fi} ⋅ ti. These

notions are illustrated in Figure 2.1.

●

●

●

●

●

●
c

f1 f2
●

●
c

f1 f2
f

f

●

c

c

Figure 2.1. Two representations of the in�nite term f∗2{f1c, f1, ε} = f(c, f(c, f(⋯)))
over the ranked alphabet {f, c}, assuming that ρ(f) = 2 and ρ(c) = 0.

2.3 Labeled transition systems

A rooted labelled transition system is an edge-labelled directed graph with a distin-

guished vertex, called the root. Formally, a rooted labelled transition system L (LTS

for short) is a tuple (D, r,Σ, ( aÐ→)a∈Σ), where D is a �nite or countable set called

the domain, r ∈ D is a distinguished element called the root, Σ is a �nite set of labels,
and for all a ∈ Σ,

aÐ→⊆ D ×D is a binary relation on D.

For any a ∈ Σ and any pair (s, t) ∈ D2 we write s
aÐ→ t to indicate that (s, t) ∈ aÐ→, and

we refer to it as an a-transition with source s and target t. For a wordw = a1⋯an ∈ Σ∗,

we de�ne a binary relation

wÐ→ on D by letting s
wÐ→ t (meaning that (s, t) ∈ wÐ→)

if there exists a sequence s0, . . . , sn of elements in D such that s0 = s, sn = t, and

for all i ∈ [1,n], si−1
aiÐ→ si. These de�nitions are extended to languages over Σ by

taking, for all L ⊆ Σ∗, the relation

LÐ→ to be the union of all

wÐ→ for w ∈ L.

When considering LTS associated with computational models, it is usual to allow

silent (or internal) transitions. The symbol for silent transitions is usually ε but here,

to avoid confusion with the empty word, we will use λ instead. Following [135, p.

31], we forbid a vertex to be the source of both a silent transition and a non-silent

transition. Formally, an LTS with silent transitions is an LTS (D, r,Σ, ( aÐ→)a∈Σ) whose

set of labels contains a distinguished symbol, denoted λ ∈ Σ and such that for all s ∈ D,

if s is the source of a λ-transition, then s is not the source of any a-transition with

a ≠ λ. We let Σλ denote the set Σ ∖ {λ} of non-silent transition labels. For all words

w = a1⋯an ∈ Σ∗λ, we let

wÔ⇒ denote the relation

LwÐ→, where Lw
def= λ∗a1λ∗⋯λ∗anλ∗

is the set of words over Σ obtained by inserting arbitrarily many occurrences of λ in

w.

An LTS (with silent transitions) is said to be deterministic if for all s, t1 and t2 in

D and all a in Σ, if s
aÐ→ t1 and s

aÐ→ t2, then t1 = t2.
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2.4 Logics

2.4.1 Monadic second order logic

Monadic second order logic (MSO logic for short) is the extension of �rst-order logic

with the ability to quantify over sets of elements. Here we de�ne MSO logic over

LTS with a label set Σ. In general it is de�ned for any relational structure and hence

for any structures such as trees, partial orders, . . . that can be encoded in relational

structures.

Let V1 be an in�nite set of �rst-order variables and V2 be an in�nite set of second-

order variables. We use lowercase letters such as x,y and z for �rst-order variables

and uppercase letters such as X,Y and Z for second-order variables. MSO formulas
are build from the atomic formula x

aÐ→ y with a ∈ Σ, x = y and x ∈ X for all x,y ∈ V1
and X ∈ V2 using the boolean connectors ∧ and ¬ and the existential quanti�ers ∃x
and ∃X for all x ∈ V1 and X ∈ V2. We allows ourself to use syntactic sugar like ∨,

∀X,→, . . .

We write ϕ(X1, . . . ,Xn,y1, . . . ,ym) to denote that the free variables of the formula

ϕ are among X1, . . . ,Xn and y1, . . . ,ym respectively. A formula without free variables

is called a sentence. For an LTS L and a sentence ϕ, we write L ⊧ ϕ if L satis�es the

formula ϕ. The MSO-theory of L is the set of sentences satis�ed by L. We say that

an LTS L has a decidable MSO-theory if its MSO-theory is recursive.

For every formula ϕ(X1, . . . ,Xn,y1, . . . ,ym), all subsets U1, . . . ,Un of vertices of

L and all vertices v1, . . . , vm of L, we write L ⊧ ϕ[U1, . . . ,Un, v1, . . . , vm] to express

that ϕ holds in L when Xi is interpreted as Ui for all i ∈ [1,n] and yj is interpreted

as vj for all j ∈ [1,m].
A set U of vertices of L is MSO-de�nable in L if there exists a formula ϕ(x) such

that:

U = {u ∣ L ⊧ ϕ[u]}

The de�nition of an MSO-de�nable vertex is similar.

2.4.2 Modal µ-calculus

The modal mu-calculus over LTS labelled by Σ is de�ned using greatest and least

�x-point operators, an existential modality ◇a and a universal modality ◻a for each

a ∈ Σ. Every µ-calculus formula ϕ de�nes a set of vertices of the LTS denoted by

[[ϕ ]].
In this manuscript, we will never use the precise de�nition of the µ-calculus and

we will rely only on the properties given below. We refer the reader to [19] for a

detailed presentation and for further references.

Every µ-calculus formula ψ can easily be translated into an MSO formula ϕ(X)
de�ning [[ψ ]]. In general, it is not true that sets de�nable in MSO logic are de�nable

in µ-calculus. However for deterministic tree, we have equi-expressivity in the

following sense.

Proposition 2.2 ([114])
The modal µ-calculus and MSO logic are equi-expressive over deterministic trees.

More precisely for every MSO formula ϕ, there (e�ectively) exists a µ-calculus

formula ψ, such that for all deterministic tree t, t ⊧ ϕ if and only if the root of t

belongs to [[ψ ]].
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Over non-deterministic trees, the µ-calculus captures the bisimulation-invariant

properties expressible in MSO logic [97]. The following proposition expresses the

equivalence with alternating parity tree automata (see Section ??).

Proposition 2.3 ([77])
For every µ-calculus formula ϕ, there exists an alternating tree automaton Aϕ such

that for all deterministic tree t and node u, Aϕ accepts tu, the subtree rooted at u,

if and only if u ∈ [[ϕ ]]. Furthermore Aϕ can be constructed in linear time.

2.5 Transformations of labelled transitions systems

In this section, we recall the de�nitions of the transformation of LTS used throughout

this document.

An MSO-interpretation I from LTS labelled by Σ to LTS labelled by Γ is given

by a tuple of formulas (δ(x),ϕa(x,y))a∈Γ) where these formulas use the alphabet

Σ. Applying the MSO-interpretation I to an LTS L labelled by Σ produces an LTS

labelled by Γ denoted by I(L). The set of vertices of I(L) is the set of vertices of

L satisfying δ(x). For a ∈ Γ , there is a transition u
aÐ→ v in I(L) if and only if

L ⊧ ϕa[u, v].

Proposition 2.4
For all MSO-interpretation I and all L, if the LTS L has a decidable MSO-theory

then the LTS I(L) also has a decidable MSO-theory.

The unfolding of an LTS L from one of its vertices u is the tree, denoted Unf(L,u)
formed by the path from u in L.

Theorem 2.5 ([73])
For an LTS L and an MSO-de�nable vertex u of L, if L has a decidable MSO-theory

then Unf(L,u) also has a decidable MSO-theory.

2.6 Games

2.6.1 Two-players infinite duration games

A graph is a pairG = (V ,E) where V is a (possibly in�nite) set of vertices and E ⊆ V×V
is a set of edges. For a vertex v we let E(v) = {v ′ ∣ (v, v ′) ∈ E} and in the rest of the

document (hence, this is implicit from now on), we only consider graphs that have

no dead-end, i.e., such that E(v) ≠ ∅ for all v.

An arena is a triple G = (G,VE,VA) where G = (V ,E) is a graph and V = VE ⊎ VA
is a partition of the vertices among two players, Éloise and Abelard.

Éloise and Abelard play in G by moving a pebble along edges. A play from an initial

vertex v0 proceeds as follows: the player owning v0 (i.e., Éloise if v0 ∈ VE, Abelard

otherwise) moves the pebble to a vertex v1 ∈ E(v0). Then the player owning v1
chooses a successor v2 ∈ E(v1) and so on. As we assumed that there is no dead-end,

a play is an in�nite word v0v1v2⋯ ∈ Vω such that for all 0 ⩽ i one has vi+1 ∈ E(vi).

A partial play is a pre�x of a play, i.e., it is a �nite word v0v1⋯v` ∈ V∗ such that for

all 0 ⩽ i < ` one has vi+1 ∈ E(vi).

A strategy for Éloise is a function ϕ ∶ V∗VE → V assigning, to every partial play
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ending in some vertex v ∈ VE, a vertex v ′ ∈ E(v). Strategies of Abelard are de�ned

likewise, and usually denoted ψ. In a given play λ = v0v1⋯ we say that Éloise (resp.

Abelard) respects a strategy ϕ (resp. ψ) if whenever vi ∈ VE (resp. vi ∈ VA) one has

vi+1 = ϕ(v0⋯vi) (resp. vi+1 = ψ(v0⋯vi)).

A winning condition is a subset Ω ⊆ Vω and a (two-player perfect information)

game is a pair G = (G,Ω) consisting of an arena and a winning condition.

A play λ is won by Éloise i� λ ∈ Ω; otherwise λ is won by Abelard. A strategy ϕ is

winning for Éloise in G from a vertex v0 if any play starting from v0 where Éloise

respects ϕ is won by her. Finally a vertex v0 is winning for Éloise in G if she has a

winning strategy ϕ from v0. Winning strategies and winning vertices for Abelard

are de�ned likewise.

We now de�ne some classical winning conditions.

• A reachability winning condition is of the form V∗FVω for a set F ⊆ V of target

vertices, i.e., winning plays are those that eventually visit a vertex in F.

• A Büchi winning condition is of the form (V∗F)ω for a set F ⊆ V of �nal vertices,

i.e., winning plays are those that in�nitely often visit vertices in F.

• A co-Büchi condition is of the form V∗(V∖F)ω for a set F ⊆ V of forbidden vertices,

• A parity winning condition is de�ned by a colouring function Col that is a mapping

Col ∶ V → C ⊂ N where C is a �nite set of colours. The parity winning condition

associated with Col is the set ΩCol = {v0v1⋯ ∈ Vω ∣ lim inf(Col(vi))i⩾0 is even},

i.e., a play is winning if and only if the smallest colour in�nitely often visited is

even.

Finally a reachability (resp. Büchi, co-Büchi, parity) game is one equipped with a

reachability (resp. Büchi, co-Büchi, parity) winning condition. For notation of such

games we often replace the winning condition by the object that is used to de�ne it

(i.e., F or Col).

2.6.2 Markov Decision Process

Perfect Information Se�ing

A probability distribution over a countable set X is a mapping d ∶ X→ [0, 1] such that

∑x∈X d(x) = 1. In the sequel we denote by D(X) the set of probability distributions

over X. In this document, all probabilities will be rational numbers, which will be

described in binary when dealing with encoding.

An arena is a tuple G = ⟨S, sini,Σ, ζ⟩ where S is a countable set of states, sini is an

initial state, Σ is a �nite set of actions and ζ ∶ S × Σ→D(S) is the transition (total)

function.

A play in such an arena proceeds as follows. It starts in state sini and Éloise picks

an action σ, and a successor state is chosen according to the probability distribution

ζ(sini,σ). Then Éloise chooses a new action and the state is updated and so on forever.

Hence, a play is an in�nite sequence s0s1s2⋯ ∈ Sω such that s0 = sini and for every

i ⩾ 0, there exists a σ ∈ Σ with ζ(si,σ)(si+1) > 0. In the sequel we refer to a pre�x of

a play as a partial play and we denote by Plays the set of all plays.

A (pure) strategy We do not consider here
randomised strategies as
in the setting of this paper
they are useless. Note that
for �nite MDP, optimal
strategies — when exists —
can always be chosen to be
pure.

for Éloise is a function ϕ ∶ S∗ → Σ assigning to every partial

play an action. Of special interest are those strategies that do not require memory: a
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strategy ϕ is memoryless if ϕ(λ ⋅ s) = ϕ(λ ′ ⋅ s) for all partial play λ, λ ′ and all states

s (i.e. ϕ only depends on the current state). A play λ = s0s1s2⋯ is consistent with a

strategy ϕ if ζ(si,ϕ(v0⋯vi))(si+1) > 0, for all i ⩾ 0.
Now, for any partial play λ, the cylinder for λ is the set Cyl(λ) = λSω∩Plays.

Let FP be the σ-algebra generated by the set of cylinders. Then, (Plays,FP) is a

measurable space.

A strategy ϕ induces a probability space over (Plays,FP) as follows: one de�nes

a measure µϕ on cylinders and then uniquely extends it to a probability measure

on FP using the Carathéodory’s unique extension theorem. For this, we �rst de�ne

inductively µϕ on cylinders:

• as all plays start from sini, we let µϕ(Cyl(sini)) = 1;

• for any partial play λ ending in some state s, we let µϕ(Cyl(λ ⋅s ′)) = µϕ(Cyl(λ)) ⋅
ζ(s,ϕ(λ))(s ′).

We also denote by µϕ the unique extension of µϕ to a probability measure on F.

Then (Plays,FP ,µϕ) is a probability space.

An objective is a measurable set O ⊆ Plays: a play is winning if it belongs to O. A

Markov decision process (MDP, aka one-and-half-player game) is a pair G = (G,O)
where G is an arena and O is an objective. In the sequel we should focus onω-regular

objectives (which are easily seen to be measurable), whose de�nitions are the same

as for two-players games.

A strategy ϕ is almost-surely winning (resp. positively winning) if µϕ(O) = 1 (resp.
µϕ(O) > 0). If such a strategy exists, we say that Éloise almost-surely wins (resp.
positively wins) G. The value of G is de�ned as Val(G) = supϕ µϕ(O), and a strategy

ϕ is optimal if Val(G) = µϕ(O).

When the set of actions Σ is reduced to one element, the MDP (G,O) is called a

Markov chain and we omit the unique action from all the de�nitions. The set Plays is

called the set of traces of the Markov chain and is denoted Traces. We write µG the

probability measure associated with the unique strategy. We say that the Markov

chain almost-surely ful�ls its objective if µG(O) = 1.

Theorem 2.6 ([74],[65])
Let G be an MDP over a �nite arena with a parity objective. Then, one can decide

in polynomial time whether Éloise almost-surely (resp. positively) wins. Moreover,

Éloise always has an optimal memoryless strategy.

Imperfect Information Se�ing

Now we consider the case where Éloise has imperfect information about the current

state. For this, we consider an equivalence relation ∼ over S. We let [s]∼ be the

equivalence class of s for ∼ and S/∼ be the set of equivalence classes of ∼ over S.

The intuitive meaning of ∼ is that two states s1 ∼ s2 cannot be distinguished by

Éloise. We easily extend ∼ to partial plays: s0s1⋯sn ∼ s ′0s ′1⋯s ′n if and only if si ∼ s ′i
for all i = 0,⋯,n. As two equivalent plays λ1 ∼ λ2 cannot be distinguished by Éloise

she should therefore behave the same in both of them.

Hence, we should only consider so-called observation-based strategies. An ob-
servation-based (pure) strategy is a function ϕ ∶ (S/∼)∗ → Σ, i.e., to choose her next

action, Éloise considers the sequence of observations she got so far
1
. In particular,

1

By abuse of notation, we shall write ϕ(s0⋯sn) to mean ϕ([s0]∼⋯[sn]∼)



2.7 Automata on in�nite words and trees 13

an observation-based strategy ϕ is such that ϕ(λ) = ϕ(λ ′) whenever λ ∼ λ ′. In this

context, a memoryless strategy is a function from S/∼ →D(Σ), i.e. it only depend on

the current equivalence class.

A partial observation Markov decision process (POMDP, aka one-and-half-player

imperfect information game) is a triple (G,∼,O) where G is an arena, ∼ is an equiv-

alence relation over states and O is an objective. We say that Éloise almost-surely
wins (resp. positively wins) G if she has an almost-surely (resp. positively) winning

observation-based strategy. Finally, the value of G is de�ned as Val(G) = supϕ µϕ(O)
whereϕ ranges over observation-based strategies; optimality is de�ned as previously.

The following decidability results are known for POMDP:

Theorem 2.7 ([8])
In a POMDP with a Büchi (resp. co-Büchi) objective, deciding whether Éloise almost-

surely (resp. positively) wins is EXPTIME-complete. Moreover if Éloise has an

almost-surely (resp. positively) winning strategy, she has an almost-surely (resp.
positively) winning strategy with �nite memory.

In a POMDP with a co-Büchi (resp. Büchi) objective, it is undecidable whether

Éloise almost-surely (resp. positively) wins.

The results in Theorem 2.6 and 2.7 do not depend on the encoding of probability

distributions, as the only relevant information is which probabilities are non zero.

2.7 Automata on infinite words and trees

An in�nite word over the alphabet A is an in�nite sequence of letter of A. We denote

by Aω the set of all in�nite words over A.

A non-deterministic Büchiω-word automata is given by a tuple (Q,qin,∆, F) where

Q is the set of states, qin ∈ Q is the initial state, F ⊆ Q is the set of �nal states and

∆ ⊆ Q ×A ×Q is the set of transitions. A run of A on an ω-word w = a1a2⋯ is an

in�nite sequence of states q0q1⋯ such that q0 = qin and for all i ⩾ 0, (qi,a,qi+1) is

a transitions in ∆. A run is accepting if it contains in�nitely many �nal states. An

ω-word w is accepted by A if there exists an accepting run of A over w. We denote

by L(A) the set of ω-words accepted by A.

Parityω-word automata are de�ned similarly but with the parity condition instead

of the Büchi condition. Deterministic parity ω-word automata accept the same

languages as Büchi ω-word automata.

For simplicity, we only de�ne on tree automata on full binary trees whose nodes

are labelled by a �nite alphabet Σ (i.e. mappings from {0, 1}∗ ↦ Σ). Of course, the

de�nition and results are easily adapted to arbitrary deterministic non-necessarily

complete trees.

A (non-deterministic) parity tree automaton on Σ-labelled (full binary) trees is a

tuple A = (Q,Σ,q0,∆,Ω) with a �nite set Q of states, initial state q0 ∈ Q, transition

relation ∆ ⊆ Q × Σ × Q × Q, and a priority function Ω ∶ Q → N. A run of A on a

Σ-labelled tree t from a state q ∈ Q is a tree ρ labelled by Q such that ρ(ε) = q,

and for each u ∈ {0, 1}∗ we have (ρ(u), t(u),ρ(u0),ρ(u1)) ∈ ∆. We say that ρ is

accepting if on each path the minimal priority appearing in�nitely often is even. A

tree is accepted by A if there exists an accepting run of A for it. We denote by L(A)
the set of in�nite trees accepted by A.

Tree automata on in�nite trees can be de�ned with other acceptance conditions
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such Büchi and co-Büchi in a similar way.

So far, we de�ned non-deterministic parity tree automata. An alternating parity
tree automaton can propagate more than one state to each child of the current node.

For a precise de�nition, we refer to [98]. We will mainly use that fact that for the

parity acceptance condition non-deterministic and alternating automata accept the

same languages.

A famous result due to Rabin is that the languages accepted by parity tree automata

are the languages de�nable in MSO logic.

Theorem 2.8 (Rabin’s theorem [124])
For every MSO sentence ϕ, there exists a parity tree automaton Aϕ such that for

every tree t, we have:

t ⊧ ϕ if and only if Aϕ accepts t
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3
Recursion schemes

3.1 Introduction

This chapter presents my contributions to the study of higher-order recursion

schemes Often, we write recursion
scheme or even scheme
for brevity without any
implication on its order.

. It is not intended as a detailed presentation of the state of the art but

it should o�er the necessary background to understand my contributions to the �eld.

Before proceeding with the necessary formal de�nitions, I would like to attempt an

informal presentation of recursion schemes that should be accessible to any fellow

computer scientist that enjoys programming languages as I do.

Recursion schemes are an abstract model for programs written in a pure functional

language such as Haskell, Ocaml, ML, Scala, ... By abstract model, we mean that

some but not all features are captured. The main restriction of this model compared

to full �edge functional programs is that it can only handle data (integers, lists, ...) in

a very limited fashion.

In this informal introduction rather than de�ning recursion schemes as a mathe-

matical model, we will de�ne them as a syntactic subclass of Haskell programs. Here

the choice of Haskell is not arbitrary. Indeed Haskell is a lazy functional language.

It means that expressions are not evaluated when they are bound to variables, but

their evaluation is deferred until their results are needed by other computations. In

consequence, arguments are not evaluated before they are passed to a function, but

only when their values are actually used.
1

This allows Haskell programs to represent

and work with in�nite objects. For instance, the program below de�nes an in�nite

list integers containing all positive integers. Of course attempting to print the

list does not terminate but thanks to lazy evaluation it is possible to retrieve its

n-th element. In a non-lazy language, such an attempt would not terminate as the

language would �rst attempt to fully evaluate integers where Haskell will only

compute its n-th �rst elements.

integers = 0 : map (\x -> x+1) integers -- list of all integers
integers !! 5 -- 6-th element

1

This de�nition of lazy evaluation is taken verbatim from the Haskell wiki h�ps://wiki.haskell.org/
Lazy_evaluation.

https://wiki.haskell.org/Lazy_evaluation
https://wiki.haskell.org/Lazy_evaluation
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even = map (\x -> 2*x) integers -- list of even numbers

For the rest of this introduction, recursion schemes are Haskell programs that can

only manipulate data-type representing terms and that do not perform any form of

pattern matching on these terms. In particular, a function is never allowed to inspect

or deconstruct its arguments.

The Haskell program below de�nes a data-type Term to represent the terms over

the ranked alphabet a ∶ 0, b ∶ 1 and c ∶ 2. The variable finite denotes the �nite

term c(b(a),a). More interestingly, the variable infinite represents the in�nite

term b(b(b(b(⋯)))).

data Term = A | B Term | C Term Term

finite :: Term
finite = C (B A) A
infinite :: Term
infinite = B infinite

As we mentioned previously, it is possible to manipulate in�nite terms in a mean-

ingful way thanks to lazy-evaluation. In particular the function approxThe function approx is
not a recursion scheme as
it uses a parameter of type

Int and also performs
pattern-matching. It is

only presented here to con-
vince the reader that in�-
nite term can e�ectively
be handled in Haskell.

below

computes the �nite term obtained by pruning the in�nite term at some given depth.

For this, we need to add some new constant (Void in our case) that will be substi-

tuted at the cutting points. For instance, approx infinite 2 returns the term B
(B Void).

data Term = Void | A | B Term | C Term Term

approx :: Term -> Int -> Term
approx _ 0 = Void
approx A _ = A
approx (B t) n = B (approx t (n-1))
approx (C t1 t2) n = C (approx t1 (n-1)) (approx t2 (n-1))

To sum up, a recursion scheme is an Haskell program of type Term which can, of

course, use auxiliary recursive functions as long as they do not use other data type

than Term or any form of pattern-matching.Note that auxiliary func-
tions are allowed to take
functions as parameters
as long as the only data-
type they use is Term.

As a result, a scheme represents one,

possibly in�nite, term.

Before proceeding, let us give some examples of the expressivity of recursion

schemes. Our �rst non-trivial example comb_n, given below, de�nes the in�nite

term depicted in Figure 3.1. This term, denoted Combn, is comb-shaped and the n-th

teeth of the comb is the term b(b(⋯(b
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

a)⋯)) which we denote n in the following.

More generally, for any function f ∶ N↦ N, Combf is the comb-shaped term where

the n-th teeth has length f(n). This term is also depicted in Figure 3.1.

comb_n :: Term
comb_n = comb_n' (B A)
comb_n' :: Term -> Term
comb_n' x = C x (comb_n' (B x))
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To better understand how comb_n produces this term, we can use a little syntactic

sugar and remark that the argument x of comb_n’ will always be some term of the

form n for some n ⩾ 1. Hence the program can be rewritten as:

comb_n = comb_n' 1
comb_n' n = C n (comb_n' n + 1)

Unfolding the recursive de�nition, we obtain:

comb_n↝ comb_n’1↝ C(1,comb_n’2) ↝ C(1,C(2,comb_n’3)) ↝ ⋯

which at the limit produces the term presented in Figure 3.1.

c

b

a

c

b

b

a

c

b

b

b

a

c

c

c

b

b

a

f(1)
b

b

a

f(2)
b

b

a

f(3)

Figure 3.1. The term Combn produced by the scheme comb_n (left) and the general

shape Combf for some function f ∶ N→ N (right).

To better understand the expressiveness of recursion schemes
2
,we give examples of

recursion schemes constructing the term Combf (see Figure 3.1) for more complicated
functions f ∶ N↦ N. Let us start with the Fibonacci sequence �b ∶ N↦ N de�ned by

�b(1) = �b(2) = 1 and �b(n) = �b(n − 1) + �b(n − 2) for all n ⩾ 3.
The scheme comb_fib given below compute the in�nite term Comb�b.

comb_fib :: Term
comb_fib = comb_fib' B B
comb_fib' :: (Term -> Term) -> (Term -> Term) -> Term
comb_fib' fst snd = C (fst A) (comb_fib' snd (add fst snd))
add :: (Term -> Term) -> (Term -> Term) -> (Term -> Term)
add n m x = n (m x)

Because the recursive de�nition of �b involves an addition, it is no longer possible

to represent the integer n ⩾ 0 directly by the term n. As our de�nition of re-
cursion scheme forbids
the deconstruction of
arguments using pattern-
matching, it is not possible
to construct a function tak-
ing the terms n andm as
arguments and producing
the term n +m.

Rather the integer n ⩾ 0 is

represented by the function n of type Number = Term -> Term de�ned by:

n(t) = b(b(⋯(b
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

t)⋯)).

2

All the code presented in this document can be downloaded at www-igm.univ-mlv.fr/~carayol/HDR/
schemes.hs.

www-igm.univ-mlv.fr/~carayol/HDR/schemes.hs
www-igm.univ-mlv.fr/~carayol/HDR/schemes.hs
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By applying this function to the term a, we obtain the term corresponding to this

integer (i.e., n(a) = n for all n ⩾ 0). With this representation, the addition operation

simply becomes the composition of the functions (i.e., n ○m = n +m).

Now the code of comb_fib can be rewritten to become more readable.

type Number = Term -> Term
comb_fib :: Term
comb_fib = comb_fib' 1 1
comb_fib' :: Number -> Number -> Term
comb_fib' �bn−1 �bn = C �bn−1 (comb_fib'�bn (add �bn−1 �bn))
add :: Number -> Number -> Number
add n m = n +m

It is now easy to see that the n-th call tpcomb_fib’ has �b(n) and �b(n + 1)
as arguments.

This example illustrates two crucial features for the expressiveness of recursion

schemes: the use of higher-order auxiliary functions, meaning functions that take

functions as arguments and partial application of functions, meaning that a function

is called with only part of its arguments as it is the case in add fst snd.

To further demonstrate the expressiveness of using auxiliary functions of higher

order, we show how to construct Comb2
n , Com

2
2
n , Com

2
2
2
n , . . . which schemes of

increasing order. In our context, the order of a function is 0 if it is of type Term,

1 if it has arguments which are of type Term and more generally the order of a

function is one plus the maximal order of its arguments. For instance, the function

add de�ned above is of order 2 as its arguments are of order 1, 1 and 0 respectively.

The order of a scheme is the maximal order of a function it uses.

The scheme comb_exp of order 2 below de�nes the term Comb2
n .

comb_exp :: Term
comb_exp = comb_exp' B
comb_exp' :: Number -> Term
comb_exp' n = C (n A) (comb_exp' (double n))
double :: Number -> Number
double n x = n (n x)

When rewritten using some syntactic sugar, we see that the n-th recursive call to

comb_exp’ is passed 2n as argument.

comb_exp = comb_exp' (double 1)
comb_exp' n = C n (comb_exp' (double n))
double n = 2n

Let us move on to the construction of Comb22
n , we already know how to construct

at the n-th recursive call the function 2n that is to say, the function consisting in 2n

consecutive calls to the function b. Actually, we could have substituted the function

b with any other function. In particular, we could have constructed the function

Dn ∶ Number -> Number consisting of 2n consecutive call to double. When

applying Dn to B, we obtain 22
n
. This is in essence the mechanism of the scheme

comb_exp_exp given below, which describes Comb22
n .
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comb_exp_exp :: Term
comb_exp_exp = comb_exp_exp' (double2 double)
comb_exp_exp' :: (Number -> Number) -> Term
comb_exp_exp' f = C (f B A) (comb_exp_exp' (double2 f))
double2 :: (Number -> Number) -> (Number -> Number)
double2 g x = g (g x)

The function double
and double2 only
di�er by their type. It
would be possible to re-
place both of them by
the polymorphic version
double f = f . f
using the operator for
composition of functions.
However polymorphism is
not allowed by the de�ni-
tion of recursion schemes.

It should be clear that this construction generalises to the tower of exponential of

height k and results in a scheme of order k + 1.
The examples given so far might give the false impression that the de�nition of the

scheme always closely mimics natural recursive de�nition of the functions modulo

some encoding of data as functions. The scheme comb_log given below, which

de�nes the term Comb⌊log2(n)⌋
shows that it is not necessarily the case.

comb_log :: Term
comb_log = comb_log' (\x -> x) C
comb_log' :: (Term->Term->Term) -> Term -> Term
comb_log' ctx n = ctx n (comb_log' (B n) (dup context))
dup :: (Term->Term->Term) -> Term -> Term -> Term
dup ctx x y = ctx x (ctx x y)

Here the n-th recursive call to comb_log’ is given the arguments Ctxn and n
where for n ⩾ 1, Ctxn is the function type Term ->Term ->Term given by:

Ctxn(x,y) =
c

x c

x

c

2n times

yx

The correctness of the scheme comb_log uses the following properties:

• Comb⌊log2(n)⌋
= Ctx1(1, Ctx2(2, Ctx3(3, . . .) . . .),

• Ctxn+1(x,y) = Ctxn(x, Ctxn(x,y)).

The main motivation to study recursion schemes is the automated veri�cation

of functional programs. Even though, functional
programming is not the
most common paradigm
encountered in the indus-
try, it is worth noting that
widely used languages
such as Java, C#, python
have functional program-
ming features.

In this setting, recursion schemes are used as an abstract

model, an idea which dates back to the early 70s and the work of Nivat [113].

Nivat proposes to see a �rst-order recursive program as a recursion scheme simply

by leaving all the base functions (i.e., the functions handling data), uninterpreted.

This translation is purely syntactical and can therefore be automated. For exam-

ple, consider the program factorial_three, given below, which computes the

factorial of 3.

factorial_three :: Int
factorial_three = factorial 3
factorial :: Int -> Int
factorial n = if n==0 then 1 else n*(factorial n-1)
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A possible recursion scheme corresponding to this program is given below. In

Term, we introduced the constants One and Three to represent the numbers 0

and 3, a unary function symbol Prec to represent the function n↦ n − 1, a binary

function Times for the function n,m↦ n ⋅m and the ternary function IfZero
to capture the conditional (i.e., n, c1, c2 ↦ c1if n = 0 and c2 otherwise).

data Term = Void | One | Three | Times Term Term
| IfZero Term Term Term

scheme_ft :: Term
scheme_ft = scheme_f Three
scheme_f :: Term -> Term
scheme_f n = IfZero n One (Times n (scheme_f (Prec n)))

The in�nite term produced by this recursion scheme is in some sens the free-

interpretation of the program. As such, it contains a lot of meaningful information

about the program and in particular it allows to compute the value of the program.

To formally compute the value from the in�nite term, we must give, for each function

f in Term an interpretation which is a function of the same arity in some concrete

domain. In order to guaranty that the value of the in�nite term can be computed, it is

usually required that the domain is a complete partial order (D,⊑) (see Section 2.1.1)

Intuitively, the partial
order ⊑ can be inter-

preted as "less de�ned

than" and the least ele-
ment � as the unde�ned
element. As our exam-

ple tries to demonstrate,
the requirement that the
domain is an cpo can al-
ways be meet by adding
a fresh least element and
keeping all the other el-
ements incomparable.

with a least element � and that the interpretations are component-wise monotonous.

With these assumptions, the value of the in�nite term can be de�ned as the least

upper bound of the values of the approximants of the in�nite term (as computed by

the function approx). If we interpret Void (the constant introduced by approx)

as �, this sequence is directed and hence as a least upper bound which coincide with

the value of the program under the same interpretation.

In our example, we can simply take as domain the set of integers with a least

element � and otherwise all elements are incomparable. The interpretations follow

the Haskell semantics. For instance the interpretation of IfZero is the ternary

function:

n, v1, v2 ↦
⎧⎪⎪⎪⎨⎪⎪⎪⎩

v1 if n = 0,
v2 if n > 0,
� otherwise.

Nivat proposed to use this abstraction process to automatically prove equivalence

between recursive programs. He de�ned two programs to be equivalent if their

associated schemes produce the same in�nite term. In particular, two equivalent pro-

grams compute the same value and this independently of the chosen interpretation.

Following the work by Courcelle [68, 69] the equivalence problem for �rst-order

schemes was reduced to the problem of the decidability of language equivalence

between deterministic pushdown automata (DPDA). Research on the equivalence for

program schemes was halted until Sénizergues [133, 132] established decidability of

DPDA equivalence which therefore also solved the scheme equivalence problem. At

�rst glance, this notion of equivalence might seem too restrictive as it fails to equate

many obviously equivalent programs. However we must keep in mind that more

permissive notions of equivalence (such as saying that two program are equivalent

if they compute the same value) soon become undecidable.

The use of recursion scheme for program veri�cation saw a complet regain of

interest with the works of Knapik, Niwinski and Urzyczyn [100] and Ong [118]. Ong

showed that given a recursion scheme generating an in�nite term t and a property ϕ
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expressed in monadic second order (MSO) logic, we can decide if the term t satis�es

the property ϕ. This result is important as we have seen that the in�nite term t

captures a lot of information about the program. Consider, for instance, a program

accessing some �le on a computer via the base functions open, read and close.

We might want to check that the �le is never read before it is opened. This property

corresponds, on the in�nite term generated by the scheme, to saying that every node

labelled by read has an ancestor labelled by open. As MSO logic can express the

ancestor relation, this property can be checked using Ong’s result.

For practical purpose, the complexity of the decision procedure seems untractable :

for an order-k scheme, the problem is non-elementary for MSO logic, k-EXPTIME-

complete for the µ-calculus and still (k − 1)-EXPTIME-complete for properties ex-

pressed by trivial tree automata. Surprisingly, Kobayashi’s TRecS tool [103], which

checks properties expressible by a deterministic trivial Büchi automaton (all states

accepting), manages to handle schemes of order 4 with tens of lines. Since then, a

number of tools have been proposed to improve the scaleability of the model-checking

problem. We refer the reader to [119] for a recent survey.

Another motivation to study recursion schemes is of a more fundamental nature:

recursion schemes are the current frontier in our quest to �nd large classes of in�nite

structures with good algorithmic properties. By good algorithmic properties, we mean

structures for which properties expressed in MSO logic can be decided. The choice

of the MSO logic may seem arbitrary but up to now, it presents the best compromise

between expressivity and decidability. This quest started with the proof by Büchi

that the MSO theory of the natural with the successor is decidable [28]. He later

extended this result to the decidability of theory of any countable ordinal [30]. Then

Rabin established the decidability for the in�nite full binary tree [124]. This seminal

result implies the decidability of MSO logic for many interesting classes of in�nite

graphs that can be de�ned in this logic starting from the full binary tree such as the

context-free graphs [111], the HR-equational graphs [72], the pre�x-recognizable

graphs [63]. Another approach to obtain in�nite structures for which we can decide

MSO logic is via transformations that preserves the decidability of MSO logic : MSO-

interpretations and MSO-transductions [71], unfolding [73], Muchnik tree-iteration

[131, 143] (see Section 2.5). In [60], Caucal introduced a hierarchy of in�nite graphs

which contains the �nite graphs and is closed by the afore mentioned operations. He

later proved that the in�nite terms that can be built in this fashion coincide with a

subclass of the higher-order recursion schemes (called safe recursion schemes). As a

result, almost all Of course, it is possible
to construct an ad hoc

structure with a decid-
able MSO-theory which
cannot be interpreted into
a recursion scheme. For
instance, it is the case for
Combg with g(1) = 2 and
g(n + 1) = 2

g(n) for n ⩾ 1

which cannot be de�ned
in MSO logic in a term
produced by a recursion
scheme. Also we conjecture
that countable ordinals
above ε0 are not de�nable
in this fashion.

known structures for which MSO logic is decidable can be de�ned

in MSO in the in�nite term de�ned by some recursion scheme.

Contributions and outline of the section

Section 3.2 presents the formal de�nitions of (higher-order) recursion schemes and

their main decidability properties.

In Section 3.3, our �rst contribution is moving from deciding properties on recur-

sion schemes to synthesizing recursion schemes satisfying some properties. We have

shown decidability of two synthesis problem for recursion schemes.

In [26], we showed that given a recursion scheme S generating a term t and an

MSO formula ϕ(x), we can construct a new scheme S ′ generating the term t in

which the nodes satisfying ϕ(x) are marked. From the point of view of program

veri�cation, this could, for instance, be use to automatically annotate unsafe function
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calls in a program.

In [52], we showed that given a recursion scheme S generating a term t and

an MSO formula ϕ(X), if there exists a set of nodes of t satisfying ϕ(X), we can

construct a scheme S ′ generating the term t marked with such a set. A possible

application is the synthesis of program satisfying a given property. Imagine for

instance a program with a choice operator that is left unresolved by the programmer.

Using this result, we could resolve the choices left by the programmer while ensuring

that the resulting program satis�es a certain property.

We also present analogous results obtained for a subclass of recursion schemes

call safe recursion schemes [45, 58].

Our approach is based on compiling a recursion scheme into an extension of the

model of pushdown automaton called a collapsible pushdown automaton. In [52],

we obtained a simpli�ed proof of the correcness of this compilation process.

In Section 3.4, a second contribution is a saturation-based algorithm to checks prop-

erties expressible by a deterministic trivial Büchi automaton on recursion schemes

[23]. This algorithm is at the core of the C-SHORe model-checker [24] which at time

of its release rivaled with the state of the art model-checkers.

In Section 3.5, a third contribution is the characterization of ordinals de�ned by

safe recursions scheme [21], as well as the synchronization trees [2] de�ned by order

0 and 1 recursion schemes.

3.2 Recursion schemes and their properties

3.2.1 Definitions

In this section, we formally de�ne recursion schemes as grammars for simply typed

terms. This requires quite a lot a notation as we need to formalise all the notions

(such as type, application and evaluation) we had for free in Haskell. We start with

some necessary de�nitions about simply typed terms.

Simply typed terms

Types are generated by the grammar τ ∶∶= o ∣ τ → τ. Every type τ /= o can be

uniquely written as τ1 → (τ2 → ⋯(τn → o) . . .) where n ⩾ 0 and τ1, . . . , τn are

types. The number n is the arity of the type and is denoted by ρ(τ). To simplify the

notation, we take the convention that the arrow is associative to the right and we

write τ1 → ⋯→ τn → o (or (τ1, . . . , τn,o) to save space).

Intuitively, the base type o corresponds to base elements (such as Term in Haskell).

An arrow type τ1 → τ2 corresponds to a function taking an argument of type τ1 and

returning an element of type τ2. Even if there are no speci�c types for functions

taking more than one argument, those functions are represented in their curried

form. Indeed, a function taking two arguments of type o and returning a value of

type o, in its curried form, has the type o→ o→ o = o→ (o→ o).

The order measures the nesting of a type. Formally one de�nes ord(o) = 0

and ord(τ1 → τ2) = max(ord(τ1) + 1, ord(τ2)). Alternatively for any type τ =
(τ1, . . . , τn,o) of arity n > 0, the order of τ is the maximum of the orders of the

arguments plus one, i.e., ord(τ) = 1 + max{ord(τi) ∣ 1 ⩽ i ⩽ n}. For example, the

type o→ (o→ (o→ o)) as order 1 while the type ((o→ o) → o) → o has order 3.

Let X be a set of typed symbols. For every symbol f ∈ X, and every type τ, we write
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f ∶ τ to mean that f has type τ. The set of applicative terms of type τ generated from

X, denoted Termsτ(X), is de�ned by induction over the following rules. If f ∶ τ is

an element of X then f ∈ Termsτ(X); if s ∈ Termsτ1→τ2(X) and t ∈ Termsτ1(X) then

the applicative term obtained by applying t to s, denoted s t, belongs to Termsτ2(X).

For every applicative term t, and every type τ, we write t ∶ τ to mean that t is

an applicative term of type τ. By convention, the application is considered to be

left-associative, thus we write t1t2t3 instead of (t1t2)t3. For example, assuming that

f ∶ (o→ o) → o→ o, g ∶ o→ o and c ∶ o, we have g c ∶ o, f g ∶ o→ o, f g c = (f g) c ∶ o

and f (f g) c ∶ o.

The term M[t/x] obtained by replacing a variable x ∶ τ by a term t ∶ τ over A ∪N
in a term M over A ∪N ∪ V is de�ned by induction on M by taking ϕ[t/x] = ϕ for

ϕ ≠ x ∈ A ∪N ∪ V , x[t/x] = t and (t1 t2)[t/x] = t1[t/x] t2[t/x].
The set of argument subterms of t, denoted ASubs(t), only keeps those subterms

that appear as an argument. The set ASubs(t) is inductively de�ned by letting

ASubs(t1t2) = ASubs(t1) ∪ ASubs(t2) ∪ {t2} and ASubs(f) = ∅ for f ∈ X. In

particular if t = Ft1⋯tn, ASubs(t) = ∪ni=1(ASubs(ti)∪{ti}). The argument subterms

of f (f g) c ∶ o are f g , c and g.

Recursion schemes

For each type τ, we assume an in�nite set Vτ of variables of type τ, such that Vτ1
and Vτ2 are disjoint whenever τ1 /= τ2, and we write V for the union of those sets Vτ
as τ ranges over types. We use letters x,y,ϕ,ψ,χ,ξ, . . . to range over variables.

A (deterministic) recursion scheme is a 5-tuple S = (A,N,R,Z,�) where

• A is a ranked alphabet of terminals. A symbol f ∈ A of arity k is assigned the type

o→ ⋯→ o
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k times

→ o.

• � is a distinguished terminal symbol of arity 0 (and hence of ground type) that

does not appear in any production rule,

• N is a �nite set of typed non-terminals; we use upper-case letters F,G,H, . . . to

range over non-terminals,

• Z ∈ N is a distinguished initial symbol of type o which does not appear in any

right-hand side of a production rule,

• R is a �nite set of production rules, one for each non-terminal F ∶ (τ1,⋯, τn,o), of

the form

F x1⋯ xn → e

where the xi are distinct variables with xi ∶ τi for i ∈ [1,n] and e is a ground term

in Terms((A ∖ {�}) ∪ (N ∖ {Z}) ∪ {x1, . . . , xn}). Note that the expressions on

either side of the arrow are terms of ground type.

The order of a recursion scheme is de�ned to be the highest order of (the types of)

its non-terminals.

If we come back to the intuition provided in the introduction, the terminals in

A correspond to the functions in Term with � playing the same role as Void, the

non-terminals in N correspond to recursive functions, Z is the name of the main
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function and R is the code of the program, giving the de�nition of each recursive

function.

For example, let us recall below the Haskell recursion scheme comb_n computing

Combn.

comb_n :: Term
comb_n = comb_n' (B A)
comb_n' :: Term -> Term
comb_n' x = C x (comb_n' (B x))

The corresponding recursion scheme is:

Z → F (ba)
F x → c x (F (bx))

where the non-terminals Z ∶ o and F ∶ o→ o play the role of comb_n and comb_n’
and a ∶ o,b ∶ o → o and c ∶ o → o → o correspond to the constructors A,B and C of

Term. The order of this scheme is 1 as ord(Z) = 0 and ord(F) = 1.

Rewriting system associated to a recursion scheme

A recursion scheme S induces a rewriting relation, denoted →S, over Terms(A ∪
N). Informally, →S replaces any ground subterm F t1 . . . tρ(F) starting with a non-

terminal F by the right-hand side of the production rule F x1⋯ xn → e in which the

occurrences of the "formal parameter" xi are replaced by the actual parameter ti for

i ∈ [1,ρ(F)].
The rewriting system →S is de�ned by induction using the following rules:

• (Substitution) Ft1⋯tn →S e[t1/x1,⋯, tn/xn] where Fx1⋯xn → e is a production

rule of S.

• (Context) If t→S t
′

then (st) →S (st ′) and (ts) →S (t ′s).

The �gure below depicts the �rst rewriting steps of →S starting from the initial

symbol Z for our �rst scheme example.

Z →S F (ba) →S c

b

a

F (b (ba))

→S c

b

a

c

b

a

F (b (b (ba)))

→S

In general, the rewriting relation →S is non-deterministic because there might be

several possible independent locations to rewrite. However it can be proved to be

con�uent. That is to say that for all ground terms t,t1 and t2, if t→∗
S t1 and t→∗

S t2
(here→∗

S denotes the transitive closure of→S), then there exists t ′ such that t1 →∗
S t

′

and t2 →∗
S t

′
.
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Infinite term generated by a recursion scheme

Informally the value tree of (or the tree generated by) a recursion scheme S, denoted

[[S ]], is a (possibly in�nite) term, constructed from the terminals inA, that is obtained

as the limit of the set of all terms that can obtained by iterative rewriting from the

initial symbol Z. In the introduction, the
in�nite term was given
for free and we de�ned
its approximants in order
to inspect it. In the for-
mal setting, we start by
de�ning the set of its ap-
proximants and obtain the
in�nite term as its limit.

To formally de�ne this limit, we �rst introduce an operation associating with

every term t over A ∪N the term t� over A ∪ {�} by replacing all non-terminals

ground sub-terms by the terminal symbol �.

a� = a for a ∈ A, F� = � for F ∈ N and (st)� = { � if s� = �,

(s�t�) otherwise.

Terms built over A can be partially ordered by the approximation order ≼ de�ned

for all terms t and t ′ over A by t ≼ t ′ if t ′ is obtained from t by substituting

some occurrences of � by arbitrary terms over A. For instance, � ⩽ a(�,b(�)) ⩽
a(b(�),b(�)).

The set of terms over A together with ≼ form a directed complete partial order

(see Sec. 2.1.1). Furthermore if s →S t then s� ≼ t�. The con�uence of the relation

→S implies that the set {t� ∣ Z→∗
S t} is directed. Hence the value tree [[S ]] of S can

be de�ned as its supremum,

[[S ]] = sup{t� ∣ Z→∗
S t}.

We write RecTreen(A) for the class of value trees [[S ]], where S ranges over

order-n recursion schemes.

The computation of the value tree of our example is shown below and is a expected

the term Combn.

=sup � ,

c

b

a

� ,

c

b

a

c

b

b

a

�

,

c

b

a

c

b

b

a

c

Remark 3.1 If the scheme contains non-productive parts, it is possible that its value

tree contains the symbol �. For instance, consider the the scheme Z → Ac and

Ax → A(Ax)) with Z ∶ o, A ∶ o → o and c ∶ 0. The set {t ∣ Z →∗
S t} consists of all

terms of the form A(A(. . .A(
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n⩾2 times

c) . . .)). Hence the set {t� ∣ Z →∗
S t} is reduced to �

and the value tree is �.

3.2.2 Labelled recursion schemes

We now present labelled recursion schemes a formalism equivalent to recursion

schemes but which generate (in�nite) labelled transitions systems (i.e., a graph whose

edges are labelled by a �nite alphabet, see Sec. 2.3) instead of an in�nite term. Our
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main motivation to introduce this model was to the simplify the translation to �nite

state machines (such as pushdown automata, higher-order pushdown automata

and collapsible pushdown automata, ...). As a bonus, we can naturally use labelled

recursion schemes to generate trees, terms or language of words.

A deterministic labelled recursion scheme is a 5-tuple S = (Σ,N,R,Z,�) where

• Σ is a �nite set of labels containing two distinguished symbols � and λ,

• N is a �nite set of typed non-terminals,

• Z ∶ o ∈ N is a distinguished initial symbol which does not appear in any right-hand

side,

• R is a �nite set of production rules of the form

F x1⋯ xn
aÐ→ e

where a ∈ Σ ∖ {�}, F ∶ (τ1,⋯, τn,o) ∈ N, the xi are distinct variables, each xi is of

type τi, and e is a ground term over (N ∖ {Z}) ∪ {x1, . . . , xn}.

In addition, we require that there is at most one production rule starting with a

given non-terminal and labelled by a given symbol.We restrict here to deter-
ministic labelled schemes

to make the generated
objects easier to repre-
sent. However this re-
striction is not crucial
for most of our results.

The LTS (with silent transitions) associated with S has the set of ground terms

over N as domain, the initial symbol Z as root, and, for all a ∈ Σ ∖ {�}, the relation

aÐ→ is de�ned by

F t1⋯tρ(F)
aÐ→ e[t1/x1, . . . , tρ(F)/xρ(F)] if F x1⋯ xn

aÐ→ e is a production rule.

Tree of a labelled recursion scheme

We associate a tree with every deterministic LTS with silent transitions L, denoted

Tree(L), with directions in Σλ, re�ecting the possible behaviours of L starting from

the root. For this we let Tree(L) def= {w ∈ Σ∗λ ∣ ∃s ∈ D, r
wÔ⇒ s} where Σλ

def= Σ ∖ {λ}.

As L is deterministic, Tree(L) is obtained by unfolding the underlying graph of L

from its root and contracting all λ-transitions. Figure 3.2 presents an LTS with silent

transitions together with its associated tree Tree(L).

As illustrated in Fig 3.2, the tree Tree(L) does not re�ect the diverging behaviours

of L (i.e., the ability to perform an in�nite sequence of silent transitions). A more

informative tree can be de�ned in which diverging behaviours are indicated by a

�-child for some fresh symbol �. This tree, denoted Tree
�(L)De�ning the tree of a

rooted deterministic LTS
with silent transitions
as the λ-closure of the

unfolding of the LTS from
its root is rather standard.
However, the de�nition of
the Tree

� is non-standard.

, is de�ned by letting

Tree
�(L) def= Tree(L) ∪ {w� ∈ Σ∗λ� ∣ ∀n ⩾ 0, r wλ

n

Ô⇒ sn for some sn}.

The tree generated by a labelled recursion scheme S, denoted [[S ]], is the tree

Tree
�

of its associated LTS.

Term of a labelled recursion scheme

Recall that we de�ned in Sec. 2.2.2 in�nite terms over a ranked alphabet A as in�nite

tree over the set of directions

−→
A satisfying some local conditions. To use labelled

recursion schemes to generate in�nite terms over a ranked alphabet A, we use

−→
A



3.2 Recursion schemes and their properties 27

a

λ

b

λ

a b

ba

a

�

b

ba

�

Figure 3.2. An example of labelled transition system L (left) together with its trees

Tree(L) (center) and Tree
�(L) (right)

.

as set of labels and syntacticly enforce that the value tree represent a term over

A. For instance, it is enough to ask that for every non-terminal F ∈ N, either there

is a unique production starting with F which is labelled by λ, or there is a unique

production starting with F which is labelled by some symbol c of arity 0 and whose

right-hand side starts with a non-terminal that comes with no production rule in

the scheme, or there exists a symbol f ∈ A with ρ(f) > 0 such that the set of labels of

production rules starting with F is exactly

−→
f .

For example, if we want to de�ne a labelled recursion scheme equivalent to the

scheme in our running example, we introduce a non-terminal for each terminal with

the same type: C ∶ o→ o→ o for c, B ∶ o→ o for b, and A ∶ o for a. We also need to

add a non-terminal V ∶ o which will not appear in the left-hand side of a production

rule to stop the rewriting.

Z
λÐ→ F (BA) F x

c1Ð→ x F x
c2Ð→ F (Bx)

Bx
b1Ð→ x A

aÐ→ V

The LTS of this labelled recursion scheme is depicted below and its tree Tree
�

is

the term Combn.

Z F (BA) F (B (BA))

AV BA B (BA)

λ c2

c1 c1

b1b1a

This construction generalizes to show that recursion schemes and labelled recur-

sion schemes are equi-expressive for generating terms.

Proposition 3.2 ([52])
The recursion schemes and the labelled recursion schemes generate the same terms.

Moreover the translations are linear and preserves order and arity.

Language of a labelled recursion scheme

Given a language L over an alphabet Σ, we let Pref(L) denote the tree in Trees
∞(Σ)

containing all pre�xes of words in L.

A language L over Σ is generated One could argue that the
scheme generate the set of
pre�xes of the language
and not the language.
This could be remedied
by adding a fresh symbol
$ and considering the
language L ⋅ $.

by a labelled recursion scheme S if [[S ]] =
Pref(L).
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In this sense the labelled scheme generating Combn de�ned previously also gen-

erate the language {cn2 c1bn+11 a ∣ n ⩾ 1} over the alphabet {c1, c2,b1,a}.

We present here a more involved example due to Urzyczyn. This language played

an important role in demonstrating the restriction imposed by the safety constraint

which we discuss in the next section.

The language U is over the alphabet { (, ),⋆}. A word over { (, ) } is well bracketed
if it has as many opening brackets as closing brackets and if, for every pre�x, the

number of opening brackets is greater than the number of closing brackets.

The language U is de�ned as the set of words of the form w⋆n where w is a pre�x

of a well-bracketed word and n is equal to ∣w∣ − ∣u∣ + 1, where u is the longest su�x

of w that is well-bracketed. In other words, n equals 1 if w is well-bracketed, and

otherwise it is equal to the index of the last unmatched opening bracket plus one.

For instance, the words ()((()) ⋆ ⋆ ⋆ ⋆ and ()()()⋆ belong to U. The following

scheme SU generates the language U.

Z
λÐ→ G (HX) Fϕxy

(Ð→ F (Fϕx)y (Hy)
Gz

(Ð→ FGz (Hz) Fϕxy
)Ð→ ϕ (Hy)

Gz
⋆Ð→ X Fϕxy

⋆Ð→ x

Hu
⋆Ð→ u

with Z,X ∶ o, G,H ∶ o→ o and F ∶ (o→ o,o,o).

To better explain the inner workings of this scheme, let us introduce some syntactic

sugar. Similarly to what we have done in the introduction, we represent every natural

number by a ground term by letting 0 = X and, for all n ⩾ 0, n + 1 = Hn. With every

sequence [n1 . . .n`] of integers, we associate a term of type o→ o by letting [ ] = G
and [n1 . . .n` n`+1] = F [n1 . . .n`]n`+1. Finally we write ([n1 . . .n`],n) to denote

the ground term [n1 . . .n`]n.

The scheme can be revisited as follows:

Z
λÐ→ ([ ],1) ([ ],n + 1) ⋆Ð→ 0 ([n1 . . .n`],n)

⋆Ð→ n` n + 1
⋆Ð→ n

([n1 . . .n`],n)
(Ð→ ([n1 . . .n` n],n + 1)

([n1 . . .n`],n)
)Ð→ ([n1 . . .n`−1],n + 1)

Let w = w0 . . .w∣w∣−1 be a pre�x of a well-bracketed word. We have Z
wÔ⇒

([n1 . . .n` ], ∣w∣ + 1) where [n1 . . .n` ] is the sequence (in increasing order) of those

indices of unmatched opening brackets in w. In turn, ([n1 . . .n` ], ∣w∣) ⋆Ð→ n`
⋆n`Ð→ 0.

Hence, as expected, the number of ⋆ symbols is equal to 1 if w is well-bracketed (i.e.,

` = 0), and otherwise it is equal to the index of the last unmatched opening bracket

plus one.

3.2.3 Safe schemes

Safety is a syntactic restriction, implicit in Damm’s work [75], and made explicit by

Knapik et al. [99, 100]. Safety restricts the use of partial application. The formal

de�nition is rather technical as it is tailored to ensure that safe schemes can be

generated by higher-order pushdown automata. Here we present a more restrictive

but arguably simpler version that we called Damm-safety [52]. No generality is lost
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as every safe scheme in the sense of [99, 100] can be transformed into a Damm-safe

scheme of the same order and generating the same in�nite term [52].

The �rst requirement of Damm-safety is for the scheme to be homogeneous.
Homogeneity is a property of types. A type (τ1, . . . , τn,o) is homogeneous if

ord(τ1) ⩾ ⋯ ⩾ ord(τn) and the type τi is homogeneous for all i ∈ [1,n]. For

instance, the type (o → o,o) is homogeneous but not the type (o,o → o,o). A

scheme is homogeneous if the types of its non-terminals are homogeneous. Note

that all our examples are homogenous. In fact, homogeneity does not restrict the

expressivity of schemes. This was shown by Broadbent in his PhD thesis [22, Section

3.4] and more recently by Parys via a direct transformation on schemes [121].

A scheme is Damm-safe if it is homogenous and if every sub-term Xt1 . . . t`
appearing as an argument in some right-hand side is such that X ∶ (τ1, . . . , τn,o) and

ti ∶ τi for i ∈ [1, `] is such that ord(τ`) ≠ ord(τ`+1). In clearer terms, if we provide

one of the arguments of some order ` in a partial application then we have to provide

all the arguments of order ` (and all the arguments of order greater than ` because

of the homogeneity). We write SafeRecTermn(A) for the class of value terms [[S ]],
where S ranges over order-n (Damm)-safe recursion scheme.

All the example given so far are Damm-safe except for the scheme presented in

Sec. 3.2.2 which is unsafe. It is natural to wonder if safety is a restriction as far the

in�nite trees generated are considered. Parys showed that the language U (presented

in Sec. 3.2.2) de�ned by an unsafe labelled scheme of order 2 cannot be de�ned by a

safe labelled scheme of any order [123].

The trees of safe recursion schemes admit a very nice characterization in terms

of graph transformations. As we will see in Section 3.5 this characterization is a

very powerful tool which makes safe recursion schemes much easier to handle than

unsafe schemes.

In Caucal [60], Caucal proposed to construct (edge-labelled) in�nite graphs There are no di�erences
between edge-labelled
graphs and LTSs and we
use both terminology
interchangeably depending
on the context.

with

decidable MSO-theories using two operations that preserve the decidability of this

logic : unfolding and MSO-interpretations (see Sec.2.5). Caucal de�ne this hierarchy

using rational-inverse mappings instead of MSO-interpretations. Rational inverse

mappings are a sub-class of MSO-interpretations and we proved in [59] that both

de�nitions coincide. This lead him to introduce a hierarchy of classes of trees and

graphs that bear his name. This hierarchy is composed a hierarchy of classes of (in�-

nite) graphs (Graphn)n⩾0 and a hierarchy of classes of (in�nite) trees (Treen)n⩾0.
At the �rst level, Tree0 is the class of all �nite trees, the rest of the hierarchy is

de�ned as follows:

Treen+1 = [{Unf(G, s) ∣ G ∈ Graphn and s a vertex of G}]
Graphn+1 = [{I(T) ∣ T ∈ Treen+1 and I an MSO-interpretation}]

where [X] denotes the class of graphs isomorphic to a graph in X.

As all �nite tree have a decidable MSO-theory, all in�nite graphs and trees To apply, Thm 2.5 unfold-
ings should be restricted to
start from MSO-de�nable
vertices but it can be
shown that the two def-
initions lead to the same
hierarchy [59].

in this

hierarchy have a decidable MSO-theory.

Following the work of Knapik et al. [100], Caucal showed that deterministic trees

in this hiearchy are precisely the trees generated by safe recursion schemes.

Theorem 3.3 ([62, 32])
For all n ⩾ 1, the deterministic trees in Treen are the trees generated by safe

recursion schemes of order n − 1.
It easily follows that this hierarchy contains precisely those graphs that can be
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de�ned in MSO logic in a safe term.

Corollary 3.4 ([59])
For alln ⩾ 1, the graphs in Graphn are the graphs MSO-de�nable in a term generated

by a safe recursion scheme of order n−1.

We illustrate Thm. 3.3 by constructing the term Combn in the Caucal hierarchy

in Fig. 3.3.

Graph0

c1

c2

Tree1

c2 c2 c2 c2

c1 c1 c1 c1 c1

Graph1

c2 c2

c1 c1 c1

b1a b1 b1

Tree2

c2 c2

c1 c1 c1

b1 b1 b1

a b1 b1

a b1

a

Unf

I

Unf

Figure 3.3. A construction of the term Combn in the Caucal hierarchy. The MSO-

interpretation I remove the �rst two vertices source of a c2-edge and otherwise

leave the c1-edges and c2-edges unchanged. In addition, it adds b1-edge between

two consecutive vertices that are the target of a c1-edge except for the �rst two

where it adds an a-edge.

3.2.4 Decidability of MSO logic on recursion schemes

Since Ong’s original proof of the decidability of the MSO-theory of terms generated

by recursion schemes, there have been several alternative proofs of this result. In

this section, we give a brief overview of the history of the result and of the di�erent

proof technics that have emerged since.

It is important to note that all the known proofs �rst translate the MSO-formula

into an equivalent parity tree automaton. This translation is non-elementary already

for �nite words [137]. Hence all complexity results are given for the µ-calculus a logic

which equivalent to MSO logic on (deterministic) trees but with a linear translation

to alternating parity tree automata (see Section 2.4).

As we mentioned before, decidability of MSO was �rst proved in [99] for safe

recursion schemes. They proceed by showing that safe recursion schemes can be

generated by higher-order pushdown automata, an extension of pushdown automata

with nested stack of stacks. The complexity of µ-calculus model-checking against
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terms de�ned by safe schemes of order k was shown to be k-EXPTIME-complete by

Cachat [31].

Decidability was then extended to order-2 unsafe schemes independently in [101]

and [4]. Both proofs use a translation to what is now known as collapsible pushdown

automata of order 2.

In 2006, Ong showed the decidability of MSO for arbitrary recursion schemes

[118]. This result was obtained using tools from innocent game semantics (in the

sense of Hyland and Ong [96]) and does not rely on an equivalent automata model

for generating trees.

Theorem 3.5 ([118])
The MSO-theory of every term de�ned by a recursion scheme is decidable. Moreover

given a recursion scheme S of order k and a µ-calculus formula ϕ, the problem of

deciding if ϕ holds at the root of [[S ]] is k-EXPTIME-complete.

In [92, 93], Hague et al. provided an alternative proof by extending the equi-

expressiveness with collapsible pushdown automata to all orders. In particular,

they provide a translation of a scheme of order k into an equivalent collapsible

pushdown automaton of the same order. This translation is based on traversals
which give a very rich view of how a recursion scheme is evaluated [117]. This

transformation reduces the initial problem to solving a parity game played on the

LTS of a collapsible pushdown automata. To solve these games, they extended

the techniques of Walukiewicz for pushdown games [144] and of [101] for order 2

collapsible pushdown automata.

Some years later, following initial ideas by Aehlig [3] and Kobayashi [103], Kobaya-

shi and Ong [105] gave another proof of the decidability of MSO. The proof consists

in showing that one can associate, with any scheme and formula, a typing system

(based on intersection types) such that the scheme is typable in this system if and

only if the formula holds. Typability is then reduced to solving a parity game.

As the λ-calculus is a model for functional programming, recursion schemes

naturally correspond to the simply typed λ-calculus enriched with a �xpoint operator

Yα→α for each type α. This calculus is called the λY-calculus. This connection has

proved very fruitfull.

Using the λY-calculus and Krivine Machines, Salvati and Walukiewicz proposed

an alternative approach for the decidability of MSO [128].

As schemes can be seen as λY-terms, it is natural to wonder if the decidability of

MSO can be reduced to a computation on a �nite domain. For a �xed domain D, a

�nitary model of the λY-calculus gives a meaning for each terminal symbol of arity

k as a function in Dk → D and a meaning for the �xpoint operator Y on functions

based on D. In this model each λY-term of type τ de�nes a function of type τ on D.

In particular, terms of ground type compute a value in D. Given an MSO-formula

ϕ, it is possible to construct a �nitary model Mϕ of the λY-calculus such that for

every ground λY-term S de�ning a term t, one can decide if t satis�es ϕ only based

on value of S in Mϕ.

Under our joint-supervision with Olivier Serre, Haddad gave a �rst construction

[91] in this spirit (based on [105]) which however works at the level of schemes and

does not give an interpretation for the �xpoint operator. Two di�erent constructions

for a proper �nitary model for MSO logic have independently be given by Grellois

and Mélliès [88] on one side, and Salvati and Walukiewicz [127] on the other side.
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The construction of Salvati and Walukiewicz was recently improved in Walukiewciz

[142]. For more informations, we refer the reader to [87].

In [104], Kobayashi et al. have shown that the model-checking problem for the

µ-calculus on recursion schemes is inter-reducible to the model-checking problem

for higher-order modal �xpoint logic (HFL for short), an extension of the modal

µ-calculus with �xpoint on higher-order functions [140]. As the model-checking of

HFL is decidable, this provides another proof of Ong’s result.

Recently, Parys improved Ong’s result by considering an extension of MSO with

an unboundedness quanti�er U. The formula UX,ϕ(X) expresses that there are

�nite set of arbitrarily large size satisfying ϕ. Parys established the decidability of

MSO+U
�n

on recursion schemes [121].

3.3 Synthesis of recursion schemes via automata

One of our main contribution is moving from deciding properties on recursion

schemes to synthesizing recursion schemes satisfying some properties. We have

shown decidability of two synthesis problems for recursion schemes: the marking by

properties expressed in MSO logic and the e�ective selection of properties expressed

in MSO logic.

For the marking problem, we are given a recursion scheme S generating an in�nite

term t and an MSO formula ϕ(x) with one free �rst-order variable x and we are

asked to compute a new scheme Sϕ generating the in�nite term t in which the set

of nodes satisfying ϕ(x) is marked.

We need to precise what we mean by marking a term with a set of nodes. To mark

a term over the ranked alphabet Σ, we introduced a new ranked alphabet Σ which

contains for each symbol f ∈ Σ of arity k, two symbols f and f of arity k. Intuitively,

we use f instead of f when we want to mark the corresponding node.

For an in�nite term t over the ranked alphabet Σ and a set U of nodes of t, the

in�nite term tU obtained by marking in t the nodes is U is the unique in�nite term

over Σ such that:

• the term π(tU) obtained by erasing the marks (i.e., π is the morphism de�ned by

π(f) = π(f) = f for all symbol f ∈ Σ) is equal to t,

• a node u of tU is labelled by a symbol of the form f for some f if and only if u

belongs to U.

For an MSO-formula ϕ(x) and a term t, we denote by tϕ the term t marked by the

set of nodes satisfying ϕ(x).

The term Combn with its nodes labelled by b which are at an even distance of the

leaf marked is depicted below:

c

b

a

c

b

b

a

c

b c

b

b

a
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Problem 3.6 (MSO-marking problem for recursion schemes)
Given a recursion scheme S generating a tree t and an MSO-formulaϕ(x), construct

a recursion scheme S ′ of the same order generating tϕ.

The e�ective selection problem for recursion schemes is more general as it asks to

mark a set satisfying a formula ϕ(X) (if such a set exists).

Problem 3.7 (E�ective selection problem for recursion schemes)
Given a recursion scheme S generating a tree t and an MSO-formula ϕ(X) such

that t ⊧ ∃X,ϕ(X) construct a recursion scheme S ′ generating tU for some set U

such that t ⊧ ϕ[U].

The e�ective selection problem subsumes the MSO-marking problem for a formula

ψ(x) by considering the formula ϕ(X) = ∀x, x ∈ X⇔ ψ(x). It might be tempting to

think that a reduction in the other direction is also possible. One might (wrongly)

assume that if the term generated by a recursion scheme satis�es a formula ∃X,ϕ(X)
then there exists a set U MSO-de�nable in t such that t ⊧ ϕ[U]. However in

Section 4.1, we present a term generated by a safe recursion scheme of order 3 and a

formula ϕ for which this property fails.

We have shown that these two synthesis problems are decidable using the equi-

expressivity between recursive schemes and collapsible pushdown automata. In

Section 3.3.1, we present collapsible pushdown automata. In Section 3.3.2, we present

a simpli�ed translation of a (labelled) recursion scheme into an equivalent collapsible

pushdown automaton [54]. In Section 3.3.3, we present the decidability of the MSO-

marking problem. Finally in Section ??, we present a stronger result namely the

decidability of the e�ective selection problem for the MSO logic.

3.3.1 Collapsible pushdown automata

We �rst present the model of higher-order pushdown automaton which is an exten-

sion of the standard model of pushdown automaton with nested stacks of stacks.

Then we introduce collapsible pushdown automata which again extend this model

with links that are attached to symbol and refer to a position further down in the

higher-order stack.

Higher-order stacks and their operations

Higher-order pushdown automata were introduced by Maslov [109] as a generalisa-

tion of pushdown automata. First, recall that a (order-1) pushdown automaton is a

machine with a �nite control together with an auxiliary storage given by a (order-1)

stack whose symbols are taken from a �nite alphabet. A higher-order pushdown

automaton is de�ned in a similar way, except that it uses a higher-order stack as

auxiliary storage. Intuitively, an order-n stack is a stack whose base symbols are

order-(n − 1) stacks, with the convention that order-1 stacks are just stacks in the

classical sense.

Fix a �nite stack alphabet Γ and a distinguished bottom-of-stack symbol � ∉ Γ . An

order-1 stack is a sequence �,a1, . . . ,a` ∈ �Γ∗ which is denoted [�a1⋯a`]1. An

order-k stack (or a k-stack), for k > 1, is a non-empty sequence s1, . . . , s` of order-

(k−1) stacks which is written [s1⋯s`]k. For convenience, we may sometimes see

an element a ∈ Γ as an order-0 stack, denoted [a]0. We let Stacksk denote the set of
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all order-k stacks and Stacks = ⋃k⩾1 Stacksk the set of all higher-order stacks. The

height of the stack s denoted ∣ s ∣ is simply the length of the sequence. We denote by

ord(s) the order of the stack s.

For instance, the stack

s = [[[�baac]1[�bb]1[�bcc]1[�cba]1]2[[�baa]1[�bc]1[�bab]1]2]3
is an order-3 stack of height 2.

A substack of an order-1 stack [�a1⋯ah]1 is a stack of the form [�a1⋯ah ′]1 for

some 0 ⩽ h ′ ⩽ h. A substack of an order-k stack [s1 . . . sh]k, for k > 1, is either a

stack of the form [s1 . . . sh ′]k with 0<h ′ ⩽ h or a stack of the form [s1 . . . sh ′ s
′]k

with 0 ⩽ h ′ ⩽ h− 1 and s ′ a substack of sh ′+1. We denote by s ⊑ s ′ the fact that s is a

substack of s ′.

In addition to the operations push
a
1 and pop1 that respectively pushes and pops

a symbol in the topmost order-1 stack, one needs extra operations to deal with the

higher-order stacks: the popk operation removes the topmost order-k stack, while

the pushk duplicates it.

For an order-n stack s = [s1⋯s`]n and an order-k stack t with 0 ⩽ k < n, we

de�ne s ++ t as the order-n stack obtained by pushing t on top of s:

s ++ t = { [s1⋯s` t]n if k = n − 1,
[s1⋯(s` ++ t)]n otherwise.

We �rst de�ne the (partial) operations popi and topi with i ⩾ 1: topi(s) returns

the top most (i − 1)-stack of s, and popi(s) returns s with its top most (i − 1)-stack

removed. Formally, for an order-n stack [s1⋯s`+1]n with ` ⩾ 0

topi([s1⋯s`+1]n) = { s`+1 if i = n,

topi(s`+1) if i < n.

popi([s1⋯s`+1]n) = { [s1⋯s`]n if i = n and ` ⩾ 1,
[s1⋯s` popi(s`+1)]n if i < n.

By abuse of notation, we let top
ord(s)+1(s) = s. Note that popi(s) is de�ned if and

only if the height of topi+1(s) is strictly greater than 1. For example, pop2([[�ab]1]2)
is unde�ned.

We now introduce the operations pushi with i ⩾ 2 that duplicates the top most

(i− 1)-stack of a given stack. More precisely, for an order-n stack s and for 2 ⩽ i ⩽ n,

we let pushi(s) = s ++ topi(s).

The last operation, push
a
1 pushes the symbol a ∈ Γ on top of the top most 1-stack.

More precisely, for an order-n stack s and for a symbol a ∈ Γ , we let push
a
1(s) =

s ++[a]0.

For instance, the stack

s = [[[�baac]1[�bb]1[�bcc]1[�cba]1]2[[�baa]1[�bc]1[�bab]1]2]3
we have:

top3(s) = [[�baa]1[�bc]1[�bab]1]2,

pop3(s) = [[[�baac]1[�bb]1[�bcc]1[�cba]1]2]3.

Note that pop3(pop3(s)) is unde�ned.

We also have that

push2(pop3(s)) = [[[�baac]1[�bb]1[�bcc]1[�cba]1[�cba]1]2]3,

push
c
1(pop3(s)) = [[[�baac]1[�bb]1[�bcc]1[�cbac]1]2]3.
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Stacks with links and their operations

We de�ne a richer structure of higher-order stacks where we allow links. Intuitively,

a stack with links is a higher-order stack in which any symbol may have a link that

points to an internal stack below it. This link may be used later to collapse part of

the stack.

Order-n stacks with links are order-n stacks with a richer stack alphabet. Indeed,

each symbol in the stack can be either an element a ∈ Γ (i.e., not being the source

of a link) or an element (a, `,h) ∈ Γ × {2,⋯,n} × N (i.e., being the source of a link

pointing to the h-th (` − 1)-stack inside the topmost `-stack).

Formally, order-n stacks with links over the alphabet Γ are de�ned as order-n

stacks over the alphabet Γ ∪ Γ × {2,⋯,n} ×N.

The stack s equals to

[[[�baac]1[�bb]1[�bc(c, 2, 2)]1]2[[�baa]1[�bc]1[�b(a, 2, 1)(b, 3, 1)]1]2]3
is an order-3 stack with links.

To improve readability when displaying n-stacks in examples, we shall explicitly

draw the links rather than using stacks symbols in Γ × {2,⋯,n} × N. For instance,

we shall rather represent s as follows:

[[[⊥baac]1[⊥bb]1[⊥bcc]1]2[[⊥baa]1[⊥bc]1[⊥bab]1]2]3

In addition to the previous operations popi, pushi and push
a
1 , we introduce two

extra operations: one to create links, and the other to collapse the stack by following

a link.

Link creation is made when pushing a new stack symbol, and the target of an `-link

is always the (` − 1)-stack below the topmost one. Formally, we de�ne push
a,`
1 (s) =

push
(a,`,h)

1 where we let h = ∣top`(s)∣ − 1 and require that h > 1.
The collapse operation is de�ned only when the topmost symbol is the source of

an `-link, and results in truncating the topmost ` stack to only keep the component

below the target of the link. Formally, if top1(s) = (a, `,h) and s = s ′ ++[t1⋯tk]`
with k > h we let collapse(s) = s ′ ++[t1⋯th]`.

For any n, we let Opn(Γ) denote the set of all operations over order-n stacks with

links.

Take the 3-stack s = [[[�a]1]2 [[�]1[�a]1]2]3. We have

pushb,21 (s) = [[[⊥ a]1]2 [[⊥]1[⊥ a b]1]2]3
collapse (pushb,21 (s)) = [[[⊥ a]1]2 [[⊥]1]2]3

θ = pushc,31 (pushb,21 (s)) = [[[⊥ a]1]2 [[⊥]1[⊥ a b c]1]2]3.

Then push2(θ) and push3(θ) are respectively

[[[⊥ a]1]2 [[⊥]1[⊥ a b c]1[⊥ a b c]1]2]3 and

[[[⊥ a]1]2 [[⊥]1[⊥ a b c]1]2 [[⊥]1[⊥ a b c]1]2]3.

We have collapse (push2(θ)) = collapse (push3(θ)) = collapse(θ) = [[[�a]1]2]3.
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Higher-order pushdown automata and collapsible pushdown automata

An order-n (deterministic) collapsible pushdown automaton (n-CPDA) is a 5-tuple

A = (Σ, Γ ,Q, δ,q0) where Σ is an input alphabet containing a distinguished symbol

denoted λ, the set Γ is a stack alphabet, Q is a �nite set of control states, q0 ∈ Q is

the initial state, and δ ∶ Q × Γ × Σ → Q ×Opn(Γ) is a (partial) transition function

such that, for all q ∈ Q and γ ∈ Γ , if δ(q,γ,λ) is de�ned then for all a ≠ λ, the value

δ(q,γ,a) is unde�ned, i.e., if some λ-transition can be taken, then no other transition

is possible. We require δ to respect the convention that � cannot be pushed onto or

popped from the stack.

In the special case where (p, collapse) ∉ δ(q,γ,a) for all p,q ∈ Q, γ ∈ Γ and a ∈ Σ,

A is called a higher-order pushdown automaton (HPDA for short).

Let A = (Σ, Γ ,Q, δ,q0) be an n-CPDA. A con�guration of A is a pair of the form

(q, s) where q ∈ Q and s is an n-stack with link over Γ ; we let Con�g(A) denote the

set of con�gurations of A and we call (q0, [[⋯[�]1⋯]n−1]n) the initial con�guration.

It is then natural to associate with A a deterministic LTS denoted LA = (D, r,Σ, ( aÐ→
)a∈Σ) and de�ned as follows. We letD be the set of all con�gurations ofA and r be the

initial one. Then, for all a ∈ Σ and all (q, s), (q ′, s ′) ∈ D we have (q, s) aÐ→ (q ′, s ′)
if and only if δ(q, top1(s),a) = (q ′,op) and s ′ = op(s).

The tree generated by an n-CPDA A, denoted Tree
�(A), is the tree Tree

�(LA) of

its LTS.

3.3.2 Equivalence with recursion schemes

The equi-expressiveness between recursion schemes and collapsible pushdown au-

tomata was �rst proved in [92]. These translations generalize at all orders the order-2

translations from [101].

Theorem 3.8 ([92, 93])
For every collapsible pushdown automaton A, there exists a recursion scheme of

the same order S and of polynomial size such that Tree
�(A) = Tree

�(S).

For every recursion scheme S, there exists a collapsible pushdown automaton A

of the same order and of polynomial size such that Tree
�(S) = Tree

�(A).

In [92], the translation from collapsible to recursion scheme is quite syntactical.

However the converse translation is more involved using notions of game semantics

to prove its correctness. In [52, 54], we simpli�ed the proof of this translation.

The translation from [92] assumes a normal form for the schemes but up to these

normalisations, but apart from this restriction, the CPDA obtained is essentially the

same. Our contributions are to work direclty on schemes without normalisation and

more importantly to prove the correctness of the translations without using game

semantics as an intermediary tool. Independently in [129], Salvati and Walukiewicz

also obtained a simpli�ed proof of this translation using Krivine machines.

More precisely, we construct, for any labelled recursion scheme S, a collapsi-

ble pushdown automaton C of the same order de�ning the same tree as S – i.e.,

Tree
�(S) = Tree

�(C). For the rest of this section, we �x a labelled recursion scheme

(Σ,N,R,Z,�) of order n ⩾ 1 without silent transitionsIf silent λ-transitions are
present, we simply re-

name to a fresh temporary
symbol and replace this
temporary symbol by a
λ in the resulting CPDA.

. .

The automatonC has a distinguished state, denoted q⋆, and with the con�gurations

of the form (q⋆, s) we will associate a ground term over N denoted by [[ s ]].
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Other con�gurations correspond to internal steps of the simulation and are only

the source of silent transitions. To show that the two LTS de�ne the same trees, we

will establish that, for any reachable con�guration of the form (q⋆, s) and for any

a ∈ Σ, the following holds:

• if (q⋆, s) aλ
∗

Ð→
C

(q⋆, s ′) then [[ s ]] aÐ→
S

[[ s ′ ]];

• if [[ s ]] aÐ→
S
t then (q⋆, s) aλ

∗

Ð→
C

(q⋆, s ′) and [[ s ′ ]] = t.

Hence, the main ingredient of the construction is the partial mapping [[ ⋅ ]] as-

sociating with any order-n stack a ground term over N. The main di�culty is to

guarantee that any rewriting rule of S applicable to the encoded term [[ s ]] can be

simulated by applying a sequence of stack operations to s. Throughout this sec-

tion, we will illustrate de�nitions and constructions using as a running example the

order-2 scheme SU de�ned on page 27.

Representing terms as stacks

To simplify the presentation we assume, without loss of generality, that all produc-

tions starting with a non-terminal A have the same left-hand side (i.e., they use the

same variables in the same order) and that two productions starting with di�erent

non-terminals do not share any variables. Hence a variable x ∈ V appears in a unique

left-hand side Ax1 . . . , xρ(A) and we denote by rk(x) the index of x in the sequence

x1⋯xρ(A) (i.e., x = x
rk(x)).

The stack alphabet Γ consists of the initial symbol and of the right-hand sides of

the rules in R and their argument subterms, i.e., Γ
def= {Z} ∪ ⋃

Fx1⋯xρ(x)
a
Ð→ e

{ e} ∪
ASubs(e).

For the scheme SU de�ned on page 27 (that we recall here for convinience),

Z
λÐ→ G (HX) Fϕxy

(Ð→ F (Fϕx)y (Hy)
Gz

(Ð→ FGz (Hz) Fϕxy
)Ð→ ϕ (Hy)

Gz
⋆Ð→ X Fϕxy

⋆Ð→ x

Hu
⋆Ð→ u

with Z,X ∶ o, G,H ∶ o→ o and F ∶ (o→ o,o,o), we gets the alphabet:

Γ = {x,y, z,u,ϕ,Z}
∪{G (HX) , HX , X , F (Fϕx)y (Hy) , Fϕx , Hy , FGz (Hz) , G , Hz , ϕ (Hy)}

For ϕ ∈ V ∪N, a ϕ-stack designates a stack whose top symbol starts with ϕ. By

extension a stack s is said to be an N-stack (resp. a V-stack) if it is a ϕ-stack for some

ϕ ∈ N (resp. ϕ ∈ V).

In order to represent a term in Terms(N), a stack over Γ must be well-formed, i.e.,

it must satisfy some syntactic conditions.

De�nition 3.9 (Well-formed stack)
A non-empty stack of order-n over Γ is well-formed if every non-empty substack r

of s satis�es the following two conditions:
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• if top1(r) is not equal to Z nor to � then pop1(r) is an A-stack for some A ∈ N
and top1(r) belongs to an A-production rule,

• if top1(r) is of type τ of order k > 0 then top1(r) is the source of an (n−k+1)-link

and collapse(r) is a ϕ-stack for some variable ϕ ∈ V of type τ.

We denote by WStacks the set of all well-formed stacks.

Example 3.10
For the scheme SU, the following order-2 stacks are well-formed.

Z

G (HX)
FGz (Hz)

F (Fϕx)y (Hy)
ϕ (Hy)

s1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Z

G (HX)
FGz (Hz)

F (Fϕx)y (Hy)
ϕ (Hy)

Z

G (HX)
FGz (Hz)
Fϕx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
s2

Z

G (HX)
FGz (Hz)

F (Fϕx)y (Hy)
ϕ (Hy)

Z

G (HX)
FGz (Hz)
Fϕx

F (Fϕx)y (Hy)
y

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
s3

We write s ∶∶ t for s ∈ WStacks and t ∈ Γ to mean that if t belongs to the r.h.s. of

a production starting with A ∈ N then s is an A-stack. In particular, if s ∈ WStacks

then pop1(s) ∶∶ top1(s). We denote by CStacks the set of such s ∶∶ t.
In De�nition 3.12, we will associate, with any well-formed stack s, a ground term

over N that we refer to as the value of s. To de�ne this value, we �rst associate, with

any element s ∶∶ t in CStacks, a value denoted [[ s ∶∶ t ]]. This value is a term over N

of the same type as t. Intuitively, it is obtained by replacing the variables appearing

in the term t by values encoded in the stack s, and one should therefore understand

[[ s ∶∶ t ]] as the value of the term t in the context (or environment) of s.

De�nition 3.11 (The value of s ∶∶ t)
For all s ∶∶ t ∈ CStacks, we de�ne the value of t in the context of s:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[[ s ∶∶ t1t2 ]] = [[ s ∶∶ t1 ]][[ s ∶∶ t2 ]] if t1, t2 ∈ Γ
[[ s ∶∶ A ]] = A if A ∈ N
[[ s ∶∶ x ]] = [[Arg

rk(x)(s) ]] if x ∈ V

where for a stack s with top symbol ϕt1⋯t` with ϕ ∈ V ∪ N and k ∈ [1,ρ(ϕ)],
Argk(s) is de�ned by:

{ Argk(s) = pop1(s) ∶∶ tk if k ⩽ `,
Argk(s) = Argk−`(collapse(s)) otherwise.

Let us provide some intuitions regarding the de�nition of [[ s ∶∶ t ]]. Unsurprisingly

[[ s ∶∶ t ]] is de�ned by structural induction on t, and the cases for the application and

the non-terminal symbols are straightforward. It remains to consider the case where

t is a variable x appearing in rk(x)-th position in the left-hand side Ax1⋯xρ(A). As

s ∶∶ t ∈ CStacks, top1(s) is of the form At1 . . . t` for some ` ⩽ ρ(A). Note that ` is

not necessarily equal to ρ(A) meaning that some arguments of A might be missing.

There are now two cases — that correspond to the two cases in the de�nition of

Argk(s) — depending on whether x references to one of the ti’s (i.e., rk(x) ⩽ `) or

one of the missing arguments (i.e., rk(x) > `):
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• If rk(x) ⩽ ` then the term associated with x in s is equal to the term associated

with t
rk(x) in pop1(s), i.e., [[ s ∶∶ x ]] = [[pop1(s) ∶∶ trk(x) ]].

• If rk(x) > ` then the term [[ s ∶∶ x ]] is obtained by following the link attached to

top1(s). Recall that, as s is a well-formed stack and top1(s) is not of ground type

(as ` < ρ(A)), there exists a link attached to top1(s). Moreover, collapse(s), the

stack obtained by following the link, has a top-symbol of the form ϕt ′1 . . . t ′m for

some ϕ ∈ V and m ⩾ 0. Intuitively, t ′i corresponds to the (` + i)-th argument of

A. If rk(x) belongs to [` + 1, ` +m] then the term [[ s ∶∶ x ]] is de�ned to be the

term [[pop1(collapse(s)) ∶∶ t ′
rk(x)−`

]]. If rk(x) is greater than ` +m then the link

attached to the top symbol of collapse(s) is followed and the process is reiterated.

As the size of the stack strictly decreases at each step this process terminates.

Now, if s is a well-formed ϕ-stack, its value is obtained by applying the value of

ϕ in the context of pop1(s) to the value of all its ρ(ϕ) arguments. This leads to the

following formal de�nition.

De�nition 3.12 (The value of a well-formed stack)
The term associated with a well-formed ϕ-stack s ∈ Stacks with ϕ ∈ N ∪ V is

[[ s ]] def= [[pop1(s) ∶∶ ϕ ]][[Arg1(s) ]]⋯[[Argρ(ϕ)(s) ]].

Let us consider the well-formed stacks s2 and s3 presented in Example 3.10. In

the representation below the association between variables and their "values" are

made explicit by the red arrows.

Z

G (HX)
FGz (Hz)

F (Fϕx)y (Hy)
ϕ (Hy)

Z

G (HX)
FGz (Hz)
Fϕx

s2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Z

G (HX)
FGz (Hz)

F (Fϕx)y (Hy)
ϕ (Hy)

Z

G (HX)
FGz (Hz)
Fϕx

F (Fϕx)y (Hy)
y

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
s3

[[ s1 ]] = [[ s2 ]] = FG (HX) (H(H(H(HX))))
[[ s3 ]] = H(H(H(H(HX)))

Simulating the LTS of S on Stacks

As an intermediate step, we de�ne an LTSM over well-formed stacks and we prove

that it generates the same tree as S (i.e. Tree
�(M) = Tree

�(S)). From M, a CPDA

generating Tree
�(M) is then de�ned at the end of this section.

We let M = (WStacks, [. . . [ �Z ] . . .]n,Σ, ( aÐ→
M

)a∈Σ) and de�ne the transitions as

follows

• s
aÐ→
M

push
t
1(s) if s is an A-stack with A ∈ N and Ax1⋯xρ(A)

aÐ→ t ∈ R,

• s
λÐ→
M

push
t
1(r) if s is a ϕ-stack with ϕ ∶ o ∈ V

and Arg
rk(ϕ)(pop1(s)) = r ∶∶ t,
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• s
λÐ→
M

push
t,n−k+1
1 (r) if s is a ϕ-stack with ϕ ∶ τ ∈ V of order k > 0 and

Arg
rk(ϕ)(pop1(pushn−k+1(s))) = r ∶∶ t.

In the �gure below, we illustrate the de�nition of M on the scheme SU.

Z
λ

Z

G (HX) (
Z

G (HX)
FGz(Hz)

(
Z

G (HX)
FGz(Hz)

F(Fϕx)y(Hy)

)
Z

G (HX)
FGz(Hz)

F(Fϕx)y(Hy)
ϕ (Hy)

λ
Z

G (HX)
FGz(Hz)

F(Fϕx)y(Hy)
ϕ (Hy)

Z

G (HX)
FGz(Hz)
Fϕx

⋆
Z

G (HX)
FGz(Hz)

F(Fϕx)y(Hy)
ϕ (Hy)

Z

G (HX)
FGz(Hz)
Fϕx

x

λ
Z

G (HX)
FGz(Hz)

F(Fϕx)y(Hy)
ϕ (Hy)

Z

G (HX)
FGz(Hz)

x

λ
Z

G (HX)
FGz(Hz)

F(Fϕx)y(Hy)
ϕ (Hy)

Z

G (HX)
z

λ
Z

G (HX)
FGz(Hz)

F(Fϕx)y(Hy)
ϕ (Hy)

Z

HX ⋆
Z

G (HX)
FGz(Hz)

F(Fϕx)y(Hy)
ϕ (Hy)

Z

HX

u

λ
Z

G (HX)
FGz(Hz)

F(Fϕx)y(Hy)
ϕ (Hy)

Z

X

The �rst line of the de�nition of Ð→
M

corresponds to the case of an N-stack. To

simulate the application of a production rule Ax1⋯xn
aÐ→ e on the term encoded

by an A-stack s, we simply push the right-hand side e of the production on top of s.

The correctness of this rule directly follows from the de�nition of [[ ⋅ ]]. Doing so, a

term starting with a variable may be pushed on top of the stack, e.g., when applying

the production rule Fϕxy
)Ð→ ϕ (Hy). Indeed, we need to retrieve the value of

the head variable in order to simulate the next transition of S: the second and third

lines of the de�nition are normalisation rules that aim at replacing the variable at

the head of the top of the stack by its de�nition (hence not changing the value of

the associated term). By iterative application, we eventually end up with an N-stack

encoding the same term and we can apply again the �rst rule.

Proposition 3.13
Tree

�(S) = Tree
�(M).

From the LTS M, the construction of a collapsible pushdown automaton C is

straightforward. The states of C are only used to keep track of the position of the

argument when computing Arg
rk(ϕ)(⋅).

If the scheme we started from is safe, we proved in [52] that the links in the stack

are not necessary: the collapse operation on a link of order ` applied to stack s always

result in the stack pop`(s). This is not surprising as safe recursion schemes are know

to be equi-expressive with higher-order pushdown automaton.

Theorem 3.14 ([101])
For every higher-order pushdown automaton A, there exists a safe recursion scheme

of the same order S and of polynomial size such that Tree
�(A) = Tree

�(S).

For every safe recursion scheme S, there exists a higher-order pushdown automa-

ton A of the same order and of polynomial size such that Tree
�(S) = Tree

�(A).
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3.3.3 MSO-marking problem for recursion schemes

In this section, we give an overview of the decidability of the MSO-marking problem

for recursion scheme. In the safe case, this was �rst proved using graph transfor-

mations in [59]. For unsafe schemes, this results was �rst proof in [26] using the

equivalence with collapsible pushdown automata. Since then, several alternative

proofs have been given [129, 91, 88].

As we remarked in [26], the MSO-marking problem reduces to the marking prob-

lem for the µ-calculus As we already mentioned,
in general, not all MSO-
de�nable sets are de�nable
in the µ-calculus.

. Indeed the marking tϕ of a term t by an MSO-formula ϕ(x)
can be obtained by:

• �rst marking the term by several µ-calculus formulas (theses formulas are con-

structed from a non-deterministic parity tree automaton recognizing ϕ(x)),

• then marking in the resulting term all nodes in the term that can be reached from

the root by a word belonging to some regular languages R over the set of directions.

We refer to this operation as a regular-marking.

• �nally relabelling the ranked alphabet of the term.

Proposition 3.15 ([26])
If a class of trees is e�ectively closed under µ-calculus marking, regular-marking

and relabelling then it is closed under MSO-marking.

This results can be applied to the classes of terms generated by safe and unsafe re-

cursion schemes as they are e�ectively closed under regular marking and relabelling.

Hence the core of problem to solve is the marking problem for the µ-calculus. We

now focus on this problem.

For this, we �x a labeled recursion scheme S = (Σ,N,R,Z,�) of order k and a

µ-calculus formula ϕ. By Theorem 3.8, there exists a CPDA A of the same order such

that Tree
�(S) = Tree

�(A). By construction, A has a distinguished state q⋆ which is

the only state able to perform non-silent actions. Recall the Tree
�(A) is obtained by

unfolding the LTS of A and contracting the λ-transitions.

Every node u of Tree
�(A) correspond to a path in the LTS of A ending in a

con�guration of the form (q⋆, s), which we call the con�guration of the node u. The

fact that ϕ holds at a node u of Tree
�(A) only depends on the subtree of Tree

�(A)
rooted at u. As a consequence, it only depends on the con�guration of the node u.

We let:

Sϕ
def= {s ∣ Tree

�
for the LTS of A starting in (q⋆, s) satis�es ϕ}.

Our goal is to modify A to obtain a new CPDA B which behaves like A except

that when it is in a con�guration (q⋆, s) with s ∈ Sϕ it produces the marked label

a instead of a. The term generated by the CPDA B will be Tree
�(A)ϕ, the term

generated by A marked by the formula ϕ.

To construct B, we will proceed in two steps:

• First, we show that the set Sϕ is accepted by an appropriate model of �nite au-

tomaton working on stacks of order k,

• We then show that for any set of stacks S accepted by such an automaton, it is

possible to enrich any CPDA so that the top-most stack symbol re�ects whether

the current con�guration belong to S.
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We �rst present the construction of B in the safe case as it is simpler to understand

and then move on to the general case.

The safe case

In the safe case, A is an higher-order pushdown automaton of order k. As the stacks

do not contain links, a stack of order k can be represented by a well-bracketed word

of nesting depth k. Formally, a stack s = s1,⋯, s` of order k is associated with the

well-bracketed word of depth k, s̃ ∈ (Γ ∪ {[, ]})∗:

s̃
def=

⎧⎪⎪⎨⎪⎪⎩

[s̃1⋯s̃`] if k ⩾ 1
s if k = 0 (i.e., s ∈ Σ)

De�nition 3.16
A set of stacks of order k over an alphabet Γ is regular if the corresponding language

of words over Γ ∪ {[, ]} is regular.

In [45], we showed that surprisingly this rather weakThe notion of regular-
ity is not strong enough

to capture the set of
stacks reachable from

the initial con�guration.

notion of regularity can

describe the set Sϕ.

Theorem 3.17 ([45])
For every µ-calculus formula ϕ and every higher-order pushdown automaton A of

order k, the set Sϕ is regular.

To prove this, we construct a two-players parity game played over the LTS of a

higher-order pushdown automaton BWe will talk of HPDA

games (resp. CPDA

games) to designate two-
players games played be-
tween Éloise and Abelard

on the LTS of a HPDA
(resp. CPDA). The owner of

a con�guration is given
by a partition of the

states of the automaton.

such that a con�guration (q⋆, s) belongs to

the winning region of the �rst player if and only if s belongs to Sϕ. It remains to

show that the winning region of higher-order pushdown game is regular. This is

done by adapting the proof for pushdown games in [134].

The second ingredient is to show that given a regular set of stacks of order k and a

higher-order pushdown automaton A of the same order, the HPDA A can be modi�ed

to obtain an HPDA B of the same order but which can keep track of whether the

current con�guration belongs to R. For this we consider a deterministic �nite word

automaton C accepting the set of stack R. The automaton B is obtained by enriching

the stack alphabet with informations about the automaton C. At order 1 (i.e. a simple

pushdown automaton), it is enough to add the state reached by the automaton C

when reading the stack. This operation is easily updated when performing a push1

or a pop1 operation. At order 2, the automaton A is able to copy an entire order 1

stack. To be able to maintain the information of which state is reached by C on the

resulting stack, we need to add (and maintain) the information on how reading the

full top most order-1 stack changes the state of C (i.e., a function from QC to QC).

This idea generalizes to all orders.

Proposition 3.18 ([45])
Given a regular set R of stacks of order k and a higher-order pushdown automaton

A of order-k over a stack alphabet Γ , we can construct a higher-order pushdown B

of the same order over a stack alphabet Γ × ∆ and a subset F ⊆ ∆ such that:

• the LTS of B in which the stack alphabet Γ ×∆ is projected on its Γ component is

equal to LTS of A,
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• for any con�guration (q, s) of the LTS of B, top1(s) ∈ Γ × F if and only if the

projection of s on its Γ component belongs to R.

By combining Proposition 3.18, Theorem 3.17 and Proposition 3.18, we obtain the

decidability of the MSO-marking problem for safe schemes.

Theorem 3.19 ([59, 45])
The MSO-marking problem for safe recursion schemes is decidable.

The unsafe case

In the general case, we have to deal with CPDA and not HPDA. Hence, we need to

adapt the notion of regularity for stacks with links.

For this, we introduce a class of automata with a �nite state-set that can be

used to recognize sets of stacks with links. As in the safe case, for a stack with

links s of order k, we consider the word s̃ over Γ ∪ {[, ]} describing the content

of the stack s. In order to re�ect the link structure, we de�ne a partial function

target(s) ∶ {1,⋯, ∣̃s∣} → {1,⋯, ∣̃s∣} that assigns to every position in {1,⋯, ∣̃s∣} the

index of the end of the stack targeted by the corresponding link (if exists; indeed

this is unde�ned for �,[ and ]). Thus with s is associated the pair (̃s, target(s)).

Consider the stack with links of order 3:

s = [[[⊥α]] [[⊥][⊥αβ γ]]]

.

We have s̃ = [[[ �α]] [[ � ] [ �αβγ]]] and target(15) = 11 and target(16) = 7.
We consider deterministic The non-deterministic

version is strictly more
expressive.

�nite automata working on such representations of

stacks. A �nite deterministic automaton with links reads the word s̃ from left to right.

On reading a letter that does not have a link (i.e. target is unde�ned on its index) the

automaton updates its state according to the current state and the letter; on reading

a letter that has a link, the automaton updates its state according to the current state,

the letter and the state it was in after processing the targeted position. A run is

accepting if it ends in a �nal state.

De�nition 3.20
A set of stacks with links of order k is regular if it is accepted by a �nite deterministic

automaton with links.

Theorem 3.17 and Property 3.18 can be generalized to the unsafe case with this

new notion of regularity. The proofs are however much more involved and owe a lot

to the work done in [92] to solve collapsible pushdown games.

Theorem 3.21 ([26])
The MSO-marking problem for recursion schemes is decidable.

An interesting consequence of this theorem is that the class of trees de�ned

by recursion schemes is closed by MSO-interpretations followed by an unfolding

operation. As a result applying the transformations used to de�ned the Caucal

hierarchy does not yield new trees.



44 3 Recursion schemes

Corollary 3.22
Let t be tree generated by a recursion scheme S and let I be an MSO-interpretation.

The unfolding of I(t) from any vertex u can be generated a recursion scheme of

order n + 1.

3.3.4 E�ective selection for MSO on schemes

In this section, we give an overview of the decidability of the e�ective selection of

MSO for recursion schemes. In the previous section, we have seen that the MSO-

marking problem could at its core be reduce to computing a �nite representation

for the winning region of a collapsible pushdown game. Similarly, the selection

problem reduces to computing a suitable �nite representation of a winning strategy

in a collapsible pushdown game.

Fix a labeled recursion scheme S of order k generating a term t and an MSO-

calculus formula ϕ(X). Assuming that t ⊧ ∃X,ϕ(X), our aim is to construct a

scheme S ′ generating a term t marked with some set of nodes U such that t ⊧ ϕ[U].
By Theorem 3.8, there exists a CPDA A of the same order such that Tree

�(S) =
Tree

�(A) = t.
Very informally, using Rabin’s theorem, we can construct from ϕ(X) a tree au-

tomaton Bϕ accepting the marking which satis�es ϕ. By a slight variation of the

standard acceptance game for tree automata, we can construct a parity collapsible

pushdown game G such that the winning strategies for the �rst player Éloise from

the initial con�guration encode accepting runs of Bϕ on t and therefore a marking

U of t such that t ⊧ ϕ[U]. The game G is essentially a �nite product between the

LTS of A and a �nite graph encoding the behaviour of Bϕ.

By a non-trivial adaptation of the proof of the decidability of parity collapsible

pushdown games presented in [92], it is possible to show that a winning strategy can

be represented by a CPDA. This CPDA reads the transitions taken so far and outputs

the transition Éloise should take when it is her turn to play. A crucial property is

that this CPDA is synchronized with the CPDA de�ning the game in the sense that

they always perform the same type of operations on the stack.

Theorem 3.23 ([51])
Let A be a CPDA of order n and let G be a CPDA parity game de�ned on A. If the

initial con�guration is winning for the �rst player then one can e�ectively construct

an CPDA T of order n synchronised with A realising a winning strategy for this

player from the initial con�guration.

Using Theorem 3.23, it is possible to performed the synchronized product between

of the CPDA A generating t and a CPDA T de�ning a winning strategy for the �rst

player. The resulting CPDA, denoted C, encodes both the tree t as well as a winning

strategy for the �rst player in G (which in turns encodes a set U such that t ⊧ ϕ[U]).
With some minor modi�cations to C, we �nally obtain a CPDA generating a term tU
for someU such that t ⊧ ϕ[U]. Using the translation of CPDA into labelled recursion

schemes from [92], we at last solved the selection problem.

In the safe case, we prove in [58] that it is possible to synthesise positional winning

strategies in higher-oder pushdown parity games. The set of con�gurations on which

a given move is to be played are given by a strongly regular set of stacks. The notion

of strong regularity was introduced in [33] (and independently in [81]) and his
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more restrictive than the notion of regularity presented in De�nition 3.16. To our

knowledge, it is not known if an analogous result is possible with the notion of

regularity introduced in De�nition 3.16.

3.4 A saturation algorithm for collapsible pushdown
automata

In the introduction, we mentioned the success obtained in practice by model-checking

tools for recursion schemes. In particular, Kobayashi’s TRecS tool [103], which

checks properties expressible by a deterministic trivial Büchi automaton (all states

accepting). One of our contribution was to show that the approach based on a

translation to collapsible pushdown automata can also yield e�cient algorithms. The

model-checking of trivial properties on recursion schemes reduces to a (one-player)

reachability game played on a collapsible pushdown automaton (CPDG for short):

the goal of the reachability is to reach a distinguished error state perr of the CPDA.

In [23], we presented a saturation algorithm for solving reachability CPDG. We

generalized the well-known saturation algorithm for solving reachability pushdown

games of [18] and [79] (see [43] for a recent survey on this method).

A precise description of the algorithm can be found in [23] but is too technical to

be presented here. Instead we will try to give the main ingredients.

A standard way of computing the winning region for the �rst player Éloise, in

a reachability game is the attractor construction. Assuming that the target set is F,

we incrementally construct the winning region for Éloise by de�ning a increasing

sequence of sets

W0 ⊆W1 ⊆ ⋯

where W0 = F is the target set and Wi+1 is obtained by adding to Wi the vertices

belonging to Éloise that have at least one successor in Wi and the vertices belonging

to the second player Abelard, that have all their successors in Wi. As the game we

consider are of �nite outdegree, the winning region for Éloise is the union of all the

Wi.

To transpose this naive approach to solve a reachability CPDG, we work symbolicly

with �nite automata representing sets of con�gurations. Starting with an automaton

A0 accepting F, we construct a �nite sequence (Ai)i⩾0 where Ai+1 is obtained by

adding transitions and states to Ai following rules which ensure that the language

accepted by Ai+1 is included in the winning region for Éloise. As we can bound the

number of possible new states, this process eventually converges to an automaton

which can be shown to accept the winning region of Éloise.

It could be tempting to use the deterministic automaton with links presented in

De�nition 3.20 to represent sets of con�gurations. However this model is not suitable

for this application and instead we considered an equivalent model of automaton

which is alternating and explores the stack from its top rather than from its bottom.

Furthermore to simplify the correctness proof, we introduced a variant of the

collapsible pushdown automata called annotated pushdown automata. Instead of

using links to point to the context in which a symbol was �rst introduced, the

annotated automaton directly stores the context. This small shift allows for a very

clean correctness proof. However when implementing the algorithm, we reverted

back to collapsible pushdown automata.
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Based on the saturation algorithm of [23], we developed the C-SHORe
3

model

checker for recursion schemes [24]. A naive implementation of the saturation

algorithm fails already on schemes of moderate sizes and orders. It was necessary to

develop non-trivial optimisations which was done mainly by Christopher Broadbent

and Matthew Hague. In particular, they developed a pruning technic to reduce the size

of the input CPDA. They also computed an over approximation in forward manner of

the winning region to speed up the computation of the saturation algorithm which, as

we described previously, performs a backward search. As result of these theoretical

optimisations and the use of appropriate data structures which are presented in [25],

C-SHORe was at the time of its release competitive with the other model-checkers

for recursion schemes, namelly, Kobayashi et al GTRecS(2) [102] and Neatherway at

al TravMC [112] tools, that are both based on intersection type inference. A recent

overview of HORS model-checking was given by Ong [119].

Since C-SHORe was released, new tools were developped that perform signi�cantly

better than C-SHORe. In particular, Broadbent and Kobayashi introduced HorSat and

HorSat2, which are an application of the saturation technique and initial forward

analysis directly to intersection type analysis of recursion schemes [27].

3.5 Structures defined by recursion schemes

So far, we have only used recursion schemes to de�ne deterministic trees. But

recursion schemes can be used to de�ne other types of structures. Our motivation to

study these structures is two-fold. First, by considering simpler structures such as

linear orders, we can better understand of the expressivity the in�nite terms de�ned

by recursion schemes. In Section 3.5.1, by considering the ordinals de�ned by safe

recursion schemes, we obtain a new proof of the strictness of the corresponding

hierarchy of terms. Our second motivation is that these structures can provide

connections with neighboring �elds such as process algebra, word combinatorics. In

Section 3.5.2, we study synchronization trees introduced in process algebra. Also, in

[21]One direction of this equiv-
alence follows from the
work of Caucal in [62].

, we showed that ω-words de�ned by recursion schemes of order 1 are precisely

the morphic words, a well-studied class in word combinatorics.

Before going further, we need to clarify how structures such as linear orders,

ω-word, ... can be de�ned using recursion schemes. There are two main approaches

to do so. The �rst one consists in applying an MSO-interpretation to the in�nite

term generated by a recursion scheme. The second one views the recursion scheme

as a system of equations and computes its least solution in some continuous algebra.

Let us exemplify these two approaches in the case of linear orders.

In the �rst approach, we consider the class of all linear orders that can be obtained

by applying MSO-interpretation in the class of terms generated by recursion schemes.

For example, consider the following recursion scheme Sω⋅2 of order 0 de�ned by:

Z → +AA
A → + 1A

with non-terminals Z and A of ground type and the terminal + of arity 2 and the

constant 1. The in�nite term tω⋅2 generated by Sω⋅2 is depicted below.

3

C-SHORe is available at h�p://cshore.cs.rhul.ac.uk.

http://cshore.cs.rhul.ac.uk
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The leaves of the term tω⋅2 are naturally ordered from left to right (i.e., a leaf

u is on the left of a leaf v if the word of direction leading to u from the root is

lexicographically smaller than the one leading to v). The resulting linear order is

called the frontier of the term and is de�nable by an MSO-interpretation Fr. The

frontier of tω⋅2 is isomorphic to ω +ω = ω ⋅ 2.
In the second approach, we consider a continuous Σ-algebra where Σ is the ranked

alphabet of terminals of the recursion scheme.

We interpret the terminal + as the sum for linear orders and the constant 1 as

the one-element order 1 and associate with the scheme the smallest solution of the

corresponding system of equations:

Z = A +A
A = 1 +A

To formalize, the notion of smallest solution, we consider the cpo Lin of linear

orders ordered by inclusion. The sum, as de�ned in Section 2.1.2, is a continuous

function in Lin. Hence the function from Lin × Lin to Lin × Lin associated to the

system of equation:

(Z
A
) ↦ (A +A

1 +A)

is also continuous. Therefore it admits a least �xpoint. In our example, this least �x-

point is isomorphic to (ω ⋅2,ω). The solution the recursion scheme is the component

corresponding to the axiom. In our case, ω ⋅ 2.
An equivalent characterisation of the solution of the recursion scheme is as the

supremum of the interpretations of the approximants of the term tω⋅2. Remark, that this ap-
proach does not work up-to
isomorphism as it crucially
relies on the names of the
elements of the linear or-
der to de�ne the notion
of supremum. If we for-
get this fact, we might
wrongly conclude that the
limit is ω and not ω +ω.

Our example

is only of order 0 but this approach generalizes to any order by considering the cpo

of continuous functions of the appropriate types. For a complete description, we

refer the reader to [130, Section 12].

In [34], we showed that these two approaches are equivalent (meaning that they

de�ne the same class of structures) when the interpretations of the terminals are

given in terms of Courcelle’s VR operators [70] (extended from graphs to arbitrary

relational structures). However, in general this second approach is more powerful

than the �rst one.

3.5.1 Linear orderings

As we hinted in the introduction of this section, for linear orders, de�nability in

MSO and interpretation in Lin yield the same class.
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Theorem 3.24 ([21])
In [21], this results is only
obtained for safe schemes
but the same construction
works for unsafe schemes.

For all order k ⩾ 0, the following classes are equal:

• the linear orders MSO-interpretable in the terms generated by unsafe (resp. safe)

recursion schemes of order k,

• the frontiers of terms de�ned by unsafe (resp. safe) recursion schemes of order k,

• the solutions of unsafe (resp. safe) recursion schemes of order k in Lin.

In particular, linear orders de�ned by recursions schemes have a decidable MSO-

theory.

In [21], we study two classes of linear orders de�ned in safe recursion schemes:

ordinals (i.e., well-found linear orders) and scattered linear orders. We precisely

characterized which ordinals are solution of safe recursion schemes and give an

upper-bound on the Hausdor� rank of the scattered linear orders that can be de�ned

this way.

At order 0, the linear orders de�ned by recursion scheme are also called regular
linear orders. Indeed, these linear orders are precisely those obtained by ordering

the words of a regular language using the lexicographic order. The scattered regular

linear orders have an Hausdor� rank (see Section 2.1.2 for the de�nition) less than

ω [95] and the ordinals are known to be those strictly smaller than ωω.

The frontiers of order-1 recursion schemes are also called algebraic linear orders.
Indeed, these linear orders are precisely those obtained by ordering the words of a

deterministic context-freeIn [35], we show that
there exists a (non-

deterministic) context-free
language which when
ordered with the lexi-

cographic order has an
undecidable MSO-theory.

language using the lexicographic order. Is was shown in

[13, 12] that algebraic ordinals are precisely the ordinals strictly smaller than ωω
ω

.

In [14], it is shown that any scattered algebraic linear order has a Hausdor� rank

strictly smaller than ωω. Bloom and Ésik conjectured that similar bounds can be

obtained for safe recursion schemes of arbitrary orders.

In [20], Braud showed that all the ordinals below ω ⇑ (n + 1) (where ω ⇑ 1 = ω
andω ⇑ (n+1) = ωω⇑n) are frontiers of terms generated by safe recursion schemes

of order n. In [21], we showed that no other ordinals can be obtained as the frontier

of a safe recursion scheme of order n.

Theorem 3.25 ([21])
The ordinals solutions of safe recursion schemes of order k over Lin are precisely

the ordinal strictly smaller than ω ⇑ (k + 2).

The proof uses the characterization of safe schemes by graph transformations

presented in Section 3.2.3 which allows to proceed by induction on the order.

As a corollary, we obtain a new proof of the strictness of the hierarchy of terms

de�ned by safe recursion schemes that was �rst obtained in [78].

Corollary 3.26 ([78])
The hierarchy of terms de�ned by safe recursion schemes is strict.

For scattered linear orders, a su�cient condition for the frontier of the term to

be scattered is for the term to be tame (i.e., to contain only countably many in�nite

branches). In fact, we proved that scattered linear orders solutions of safe recursion

schemes of order k are frontiers of tame term generated by safe recursion schemes
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of order k.

We also obtained a bound on the Hausdor� rank of scattered linear orders de�ned

by safe recursion schemes.

Theorem 3.27 ([21])
The Hausdor� rank of scattered linear orders de�nable solutions of safe recursion

schemes of order k over Lin is less than ω ⇑ (k + 1).

This bound is obtained by a non-trivial reduction to the case of ordinals and uses

the decidability of the e�ective selection problem for MSO over safe schemes. Given

a tame term t de�ned by a safe recursion scheme S (over the signature of Lin) of

order k, we use the e�ective selection to construct a safe scheme S ′ of the same order

generating a tame term t ′ such that:

• the terms t and t ′ correspond to the same unordered term,

• the frontier of t ′ is well-ordered.

It can be shown that Fr(t) and Fr(t ′) have the same Hausdor� rank. By Theorem 3.25,

we know that Fr(t ′) < ω ⇑ (k + 2) and hence rH(Fr(t ′)) = rH(Fr(t)) < ω ⇑ (k + 1).

3.5.2 Synchronization trees

In [2], we studied synchronization trees de�ned by recursion scheme of orders 0 and

1 The distinction between
safe and unsafe schemes
only appears at order 2.

. A synchronization tree is essentially an LTS which is a tree with a distinguished exit

label ex . As depicted below, this exit label can only occur on edges whose target is a

leaf. Note that these trees are non-deterministic and possibly of in�nite out-degree.

●

● ● ●

● ● ●

● ●

●

a a a

ex a a

ex a

ex

In the setting of process algebras such as CCS [110] and ACP [7], synchronization

trees are a classic model of process behaviour. They arise as unfoldings of labelled

transition systems that describe the operational semantics of process terms and have

been used to give denotational semantics to process description languages—see, for

instance, [1]. In this context, the labels (except the exit label) are called actions. We

denote by ST(A), the class of synchronization trees over the set of actions A.

We considered the solutions of recursion schemes in two algebras over ST(A)
based respectively on Basic CCS [110] and Basic Process Algebra (BPA) [7].

The signature Γ of the algebra based on Basic CCS contains a binary choice operator

+ which in the algebra corresponds to gluing two trees at the root. For each action

a, Γ contains a unary action pre�xing operation a._ which corresponds to pre�xing

the synchronization tree by an a action. Finally, it contains two constants 0 and 1

which represent respectively the empty synchronization tree and a synchronization

restricted to one ex-labeled edge.
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To be able to associate synchronization trees to recursion scheme over Γ , we should

equip ST(A) with a partial order to obtain a cpo. Furthermore, we also need to �x

concrete de�nitions for the operations in Γ that ensure that they are continuous in

this cpo. Such a de�nition is possible by for instance considering the cpo of ST(A)
ordered by inclusion. However �xing a naming scheme for the vertices of the various

operations to ensure continuity is quite painful. In [2], we avoided this task by

considering continuous categorical Γ -algebras which are a categorical generalization

of the classical notion of continuous (Γ -)algebra.

De�nition 3.28 (Γ-regular and Γ-algebraic synchronization trees)
A synchronization tree is Γ -regular if it is the solution of a recursion scheme of order

0 over Γ . A synchronization tree is Γ -algebraic if it is the solution of a recursion

scheme of order 1 over Γ .

Our example of synchronization tree is the solution of the following order 1

recursion scheme over Γ :

Z → F (a1) F x → + x F (ax)

with Z of ground type and F ∶ o→ o. Hence it is Γ -algebraic.

The signature ∆ of the algebra based on BPA also contains a binary choice operator

and the two constants 0 and 1 with the same interpretation as the Γ -algebra. There

is one constant a for each action that may label the edge of a synchronization

tree. This constant is interpreted as the synchronization tree corresponding to a

successful computation with the action a. In addition it o�ers a full-blown sequential

composition, or sequential product, operator. Intuitively, the sequential product t ⋅ t ′
of two synchronization trees is obtained by appending a copy of t ′ to the leaves of t

that describe successful termination of a computation.

De�nition 3.29 (∆-regular and ∆-algebraic synchronization trees)
A synchronization tree is ∆-regular if it is the solution of a recursion scheme of

order 0 over ∆.

A synchronization tree is ∆-algebraic if it is the solution of a recursion scheme of

order 1 over ∆.

Our example of synchronization tree is the solution of the followingThis equation could also be
written as Z = (Z ⋅ a) + a.

order 0

recursion scheme over ∆:

Z → +a (⋅Za).

It is therefore ∆-regular and Γ -algebraic.

In general, as the ∆-algebra can express the Γ-algebra, any Γ-regular (resp. Γ-

algebraic) is ∆-regular (resp. ∆-algebraic). Solutions of recursion schemes of order n

over ∆ are solutions of recursion schemes of order n + 1.
In [2], we established a precise comparison of the classes of Γ -regular, ∆-regular,

Γ -algebraic and ∆-algebraic synchronization trees. We compared them up to isomor-

phism, bisimulation [110, 120] and language equivalence (i.e., two synchronization

are equivalent if the languages of their successful computations are equal).

Theorem 3.30
For isomorphism and bisimulation equivalence, the following hierarchy holds:

Γ -regular ⊊ ∆-regular ⊊ Γ -algebraic ⊊ ∆-algebraic
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For language equivalence, the following hierarchy holds:

Γ -regular

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
regular languages

⊊ ∆-regular = Γ -algebraic

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
context-free languages

⊊ ∆-algebraic

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
indexed languages [5]

Finally we compared this approach to the approach by de�nability in MSO logic.

This corresponds to comparing the previously de�ned classes to the �rst levels of

the Caucal hierarchy Tree1, Graph1, Tree2, Graph2, Tree3 and Graph3 restricted to

synchronization trees. Our �ndings are summarized in Figure 3.4. In particular, we

have shown that unsurprisingly Γ-algebraic and ∆-algebraic are MSO-de�nable in

the terms generated by safe recursion schemes of order 2 and hence have a decidable

MSO-theory.

Γ-alg.

=
Tree2

=
∆-reg.

Tree3

=
∆-alg.

Tree1

=
Graph1

=
Γ-reg.

(a)

∆-reg.

Γ-alg.

=
Tree2

∆-alg.

Graph3

Tree1

=
Graph1

=
Γ-reg.

(b)

Tree2 ∆-reg.

Γ -alg.

∆-alg.

Graph3

Graph1

=
Γ-reg.

(c)

Figure 3.4. The expressiveness hierarchies up to language equivalence (a), up to

bisimilarity (b) and up to isomorphism (c)
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4
Extensions of tree automata

This chapter describes my contributions related to the model of tree automata on

in�nite trees. Roughly speaking a �nite automaton on in�nite trees is a �nite memory

machine that takes as input an in�nite node-labelled binary tree and processes it in

a top-down fashion as follows. It starts at the root of the tree in its initial state, and

picks (possibly nondeterministically) two successor states, one per child, according

to the current control state, the letter at the current node and the transition relation.

Then the computation proceeds in parallel from both children, and so on. Hence, a

run of the automaton on an input tree is a labelling of this tree by control states of

the automaton, that should satisfy the local constraints imposed by the transition

relation. A branch in a run is accepting if the ω-word obtained by reading the

states along the branch satis�es some acceptance condition (typically an ω-regular

condition such as a Büchi or a parity condition). Finally, a tree is accepted by the

automaton if there exists a run over this tree in which every branch is accepting. An

ω-regular tree language is a tree language accepted by some tree automaton equipped

with a parity condition.

For monadic second order, tree automata are at the center of the equivalence

between logic, automata and games as summarised in the �gure below.

MSO Logic
t ⊧ ϕ

Tree automata

Aϕ accepts t

Games
Éloise wins GA,t

A fundamental result of Rabin is that ω-regular tree languages are the languages

de�nable in MSO logic and form a Boolean algebra [124]. The main technical di�culty

in establishing this result is to show the closure under complementation. Since the

publication of this result in 1969, it has been a challenging problem to simplify this

proof. A much simpler one was obtained by Gurevich and Harrington in [90] making

use of two-player games for checking membership of a tree in the language accepted

by the automaton Note that the idea of using
games to prove this result
was already proposed by
Büchi in [29].

: Éloise (a.k.a. Automaton) builds a run on the input tree while

Abelard (a.k.a. Path�nder) tries to exhibit a rejecting branch in the run.

More precisely, �x a parity tree automaton A = (A,Q,q0,∆, Acc) and a tree t. The

acceptance game GA,t for the automaton A on the tree t is constructed such that
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Éloise wins the game from the (q0, ε) if and only if A accepts t. The structure of the

game is depicted below where the colour of a vertex is the colour of the state in the

automaton.

q,u q,u,q0,q1

q0,u0

q1,u1

for any (q, t(u),q0,q1) ∈ ∆

Intuitively, a play in GA,t consists in moving a pebble along a branch of t in a

top-down manner: to the pebble is attached a state, and in a node u with state q,

Éloise picks a transition (q, t(u),q0,q1) ∈ ∆, and then Abelard chooses to move

down the pebble either to u ⋅ 0 (and update the state to q0) or to u ⋅ 1 (and update the

state to q1).

Another fruitful connection between automata and games is for emptiness check-

ing. The emptiness problem for an automaton on in�nite trees can be modelled

as a �nite pariy game where Éloise builds an input tree together with a run while

Abelard tries to exhibit a rejecting branch in the run. Beyond these results, the tight

connection between automata and games is one of the main tools in automata theory

[138, 86, 108].

The results presented in this section build on this connection to either try enrich

the expressivity of MSO logic or to better understand its limitation.

Contributions and outline

A �rst contribution is a new proof, obtained in [46], of the non-existence of an MSO-

de�nable choice function on the full binary tree based on tree automata. Compared

to the original proof by Gurevich and Shelah, this proof is constructive in the sense

that it builds a concrete family of sets on which any MSO-de�nable function fails to

chose a unique element.

Another contribution is the study of several notions of qualitative tree automata

over in�nite trees. Our approach is to relax the notion of accepting runs for tree

automata. In [46], we introduced three relaxations of di�erent nature:

• A probabilistic one which considers a run to be accepting if the set of rejecting

branches in the run has measure 0.

• One based on cardinality constraints which considers a run to be accepting if the

set of rejecting branches is at most countable. This idea was already present in the

work of Beauquier, Nivat and Niwinski [10, 11].

• The last one is of a topological nature and considers a run to be accepting if its

set of rejecting branches in meager. Intuitively, meager set are an a topological
approximation of the set of measure 0. This intuition is substantiated in [141].

Thanks to this approach, we are able to de�ne a notion of probabilistic tree automata

which is algorithmically tractable [43].



4.1 Choice functions on the full binary tree 55

In [55], we consider the game counterpart of these alternative semantics. We

introduce games with a third player call Nature and we relax the notion of winning

strategy in a similar manner to what we have done for the runs.

A third contribution is the decidability of the emptiness problem for parity tree

automata over in�nite trees enriched with the ability to test equality/disequality

between the direct subtree of a node. This result generalizes to in�nite trees, a result

of Bogaert and Tison for �nite trees [16].As remarked in [106], our result implies the

decidability of MSO enriched with a predicate expressing the equality between the

two subtrees of a given node.

In Section 4.1, we present our proof of the non-existence of an MSO-de�nable

choice function. Section 4.2 regroups our results on qualitative notions of tree

automata over in�nite trees and probabilistic tree automata. Finally, Section 4.3

focuses on parity tree automata with equality/disequality constraints.

4.1 Choice functions on the full binary tree

In this section, we present a new proof, obtained in [46], for the non-existence of

an MSO-de�nable choice function on the full binary tree ∆2. A choice function f

on the full binary tree is mapping associating to every non-empty set of nodes one

of its elements (i.e., for U ≠ ∅, f(U) ∈ U). The function is said to be MSO-de�nable

if there exists an MSO formula ϕ(X, x) such that for all non-empty set of nodes U,

f(u) is the only node satisfying ϕ when X is interpreted as U. In other terms, for all

non-empty set U, ∆2 ⊧ ϕ[U, f(u)] and for all node v, if ∆2 ⊧ ϕ[U, v] then v = f(u).

The non-existence of an MSO-de�nable choice function was �rst proved by Gure-

vich and Shelah in [89] using advance tools from set theory. It is fair to say that

this original proof is not fully understood (cf. [66, p. 10]). In an unpublished note,

Niwinski and Walukiewicz used this result to prove that the regular language of

in�nite trees labelled by {a,b} which contain at least one node labelled by a is inher-

ently ambiguous (i.e., there exists no unambiguous parity tree automaton accepting

this language). In [46], we gave an elementary proof of the non-existence of an

MSO-de�nable choice function using tree automata. As an added bene�t, this proof

constructs a concrete family of sets (Un)n⩾0 such that for any MSO-formula ϕ(X, x)
there exists a set Un such that ϕ fails to uniquely choose an element in Un. These

two results were combined in a joint journal publication [48].

Theorem 4.1 ([89, 46])
There exists no MSO-de�nable choice function of the full binary tree.

4.1.1 Proof overview

Our proof uses a special form of tree automata instead of MSO-formulas ϕ(X, x).

These automata work on {0, 1}-labelled trees which are meant to encode sets of

nodes of ∆2. More precisely, to every set of nodes U ⊆ {0, 1}∗ of the full binary

tree, we associate the {0, 1}-labelled tree tU de�ned by tU(v) = 1 for v ∈ U and 0

otherwise.

A choice automaton A is a parity tree automaton over {0, 1}-labelled trees with a

distinguished set of states F. The states in F are used by the automaton to select a
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node. For a tree t, the set of nodes selected by A in t, denoted by A(t), is de�ned by:

A(t) = {v ∈ {0, 1}∗ ∣ ρ(v) ∈ F for some accepting run ρ of A on t}.

It follows from Rabin’s theorem [124] that there exists an MSO-formula ϕ(X, x)
realizing a choice function on ∆2 if and only if there exists a choice automaton such

that for every non-empty set of nodes U, A(tU) = {u} for some u ∈ U.

We de�ne a family (UN)N⩾1 of sets such that for each choice automaton A we

can �nd an N such that A cannot select a unique element of UN.

For N ⩾ 1 the set UN ⊆ {0, 1}∗ is de�ned by the following regular expression

UN = {0, 1}∗(0N0∗1)N{0, 1}∗.

To reach a node labelled by 1 in the tree tUN it is necessary to go down to the left at

least N times then proceed to the right and to repeat this process N − 1 times. The

tree tUN can be obtained by unfolding the �nite graph GN depicted below from the

node xN. In this picture, the dashed arrows represent 1-labelled edges leading back

to the node xN. The chains of 0-edges between xk+1 and xk have lengthN. All nodes

in this graph are labelled 0 except x0, which is labelled by 1.

GN
xN

xN−1

0

0

0

1

1

N times

xN−2

0
0

0

0 1

N times

0
x1

1

xN−1

0
0

0

1 1

0,1

N times

If N is large enough compared to the number of states of the choice automaton,

we show that the automaton cannot select a unique node in UN.

Proposition 4.2
For any choice tree automaton A with n states,

∣A(tUN) ∩U ∣ ≠ 1 for N ⩾ 2n + 1.

Let us give some intuition of the proof. Fix a choice automaton A with n states

and letN = 2n+1. Assume that there exists an accepting run ρ of A on tUN selecting

a node in UN. We are going to construct another accepting run selecting a di�erent

node.

For i ∈ [1,N], let ti denote the tree obtained by unfolding the graph GN from the

node xi. By the choice of N, it is possible to show that there exists ` < N such that t`
and tN are indistinguishable by A, meaning that they are accepted from the same

states of A.
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Consider the path between x`+1 and x`. If we take a 1-edge before having reached

the end of the 0-chain, i.e., if we take a dashed edge in the picture, then we reach

a subtree of type tN. But if we walk to the end of the 0-chain and then move to

the right using a 1-edge, then we arrive at a subtree of type tk. As tN and t` are

equivalent for A, then A has no mean to identify when it enters the part where

taking a 1-edge leads to a subtree of type t`. We then exploit this fact by pumping

the run on this part of the tree such that we obtain another run selecting a di�erent

node.

4.1.2 Consequences on recursion schemes

Due to the very simple nature of the sets Un, it is possible to de�ne a term generated

by a recursion scheme that contains all the trees tUn for n ⩾ 1
For all n ⩾ 0, the tree tUn can be represented by an in�nite term tn over {f, f}

with both symbols of arity 2. The nodes in Un are precisely those labelled by f. As

Un is regular, each tn is generated by a scheme of order 0. Now consider the term g

de�ned as:

f

f

ft1

t2

t3

The term g is generated by the safe recursion scheme of order 3:

Z → FO I V ϕ → ϕ (V ϕ) T
Fψϕ → f (V (ψϕ)) (F (Bψ)(Aϕ)) T → f T T

Bψϕxy → ϕx (ψϕxy) Oxy → f x (Oyy)
Aϕxy → f x (ϕxy) Iϕxy → ϕxy

where if we take τ
def= o → o → o, we have Z ∶ o, F ∶ (τ → τ) → τ → o, B ∶ (τ → τ) →

(τ → τ), A ∶ τ → τ, V ∶ τ → o, T ∶ o, O ∶ τ and I ∶ τ → τ and ψ ∶ τ → τ, ϕ ∶ τ, x ∶ o and

y ∶ o.

Clearly the term g satis�es the MSO formula ∃X,ϕ(X) expressing that there exists

a set X of nodes labeled by f which has exactly one element in each subtree tree

rooted on the right-most branch. However there is no set UMSO-de�nable in g such

that g ⊧ ϕ[U]. Indeed, from an MSO-formula ψ(x) de�ning a suitable set U on g,

we could construct a choice automaton A that would select a unique element in Un
for arbitrary large values of n. This would contradict Proposition 4.2.

Proposition 4.3
There exists a safe recursion scheme of order 3 generating a term t and an MSO-

formula ∃X, ϕ(X) such that t ⊧ ∃X, ϕ(X) and there exists no MSO-de�nable set U

such that t ⊧ ϕ[U].
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By a slight adaptation of g, it is possible to de�ne a two-players reachability game

where the �rst player wins from every node but for which no positional winning

strategy is MSO-de�nable. For instance, we can give the nodes on the left-most

branch to the second player and all other nodes to the �rst player. The target of the

reachability games is then to reach a node labeled by f.

Proposition 4.4
There exists a reachability game played on the term generated by a safe recursion

scheme of order 3 for which there is not MSO-de�nable positional strategy.

4.1.3 MSO-definable well-founded orders

An immediate consequence of Theorem 4.1 is that it is not possible to de�ne in MSO

logic a total well-order on the nodes of the full binary tree. Indeed if such a formula

ϕ⩽(x,y) existed, we could de�ne a choice function in MSO by selecting the smallest

element of the set:

ϕ(X, x) def= x ∈ X ∧ ∀y ∈ X,ϕ⩽(x,y).

Corollary 4.5
There exists no MSO-de�nable well-order on the nodes of of full binary tree.

In [46], we showed a stronger result: it is not possible to equip the full binary tree

with any well-founded order on its nodes while preserving the decidability of the

MSO-theory.

Theorem 4.6
The MSO-theory of the full-binary tree together with any well-founded order is

undecidable.

In the particular case of tllex, the in�nite binary tree with the length-lexicographic

order (recall that nodes of the in�nite binary tree are the words in {0, 1}∗), this

result is well-known [15]. In fact, we showed that tllex can be MSO-interpreted in

the in�nite binary tree with any well-founded order.

Theorem 4.7
There exists an MSO-interpretation I such that for every well-ordered in�nite binary

tree t, I(t) is isomorphic to tllex

As MSO-interpretations preserve the decidability of MSO, Theorem 4.6 follows

from the undecidability of the MSO-theory of tllex and Theorem 4.7.

4.2 Notions of qualitative tree automata

In this section, we present a summary of a series of articles [42, 43, 41, 53] whose

aim was to enrich tree automata with qualitative features. One of our main goal was

to de�ne a notion of probabilistic tree automata with good algorithmic properties.

Forω-words, the notion of probabilistic Büchi automaton was introduced by Baier,

Bertrand and Größer in [8, 9]. Quite naturally, they proceed by adding probability

distributions on the transitions of a Büchi ω-automaton. For a �xed in�nite word,

the probabilities on the transitions induce a probability measure on the runs of the

automaton. An ω-word is accepted by the automaton if the probability for a run
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to be accepting is equal to 1. They show that the emptiness problem for this class

of automata is decidable by a reduction to deciding a winner in partial observation

Markow decision process (POMDP).

The extension to tree automata may seem, at �rst sight, straightforward. We

associate probabilities to transitions. A tree is accepted if the probability of a run to

be accepting is 1. However there are two main obstacles when working with this

natural de�nition:

• the set of accepting runs is only measurable for the Büchi acceptance condition. In

[116], it is prove that certain languages of trees accepted by deterministic co-Büchi

automata are not in the Borel hierarchy and hence are not measurable. In [43], we wrongly an-
nounced that the set of
accepting runs is mea-
surable for the parity
condition (but in fact we
only provided the proof for
the Büchi condition). This
mistake was pointed out
by Thomas Weidner and
corrected in [57]

Unlike for

ω-words, for in�nite trees, the Büchi acceptance condition is know to be strictly

weaker than the parity condition.

• it seems very di�cult to preserve the connection with games. In particular, already

for the reachability condition, we did not manage to de�ne a correct notion of

acceptance game for this model of automata. Intuitively, it is di�cult to device a

game that can simultaneously capture the probabilistic quanti�cation over runs

(i.e. almost all runs should be accepting) and the universal quanti�cation over

branchs of the runs (i.e. all branches of the run should be accepting).

To overcome these issues in [43], we proposed to relax the notion of accepting

run for a tree automaton. Usually a run of tree automaton is said to be accepting if

all branches satisfy the acceptance condition. We introduced a qualitative version

which says that a run is qualitatively accepting if almost all branches are accepting

(i.e., the probability that a branch of the run is accepting is 1). The idea to relax the

notion of accepting run is not new and was already present in the work Beauquier,

Nivat and Niwiński [10, 11] who relaxed the notion of accepting run by considering

only the cardinality of the set of accepting branches in the run.

In Section 4.2.1, we present qualitative tree automata which are non-deterministic

automata using the notion of qualitative acceptance for runs instead of the standard

one [43]. This model although not truly probabilistic is interesting for its on sake.

First they can model interesting properties cannot be captured by standard parity

tree automata. For instance, if we assume that the input tree represents the possible

executions of a process, a qualitative automaton can express that bad executions occur

with probability 0. This property cannot be expressed by a standard tree automaton.

Second at the time of their introduction, they appeared as a natural starting point to

capture extension of MSO with probabilistic quanti�ers. This intuition was partially

con�rmed by [17] which use an extension of qualitative tree automata called nonzero

automata to prove the decidability of Thin MSO + zero.

As a side result, we also present two other notions of qualitative tree automata

which are based on di�erent notions of accepting runs. The �rst notion is based

on counting the number of rejecting branches in a run and revisits the work of

Beauquier, Nivat and Niwiński. The second notion is based on the topological notion

of negligeable set called meager sets. In this context, a run is accepting if the set

of rejecting branches is meager. As these condition can be expressed in MSO logic

on trees, the corresponding models of tree automata are not more expressive than

standard parity tree automata.

In 4.2.2, we introduce probabilistic trees automata both with the standard notion

of acceptance for runs and with the qualitative one [43]. We will see that probabilis-
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tic Büchi tree automata with the qualitative acceptance condition for runs have a

decidable emptiness problem via a reduction to POMDP.

In 4.2.3, we present games with Nature which are the game counterpart of the tree

automata with qualitative acceptance conditions.

4.2.1 �alitative trees automata

In this section, we present qualitative tree automata which are based on the notion of

qualitative acceptance for runs. At the end of this section, we present other notions

of acceptance for runs.

To formally de�ne these notions, we need to �x a measure on the set {0, 1}ω of

in�nite branches of a binary treeTo simplify the presen-
tation, only consider
complete binary in�-

nite trees in this section

. We consider the unique measure µ such that for

all u ∈ {0, 1}∗, µ(u ⋅ {0, 1}ω) = 2−∣u∣. Intuitively this measure correspond to the case

where we have the same probability
1
2

to go left or right down the tree.

A run is qualitatively accepting if almost every (in the sense of the measure µ)

branch in it is accepting. More formally, consider a tree automaton A with an ω-

regular acceptance condition Acc. A run ρ of A is qualitatively accepting if the set

AccBr(ρ) = {π ∈ {0, 1}ω ∣ ρ(π) ∈ Acc} has measure 1, i.e., µ(AccBr(ρ)) = 1. In [43],

we proved that the set AccBr(ρ) is indeed measurable.

A tree t is qualitatively accepted by A if there exists a qualitatively accepting run

of A over t and the set of all trees qualitatively accepted by A is denoted LQual(A).

Finally, a qualitative tree language is a set L of trees such that there exists a parity

automaton A with LQual(A) = L.

Let us give two examples of qualitative tree languages. First consider, La to be the

language of {a,b}-labelled trees whose set of branches containing at least one a has

measure 1. This language is recognised by the following reachability deterministic

automaton A = ({q0,qf},{a,b},q0,∆,{qf}) where: ∆ = {q0
b→ (q0,q0),q0

a→
(qf,qf),qf

a→ (qf,qf),qf
b→ (q0,q0)}.

If one considers A as a Büchi automaton, the accepted language consists of those

trees whose set of branches containing in�nitely many a has measure 1.

For a further example, consider the language L1 to be the language of trees t

such that in almost every branch, there is a node u labelled by a such that the

subtree tu has only a on its leftmost branch. This language is recognised by the

non-deterministic reachability automaton A = ⟨A,Q,qw,∆,{qacc}⟩ withA = {a,b},

Q = {qw,ql,qacc,qrej}, and ∆ contains the following transitions: qw
∗→ (qw,qw),

qw
a→ (ql,qacc), ql

a→ (ql,qacc), ql
b→ (qrej,qrej), qacc

∗→ (qacc,qacc), qrej
∗→

(qrej,qrej) (here ∗ is a shorthand for an arbitrary letter). Intuitively, the automaton

can wait in state qw as long as it wants. Using the second transition, the automaton

can guess that the node u (labeled by a) has a leftmost branch containing only a.

This assumption is checked by sending on the leftmost branch the state ql and the

accepting state qacc on all other branches. As long as the nodes are labelled by a
the state ql is propagated to the left son. If all nodes on the leftmost branch starting

at u are labelled by a, this branch will be rejecting, but this does not a�ect the

measure as there are only countably many such branches). If a node v labelled by b
is encountered in state ql the non-accepting state qrej is propagated on all branches.

This last scenario cannot occur in an accepting run as these cones of rejecting

branches have a strictly positive measure. Hence the automaton is penalised for a

wrong guess.
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′
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′
≠ q

Figure 4.1. The arena GA of the emptiness game.

Using a pumping argument, we can show that the complement of La is not a

qualitative tree language.

Proposition 4.8
Qualitative tree languages are closed under union, intersection but not under com-

plementation.

Moreover qualitative tree languages are incomparable with regular tree languages.

The emptiness problem is decidable for qualitative tree automata. We construct an

emptiness game very similar to the standard emptiness game for parity tree automata

but where the choice of Abelard are replaced by random choices. Hence the 2-players

games becomes a Markov decision process (MDP) (see Section 2.6.1).

More formally, consider the (�nite) arena GA = ⟨S, sini,Σ, ζ⟩, depicted in Fig-

ure 4.1, where S = Q × {0, 1} ∪ {q0,�}, sini = q0, Σ = ∆ and ζ is de�ned as

follows. First we let d� be the distribution de�ned by d�(s) = 1 if s = � and

d�(s) = 0 otherwise, and, for all q0,q1 ∈ Q, we let dq0,q1 be the distribution such

that dq0,q1((q0, 0)) = dq0,q1((q1, 1)) = 1/2 and dq0,q1(s) = 0 for all other s ∈ S.

Then we let ζ((q, i), (q,a,q0,q1)) = dq0,q1 , ζ((q, i), (q ′,a,q0,q1)) = d� if q ≠ q ′,
ζ(q0, (q0,a,q0,q1)) = dq0,q1 , ζ(q0, (q,a,q0,q1)) = d� if q ≠ q0, and ζ(�,σ) = d�
for all σ ∈ ∆. Finally, we de�ne a colouring function ρ by letting ρ((q, i)) = Col(q)
and ρ(�) = 1, and we call GA = (GA,Oρ) the MDP equipped with the parity objective

Oρ de�ned by ρ.

Theorem 4.9
The language LQual(A) is non empty if and only if Éloise almost-surely wins in GA

from q0.

In particular, one can decide whether LQual(A) = ∅ in polynomial time. Moreover,

if LQual(A) /= ∅, it contains a regular tree, and such a tree can be constructed in

polynomial time.

Other notions of qualitative acceptance

In [53], we de�ned two other notions of qualitative acceptance for runs of tree

automata. Intuitively both conditions try to capture the fact the set of rejecting

branches in a run is negligible without using probability theory.

The �rst one, follows the idea of Beauquier, Nivat and Niwiński [11], and considers

a run to be cardinality accepting if it contains at most countably many rejecting

branches. Clearly a countable set of rejecting branch has measure 0 (for the measure

µ de�ned previously) but of course there are sets of rejecting branches of measure 0

which are not countable.
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The second one is based on topological “bigness” and “smallness” is given by large
and meagre sets respectively (see [85, 141] for a survey of the notion). The idea is to

see the set of branches in a tree as a topological space by taking as basic open sets the

cones. For a node u ∈ {0, 1}∗, the cone Cone(u) is de�ned as {π ∈ {0, 1}ω ∣ u ⊑ π}. A

set of branches B ⊆ {0, 1}ω is nowhere dense if for all nodes u, there exists v ∈ {0, 1}∗
such that no branch of B has uv as a pre�x. It is meagre if it is the countable union of

nowhere dense sets. Finally it is large if it is the complement of a meagre set. Meager

and large sets can be characterized by Banach-Mazur games which are two-player

games played on a tree.

From the modelisation point of view, the intuition is that meager sets (the comple-

ments of large sets) are somehow negligible. In [141], the authors give weight to this

idea by showing that, for regular trees (i.e., those trees obtained by unfolding �nite

graphs), the set of branches satisfying an ω-regular condition is large if and only

if it has probability 1. However they also show that in general, even for the Büchi

condition and when the tree is the unfolding of a pushdown graph, this is no longer

true (see [141, p. 27]).

A run is topologically accepting if the set of rejecting branches is meagre.

As both notions of accepting runs can be expressed in MSO logic, the languages

of tree accepted by tree automata with the cardinality acceptance or the topological

acceptance for runs are regular.

In [53], we provide a direct proof of this fact by constructing acceptance games for

these models of automata from which we construct equivalent tree automata with

the standard notion of accepting run.

4.2.2 Probabilistic trees automata

A probabilistic tree automaton A is a tuple (A,Q,qini, δ, Acc) where A is the input
alphabet, Q is a �nite set of states, q0 ∈ Q is the initial state, Acc ⊆ Qω is the

acceptance condition and δ is a mapping from Q×A×Q×Q to [0, 1] such that for all

q ∈ Q and a ∈ A, ∑q0,q1∈Q δ(q,a,q0,q1) = 1. Intuitively, the value δ(q,a,q0,q1) is

the probability for a transition q
a→ (q0,q1) to be used by the automaton when it is

in state q and reads the symbol a.

This probability distribution on the transitions induces a probability measure on

the set of runs of A. In this setting, a run of A is simply a Q-labeled tree whose

root is labeled by the initial state q0. We denote by Runs(A) (or simply Runs if

A is clear from the context) the set of all runs of A. We refer to [43] for a precise

de�nition of the probability measure µt on the measurable space (Runs,FR). It is

de�ned as expected on �nite partial runs as the product of all the probabilities of the

transitions appearing in this run and it is extended to the σ-algebra FR generated

by the cylinders associated to the partial runs. Note that both µt and (Runs,FR)
depend on t.

We denote by AccRuns(A) the set of accepting runs of A and by QualAccRuns(A)
the set of qualitatively accepting runs of A.

Proposition 4.10 ([43, 57])
For all probabilistic tree automata A with an ω-regular acceptance condition, the

QualAccRuns(A) are measurable.

However the set AccRuns(A) is only measurable in general for the Büchi condi-

tion.



4.2 Notions of qualitative tree automata 63

As we did not obtain any positive results for probabilistic tree automata with

the classical notion of acceptance for runs, we focus on probabilistic tree automata

equipped with the qualitative notion of acceptance for runs.

A tree t is (almost-surely) accepted by A with the qualitative semantics if almost all

runs of A on t are qualitatively accepting, i.e., µt(QualAccRuns(A)) = 1. We denote

by L=1
Qual

(A) the set of trees accepted by A with the qualitative semantics for runs.

More formally, L=1
Qual

(A) = {t ∣ µt(QualAccRuns(A)) = 1}.

Not too surprisingly, the languages accepted by probabilistic tree automata can be

shown to be incomparable with regular tree languages and qualitative tree languages.

Before proceeding, let us give some examples of languages accepted by probabilistic

tree automata. For an ω-word language L ⊆ {a,b}ω, we denote by Path
=1(L) the

set of trees labeled by {a,b} with almost all their branch labels in L (i.e., µ({π ∈ Br ∣
t(π) ∈ L}) = 1). It is easy to see that, for anyω-regular language L, the tree language

Path
=1(L) is a qualitative tree language.

More interestingly, if L is almost-surely accepted by a probabilistic ω-word au-

tomaton with an ω-regular acceptance condition, we can show that Path
=1(L) is

accepted by a probabilistic tree automaton (with the qualitative semantics).

Proposition 4.11
Given a probabilisticω-word automaton B with anω-regular acceptance condition,

there exists a probabilistic tree automaton A with the same acceptance condition

such that L=1
Qual

(A) is equal to Path
=1(L=1(B)).

This proposition in particular shows that the emptiness problem for probabilisticω-

word automata can be reduced to the same problem for probabilistic tree automata

for the same acceptance condition. In particular, we inherit the negative results

from [8].

Theorem 4.12
The emptiness problem for probabilistic co-Büchi tree automaton A is undecidable.

On the positive side, we showed that the emptiness problem is decidable for the

Büchi acceptance condition. We reduce this problem to deciding almost-surely win-

ning in a POMDP, and the reduction works for any ω-regular acceptance condition.

However, the corresponding decision problem on POMDPs is only decidable for the

Büchi condition. Hence we only obtain decidability in the Büchi case.

Let A = (Q,A,q0, δ, Acc) be a probabilistic automaton with an ω-regular accep-

tance condition and let ∆ = Q ×Q ×Q.

De�ne a POMDP GA = (G,∼,O) as follows. The arena G is equal to ⟨S, sini,A, ζ⟩
where S = Q×{0, 1,�}×(∆∪{�}), sini = (q0,�,�) and ζ is de�ned as follows. For all

a ∈ A and (p, x, t) ∈ S, ζ((p, x, t),a) is the distribution that assigns
1
2
δ(p,a,q0,q1)

to (qy,y, (p,q0,q1)) where y = 0, 1 and 0 to all other state. The objective O is

the set of plays for which the sequence of states obtained when projecting on the

�rst component belongs to Acc. The equivalence relation ∼ is de�ned by (q, x, t) ∼
(q ′, x ′, t ′) i� x = x ′. Intuitively, in GA, Éloise describes a branch along a tree and

Random builds a piece of run along this branch. As Éloise does not observe the state

in the run constructed by Random, it does not in�uence her choice for the branch.

Theorem 4.13
Let A be a probabilistic tree automaton with an ω-regular acceptance condition.
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The language L=1
Qual

(A) is non-empty if and only if Éloise almost-surely wins in GA.

For the Büchi acceptance condition, this leads to a decidability result for the

emptiness problem. From the existence of positional winning strategies in Büchi

POMDP, we derive the existence of a regular tree in the accepted language.

Corollary 4.14
Let A be a probabilistic Büchi tree automaton. Deciding emptiness of L=1

Qual
(A) is an

ExpTime-complete problem. Moreover, if L=1
Qual

(A) ≠ ∅, it contains a regular tree.

4.2.3 Games with Nature

In this section, we present the game counter-part of the qualitative notions of accep-

tance for tree automata presented in Section 4.2.1. This idea was originally suggested

to us by Damian Niwiński.

To achieve this goal, in [41], we added to Éloise and Abelard, a third player called

Nature. Intuitively, Nature is seen as an uncontrolled player and its choices are left

uninterpreted. The semantics of Nature will be given when we de�ne the notion

of winning strategy. The notions of strategy, play, ... are de�ned as usual (see

Section 2.6.1).

In a game G starting from some initial vertex v0, with Éloise, Abelard and Nature

with an objective Ω ⊆ Vω, if we �x a strategy ϕE for Éloise and a strategy ϕA
for Abelard, the outcome is no longer a single play but a set of plays, denoted by

Outcomes
ϕE,ϕA

, which correspond to the di�erent choices of Nature. By de�nition,

Outcomes
ϕE,ϕA

has a tree structure where the branching nodes correspond to nodes

belong to Nature. The �gure below present (on the left) �nite Büchi game played

between Éloise (whose vertex is a represented by a circle), Abelard (whose vertex

is represented by a square) and Nature (whose vertex is represented by a diamond).

The aim is to visit in�nitely often the vertex colored in red. On the right, it present

the tree Outcomes
ϕE,ϕA

for the strategy ϕE of Éloise consisting in always moving to

the vertex own by Nature and the strategy ϕA of Abelard also consisting of always

moving to vertex own by Nature.

The standard notion of winning strategy for Éloise would be that for all strategy

ϕA of Abelard all the element of Outcomes
ϕE,ϕA

belong to Ω.

We consider relaxed notions of winning strategies similar to the qualitative notion

of accepting runs we introduced at the end of Section 4.2.1.

A strategy ϕE for Éloise is cardinality good if for all strategy ϕA of Abelard the

tree Outcomes
ϕE,ϕA

contains at most countably many rejecting branches (i.e., not in
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Ω).

A strategy ϕE for Éloise is topologically good if for all strategy ϕA of Abelard the

the set of rejecting branches is meager in the tree Outcomes
ϕE,ϕA

.

In the Büchi game presented above, Éloise does not have a winning strategy.

However the strategy ϕE consisting in always moving to the node controlled by

Nature is both cardinality good and topological good.

We can easily recover the probabilistic semantic by de�ning a strategy ϕE to be

almost-surely winning if for all strategy ϕA of Abelard the set of accepting branches

in the tree Outcomes
ϕE,ϕA

has measure 1 (or equivalently the set of rejecting branches

has measure 0).

Our contribution in [41], is to transform games with Nature equipped with the

cardinality or topological semantic into equivalent games without Nature. These

transformations do not assume that the arena is �nite and only assume that the

objective of the game is Borel. We also obtain similar transformations for games

with imperfect informations but with more restrictions. The scope of our results is

summarised in the table below.

Cardinality good ? Topologically good?

Perfect-information

No extra hypothesis on G
No extra hypothesis on Ω

Eve + Nature only

No extra hypothesis on Ω

Imperfect-information

Adam perfect

Ω: parity

Eve + Nature only

Ω: parity

Let us conclude by brie�y mentioning some consequences of this work. In the

case of the topological semantic, our approach subsumes the approach of Asarin et

al. in [6]. In fact their approach corresponds to games played between Éloise and

Nature in our context but we are not limited to �nite arena or parity conditions.

One of the main consequences of this work is can use the cardinality or topological

semantic in situations where the probabilistic semantic is undecidable. For example,

we can decide if Éloise wins a one-player collapsible parity game with the topological

semantic but this problem is undedicable for the probabilistic semantic. Using the

decidability of MSO on the unfolding of these games, we can even decide the winner

in a two-player collapsible parity game with the topological semantics, thanks to a

remark of Pawel Parys. However at the moment, we do not have a game reduction

in this setting.

4.3 Tree automata with equality between siblings

In this section, we consider the extension of parity tree automata with the ability to

test equality (or disequality) between the direct sub-trees of a node. Roughly speaking

we consider parity tree automata where some transitions are guarded and can be

used only when the two direct sub-trees of the current node are equal/disequal.

This work generalizes to in�nite trees the work by Bogaert and Tison [16] who

considered a model of automata on �nite ranked trees where one can check equality

and disequality constraints between direct subtrees: they proved that this class of
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automata is closed under Boolean operations and that both the emptiness and the

�niteness problem of the accepted language are decidable.

For in�nite trees, we showed in [49] that the resulting class of languages encom-

passes the one of regular languages of in�nite trees while sharing most of its closure

properties, in particular it is a Boolean algebra. Our main technical contribution was

then to prove that it also enjoys a decidable emptiness problem. In fact, we proved a

stronger decidability result and showed that we can compute the cardinality of the

accepted language.

The theory of tree automata with equality and disequality constraints on �nite trees

has been developed during the last two decades. Over this period, the decidability

results have been pushed to stronger and stronger models. As one remarkable result,

the theory of these automata has provided tools for solving a long standing open

question, namely the decidability of the “HOM problem” [84, 83], which asks for a

given regular language T of �nite trees and a tree homomorphism h, whether the

image h(T) of T under h is a regular tree language.

In the case of in�nite trees, our main motivation was to enrich the properties

that can be modeled by tree automata while remaining algorithmically tractable.

As remarked in [106], our result implies the decidability of MSO enriched with a

predicate expressing the equality between the two subtrees of a given node. In [106],

Landwehr and Löding showed the closure under projection for the Büchi acceptance

condition. In [107], they studied parity tree automata with global constraints as

opposed to the local ones considered in this section.

4.3.1 Definition and basic properties

With any A-labelled tree t we associate a unique A × {=,≠}-labelled tree denoted

t
?

=
obtained by annotating every node u in t by an extra information regarding on

whether the left and the right subtrees of u are equal or not. More formally, for every

u ∈ {0, 1}∗, we have:

t
?

=(u) =
⎧⎪⎪⎨⎪⎪⎩

(t(u),=) if tu0 = tu1
(t(u),≠) if tu0 ≠ tu1

A parity tree automaton with (equality and disequality) constraints over an alphabet

A is a parity tree automaton A over the alphabet A × {=,≠}. Hence, viewed as

a standard tree automaton, it recognises a language of A × {=,≠}-labelled trees.

However, it will mainly be used to de�ne languages of A-labelled trees: for that we

de�ne

Lcon(A) = {t ∣ t
?

= ∈ L(A)}.

An alternative way of thinking of an automaton with constraints processing an

A-labelled tree is by considering it as using guards: a transition (q, (a, ι),q0,q1) can

only be �red in a node labelled by a where both subtrees are equal (resp. di�erent)

in case ι is = (resp. ≠).

In the following, we will refer to Lcon(A) as the language recognised by A. Some-

times we explicitly refer to Lcon(A) as the constrained language of A to stress that

it satis�es the constraints from the transitions. We denote by REG
?

=
the class of

languages recognised by automata with equality and disequality constraints. As the

regular tree languages form an e�ective Boolean algebra, we immediatly have that:
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Proposition 4.15
The class REG

?

=
is an e�ective Boolean algebra.

Obviously, every standard tree automaton can easily be turned into an equivalent

tree automaton with constraints (for instance by introducing two transitions, one

with each guard, for each transition). Furthermore, it is clear that the language of

{a,b}-labelled trees L = {t ∣ t0 = t1} can be recognised by a tree automaton with

constraints but not by a standard tree automaton.

Proposition 4.16
The class of regular languages of in�nite trees is strictly included in REG

?

=
.

4.3.2 Decidability of the cardinality problem

In this section, we are interested in computing the cardinality of languages of the

form Lcon(A). Independently of the Continuum Hypothesis, we proved that the

cardinality of a constrained language Lcon(A) is either �nite, ℵ0 (the cardinal of the

natural numbers), or 2ℵ0 (the cardinal of the reals). A similar statement is proved for

regular languages of in�nite trees in [115].

Problem 4.17 (Cardinality Problem)
The cardinality problem asks, for a given automaton with equality and disequality

constraints A to compute the cardinality of Lcon(A).

Obviously, the decidability of the cardinality problem implies the decidability of

the emptiness problem. Furthermore, it generalises the �niteness problem, which is

to decide for a given automaton whether its language is �nite.

In [115], Niwiński proved that the cardinality problem is decidable for regular lan-

guages of in�nite trees. In addition, he gave e�ective characterisations for countable

and uncountable regular languages of in�nite trees which will play a central role in

our proof.

First we showed that we can consider special cases of automata, automata with
disequality everywhere, that correspond to automata with a transition relation ∆ ⊆
Q × (A × {≠}) × Q × Q. Obviously, these automata are strictly less expressive

than the full class of automata with equality and disequality constraints. However,

Theorem 4.18 below shows that one can remove equality constraints and even

require disequality constraints in all transitions without changing the cardinality of

the accepted language.

Theorem 4.18
Let A be a parity automaton with equality and disequality constraints. Then one

can build an automaton B with disequality everywhere (over an alphabet with two

new symbols) that is such that Lcon(A) and Lcon(B) have the same cardinality. If

A is a safety (resp. Büchi) automaton, then so is B.

For parity tree automata with disequality everywhere, we are able to prove the

decidability of the cardinality problem. Combined with Theorem 4.18, we obtained

the desired result.

Theorem 4.19
The cardinality problem for parity tree automata with with equality and disequality
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constraints is decidable.

The proof of this theorem is extremely involved. We will try to present a �avor of

it in the case of the Büchi acceptance condition.

The �rst idea of the proof is to consider the unconstrained version Â of a tree

automaton with constraints A. Intuitively Â mimics A but ignores the guards. More

formally, starting from A = (Q,A × {=,≠},q0,∆, Col) we let Â = (Q,A,q0,∆ ′, Col)
where ∆ ′ = {(q,a,q0,q1) ∣ (q, (a,=),q0,q1) ∈ ∆ or (q, (a,≠),q0,q1) ∈ ∆}. We

refer to L(Â) as the unconstrained language of A.

For any automaton with equality and disequality constraints A one has Lcon(A) ⊆
L(Â).

A �rst result of the proof is that if the unconstrained language of A is countable, we

can reduce the cardinality problem to the �niteness problem for �nite tree automata

with equality and disequality which is shown to be decidable in [16]. Essentially

this is due to the very special form of countable regular languages of in�nite trees

established in [115].

Theorem 4.20
LetA be a parity tree automaton with equality and disequality constraints on in�nite

trees. If L(Â) is countable, then one can compute the cardinality of Lcon(A), and

in case it is �nite Lcon(A) consists only of regular trees and can be e�ectively

computed.

We now turn to the solution of the cardinality problem for Büchi acceptance

condition. Our aim is to compute the cardinality pro�le of A, denoted by κA, which

is a mapping κA ∶ Q→ N∪{ℵ0, 2ℵ0} associating to every state q of A the cardinality

of the constrained language accepted by A from q, denoted by Lcon(Aq).

Our algorithm works with a slightly extended model of automaton which can

directly check, in some node u, that t[u] equals some regular tree. This will not add

any expressive power to our model (both the constrained and the unconstrained one)

but it greatly simpli�es the presentation. An extended tree automata can propagate a

regular tree instead of a state in its transitions – the intended meaning being to only

accept this particular regular tree.

We now give two constructions used in our algorithm. Each of them takes an

(extended) automaton with disequality everywhere A and produces another automa-

ton B that is such that (when used in the right context) Lcon(A) = Lcon(B); and

L(B̂) ⊆ L(Â).

Let A = (Q,A,q0,∆, Col) be an extended automaton with disequality everywhere.

Let q ∈ Q be a state such that Lcon(Aq) = ∅. Then we de�ne a new automa-

ton Aq↦∅= (Q ∖ {q},A,q0,∆
′
, Col) where ∆ ′ is obtained from ∆ by only keeping

transitions that do not involve q, i.e., ∆ ′ = {(p, (a,≠),p0,p1) ∈ ∆ ∣ p,p0,p1 ≠ q}.

Let A = (Q,A,q0,∆, Col) be an extended automaton with disequality everywhere.

Let q ∈ Q be a state such that Lcon(Aq) = {t1, . . . , tn} is a �nite set of regular trees.

Then we de�ne a new automaton Aq↦t1,...,tn= (Q ∖ {q},A,q0,∆ ′, Col) where ∆ ′ is

obtained from ∆ by replacing every transition of the form (p, (a,≠),q0,q1) with q0
and/or q1 being equal to q by all the transitions obtained by substituting occurrences

of q with elements of {t1, . . . , tn}, where in case q0 = q1 = q the trees substituted

for the two occurrences of q have to be di�erent.

Our algorithm (Algorithm 1) takes as input a Büchi automaton with disequality

constraints everywhere A = (Q,A,q0,∆, Acc). The algorithm identi�es states whose
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Algorithm 1 Solve the cardinality problem for safety/Büchi automata

Input:
Tree automaton with disequality constraints everywhere A = (Q,A,q0,∆, Acc)

Data Structure:
Set S← Q

Automaton B← A

Function κ ∶ Q→ N ∪ {ℵ0, 2ℵ0}; κ(q) ← 2ℵ0 for all q

Code:
1: while ∃q ∈ S s.t. ∣L(B̂q)∣ ⩽ ℵ0 do
2: κ(q) ← ∣Lcon(Bq)∣
3: if κ(q) = 0 then
4: B← Bq↦∅
5: else if κ(q) < ℵ0 then
6: Let Lcon(Bq) = {t1, . . . , tn}
7: B← Bq↦t1,...,tn

8: end if
9: S← S ∖ {q}

10: end while
11: return κ

unconstrained language is countable (which is decidable according to [115]), and

then determines the cardinality of the constrained language (Theorem 4.20). States

for which the constrained language is �nite are substituted by the regular trees in this

language (which can be computed according to Theorem 4.20) using the operation

Aq↦t1,...,tn , and states with empty constrained language are eliminated using the

operation Aq↦∅. Note that these states remain in the state set because we want to

keep the set �xed. However, they become unreachable by these operations.

The modi�cations do not change the constrained language accepted by the au-

tomaton. However, it might change the unconstrained languages. In particular, an

unconstrained language that was uncountable may become countable by such a

modi�cation. The algorithm iterates this process until no new states with countable

unconstrained language are found, and returns a cardinality pro�le κ. We prove

that if the acceptance condition in A is a Büchi condition, then κ is the cardinality

pro�le of A. This proof basically amounts to showing that the states for which the

unconstrained language is uncountable upon termination of the algorithm, also have

an uncountable constrained language. The proof is a technical construction showing

how to build uncountably many trees in the constrained language of each state q

such that κ(q) = 2ℵ0 . It is based on a result of Niwinski [115] that characterises

uncountable ω-regular languages. This construction only works for the Büchi condi-

tion. Indeed this algorithm is incorrect when applied to a co-Büchi tree automaton.

In fact, our proof in the co-Büchi case is quite di�erent. The proof for the parity case

combines the ideas of both the Büchi and co-Büchi case.
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Perspectives

We now present some questions and problems that were opened by the work pre-

sented in this manuscript. Of course, our research plan is not limited to these

questions.

E�icient synthesis algorithms for recursion schemes

As we have seen in Section 3.3, they are e�cient algorithms for model-checking

reachability or safety properties on recursion schemes. A �rst natural task is to

generalize the saturation based algorithm we introduced in [23] to solve parity
collapsible pushdown games. At order 1, Hague and Ong have generalized the

standard saturation method from reachability pushdown games to parity pushdown

games [94]. We believe the same general methodology can be extended to higher

order parity games.

A more challenging problem is to �nd e�cient algorithms for the e�ective selection

problem for the modal µ-calculus. We have seen in Section 3.3.4, that the e�ective

selection problem for the µ-calculus at its core reduces to constructing winning

strategies in parity collapsible pushdown games. If we want to device algorithms

that work well in practice, we need some form of incremental construction and not

algorithms that start by construction objects of exponential (or towers of exponential)

sizes. Following this line of reasoning the question is whether it is possible to �nd

saturation-like algorithms for the synthesis of winning strategies in collapsible

pushdown games.

Already at order 1 (i.e., for simple pushdown games), the question is already non-

trivial. The saturation method for computing the winning region in a reachability

pushdown game naturally de�nes a strategy implemented by a pushdown automata.

However we would ideally like to synthesis positional strategies where the move

only depends on the current con�guration. It is known that for pushdown games,

positional strategies can be de�ned using deterministic �nite automata reading the

con�guration (from the bottom of the stack) and outputting the move to play. These

strategies are called regular strategies. It follows from [139] that a winning regular
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strategy can be computed in EXPTIME. However this method starts by building an

object of exponential size and is hence unlikely to be useful in practice.

We have been studying it with Didier Caucal and Olivier Serre for quite a while

now. Our initial goal was to give a saturation algorithm for computing positional

winning strategies in parity pushdown games. Sadly we did not fully succeed yet

but we have obtained some results along the road.

A �rst natural question is which positional strategy to synthesise. For reachability

games, the most natural candidate is the optimal strategy: the strategy that reaches

the target set in the smallest amount of steps regardless of the opponent’s moves.

With Olivier Serre, we showed in [56] that in general enriching a pushdown game

with the optimal strategy may result in a graph with an undecidable MSO-theory.

In particular the resulting graph is no longer a pushdown graph. This give a strong

indication that the optimal strategy is not the one we should try to implement.

In [31], Cachat gave an algorithm to compute the distance of a con�guration to the

target set based on the saturation method. Cachat algorithm enriches the standard

saturation algorithm to assign to each transition of the saturated automaton a weight

in N and de�nes the distance of a con�guration as the minimal weight of an accepting

run. With Matthew Hague, we showed in [44] that this algorithm only computes an

upper-bound on the distance. We corrected the algorithm by assigning more precise

weights in Nd.

Still with Matthew Hague, we showed that a regular positional strategy can be

computed from the saturation algorithm for reachability pushdown games. The �nite

deterministic �nite automata characterizing the positional strategies are constructed

using the informations collected during the saturation algorithm. The complexity

matches that of [139]. However this approach su�ers from the same shortcomings

as we end up building an exponential object in all cases.

In an unpublished work with Didier Caucal and Olivier Serre, we give a saturation

algorithm for computing positional winning strategies in reachability pushdown

games. We work with graph grammars instead of pushdown systems. Graph gram-

mars [70] are deterministic graph rewriting systems that (under some restrictions)

are equivalent to pushdown systems (see [61] for a survey of this notion). The algo-

rithm takes as input a graph grammar generating the pushdown game and saturates

it with edges marking a winning strategy for the �rst player. The complexity of the

resulting algorithm applied to a graph grammar G of arity ρ is in O(2p(ρ)q(∣G∣)) for

some polynomials p and q. In particular, our algorithm is �xed parameter tractable.

The algorithm is quite simple to implement most of the di�culty is in its correctness

proof.

A non-trivial task is to extend this approach to parity pushdown games and to

higher-order pushdown games.

Structural characterization of recursion schemes

One of the goal of our work was to demonstrate the power of the approach by graph

transformation à la Caucal to study safe recursion schemes. It is possible to extend it

to terms generated by unsafe recursion schemes [64]. Of course, we cannot hope to

have a characterization as nice as for the safe recursion schemes. For instance, it is

known that collapsible pushdown graph have an undecidable MSO-theory already at

order 2 [92]. This approach remains unpublished and therefore relatively unexplored.
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It might be possible to use it to derive decidability result for the MSO logic using

the recent advances on models for the λY-calculus as some of the challenges are the

similar. But we also think that this approach could be instrumental in understanding

the structures de�ned by unsafe recursion schemes. As a test case, it would be

interesting to obtain a characterization of the ordinal de�nable by unsafe recursion

schemes.

Structures defined by recursion schemes

In Section 3.5, we gave some results on families of structures de�ned by safe recursion

schemes. This work is only preliminary and the expressivity of recursion schemes

when describing in�nite structures is not well-understood.

It would be for instance interesting to characterize the functions f such that Combf

is representable by a scheme of order k. A similar family of functions (de�ned by safe

schemes) was studied by Fratani and Sénizergues [80] for which they established

numerous closure properties. The class in the unsafe case should enjoy similar

closure properties.

In Section 3.5.1, we characterized the ordinals de�ned by safe recursion schemes.

Unsafe recursion schemes are more expressive than safe ones for generating terms

[123]. We conjecture however that they have the same expressive power when it

comes to generating ordinals. A possible way to prove this result could be via a

typing approach similar to the one developed by Parys for deciding the �niteness

problem in [122]. Proving this conjecture would also provide another proof of the

strictness of the hierarchy of terms generated by unsafe recursion schemes.

If this conjecture is true, only the ordinal below ε0 are de�nable by recursion

schemes. It is natural to wonder if there exists a tree with a decidable MSO-theory

whose frontier is ε0. This problem is more di�cult than it seems. However it would

be a good starting point to extend the hierarchy of recursion schemes.

Revisiting notions of regularity

Three notions of regularity have been de�ned for set of higher-order stacks and

stacks with links : two of them where introduced in [45, 26] and are presented

in this document in Section 3.3.3 and the other one was introduced in [33] and

independently in [82]. Surprisingly these three notions share many properties: they

are all Boolean algebras, they capture the winning regions of parity games on the

relevant model of higher-order pushdown automata, ...

We believe that all these results can be uniformly using the existence of �nitary

models of the λY-calculus for MSO. In some sense, the notion of regularity can be

derived from the recursion schemes de�ning the corresponding model of higher-order

pushdown automaton.

A more ambitious task would be to unify the di�erent �nitary models introduced

for MSO on the λY-calculus.

Games with Nature

A natural question regarding games with Nature presented in Section 4.2.3 is to

generalize our approach to games with Éloise, Abelard and Nature in the topological
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setting.

Another line of research is to consider games with Nature in their full form. Recall

that, in a game with Nature, �xing a strategy for both Éloise and Abelard does no

longer result in a unique in�nite play but rather in a tree of plays. It is natural to

consider the winning objective to be a regular set of in�nite trees rather than an

ω-regular set of in�nite words. As remarked to us by Pawel Parys, if the game with

Nature has a decidable MSO-theory, we can decide if Éloise has winning strategy.

However these general games are largely unexplored. In particular, we do not know

for which objectives these games are determined or if these general objectives could

be used to model interesting properties.
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