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Abstract

Well-founded fixed points have been used in several areas of knowl-
edge representation and reasoning and in particular to give semantics to
logic programs involving negation. They are an important ingredient of
approximation fixed point theory. We study the logical properties of the
(parametric) well-founded fixed point operation. We show that the oper-
ation satisfies several, but not all of the standard equational properties of
fixed point operations described by the axioms of iteration theories.

1 Introduction

Fixed points and fixed point operations have been used in just about all areas
of computer science. There has been a tremendous amount of work on the exis-
tence, construction and logic of fixed point operations. It has been shown that
most fixed point operations, including the least (or greatest) fixed point opera-
tion on monotonic functions over complete lattices, satisfy the same equational
properties. These equational properties are captured by the notion of iteration
theories, or iteration categories, cf. [2] or [14] for a recent survey.

For an account of fixed point approaches to logic programming containing
original references, we refer to [21]. These approaches, and in particular the
stable and well-founded fixed point semantics of logic programs with negation,

∗The second author received support from NKFI grant no. ANN 110883 and the Université
Paris Est.
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based on the notion of bilattices, have led to the development of an elegant
abstract ‘approximation fixed point theory’, cf. [9, 10, 28].

In this paper, we study the equational properties of the well-founded fixed
point operation as defined in [9, 10, 28] with the aim of relating well-founded
fixed points to iteration categories. We extend the well-founded fixed point
operation to a parametric operation giving rise to an external fixed point (or
dagger) operation [2, 3] over the cartesian category of approximation function
pairs between complete bilattices. We offer an initial analysis of the equational
properties of the well-founded fixed point operation. Our main results show
that several identities of iteration theories hold for the well-founded fixed point
operation, but some others fail.

2 Complete lattices and bilattices

Recall that a complete lattice [6] is a partially ordered set L, ordered by a
relation ≤, such that each X ⊆ L has a supremum

∨
X and hence also an

infimum
∧
X. In particular, each complete lattice has a least and a greatest

element, respectively denoted either ⊥ and >, or 0 and 1. We say that a function
f : L→ L over a complete lattice L is monotonic (anti-monotonic, resp.) if for
all x, y ∈ L, if x ≤ y then f(x) ≤ f(y) (f(x) ≥ f(y), resp.).

A complete bilattice1 [21, 20, 22] (B,≤p,≤t) is equipped with two partial
orders, ≤p and ≤t, both giving rise to a complete lattice. We will denote the
≤p-least and greatest elements of a complete bilattice by ⊥ and >, and the
≤t-least and greatest elements by 0 and 1, respectively.

An example, depicted in Figure 1, of a complete bilattice is FOUR, which
has 4 elements, ⊥,>, 0, 1. The nontrivial order relations are given by ⊥ ≤p
0, 1 ≤p > and 0 ≤t ⊥,> ≤t 1.

⊥ (0, 1)

> (1, 0)

0 (0, 0) 1 (1, 1)

≤t

≤p

Figure 1: A representation of FOUR ≈ 2× 2 taken from [21].

1Sometimes bilattices are equipped with a negation operation and the bilattices as defined
here are called pre-bilattices.
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Two closely related constructions of a complete bilattice from a complete
lattice are described in [9] and [20], see also [5] and [22] for the origins of the
constructions. Here we recall one of them. Suppose that L = (L,≤) is a
complete lattice with extremal (i.e., least and greatest) elements 0 and 1. Then
define the partial orders ≤p and ≤t on L× L as follows:

(x, x′) ≤p (y, y′) ⇔ x ≤ y ∧ x′ ≥ y′

(x, x′) ≤t (y, y′) ⇔ x ≤ y ∧ x′ ≤ y′.

Then L × L is a complete bilattice with ≤p-extremal elements ⊥ = (0, 1) and
> = (1, 0), and ≤t-extremal elements 0 = (0, 0) and 1 = (1, 1). Note that when
L is the 2-element lattice 2 = {0 ≤ 1}, then L × L is isomorphic to FOUR
as depicted in Figure 1. In this paper, we will mainly be concerned with the
ordering ≤p.

In any category, we usually denote the composition of morphisms f : A→ B
and g : B → C by g ◦ f and the identity morphisms by idA. We let SET
denote the category of sets and functions and we denote by CL the category of
complete lattices and monotonic functions. Both SET and CL have all products
and hence are cartesian categories. The usual direct product, equipped with the
pointwise order in CL, serves as categorical product. In CL, a terminal object
is a 1-element lattice T . In both categories, for any sequence A1, . . . , An of
objects, the categorical projection morphisms πA1×···×An

i : A1× · · · ×An → Ai,
i ∈ [n] = {1, . . . , n}, are the usual projection functions.

Products give rise to a tupling operation. Suppose that fi : C → Ai, i ∈ [n]
in SET or CL, or in any cartesian category. Then there is a unique f : C →
A1 × · · · × An with πA1×···×An

i ◦ f = fi for all i ∈ [n]. We denote this unique
morphism f by 〈f1, . . . , fn〉 and call it the (target) tupling of the fi (or pairing,
when n = 2). Note that in SET and CL, we have f(x) = (f1(x), . . . , fn(x)) for
all x ∈ C.

And when f : C → A and g : D → B, then we define f × g as the unique
morphism h : C×D → A×B with πA×B1 ◦h = f◦πC×D1 and πA×B2 ◦h = g◦πC×D2 .
In SET and CL, h(x, y) = (f(x), g(y)) for all x ∈ C and y ∈ D.

If m,n ≥ 0, ρ is a function [m]→ [n] and A1, . . . , An is a sequence of objects
in a cartesian category, we associate with ρ (and A1, . . . , An) the morphism

ρA1,...,An = 〈πA1×···×An

ρ(1) , . . . , πA1×···×An

ρ(m) 〉

from A1 × · · · ×An to Aρ(1) × · · · ×Aρ(m) (Note that in SET and CL, ρA1,...,An

maps (x1, . . . , xn) ∈ A1 × · · · × An to (xρ(1), . . . , xρ(m)) ∈ Aρ(1) × · · · × Aρ(m).)
With a slight abuse of notation, we usually let ρ denote this morphism as well.
Morphisms of this form are sometimes called base morphisms. When m = n and
ρ is a bijection, then the associated morphism A1×· · ·×An → Aρ(1)×· · ·×Aρ(n)
is an isomorphism. Its inverse is the morphism associated with the inverse ρ−1 of
the function ρ. For each object A, the base morphism associated with the unique
function [m] → [1] is the diagonal morphism ∆A

m = 〈idA, . . . , idA〉 : A → Am,
usually denoted just ∆m.
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3 The category CL

The objects of CL are complete lattices. Suppose that A,B are complete
lattices. A morphism from A to B in CL, denoted f : A

•→ B, is a ≤p-
monotonic function f : A × A → B × B, where A × A and B × B are the
complete bilatices determined by A and B. Thus, f = 〈f1, f2〉 such that
f1 : A × A → B is monotonic in its first argument and anti-monotonic in
the second argument, and f2 : A × A → B is anti-monotonic in its first ar-
gument and monotonic in its second argument. (Such functions f are called
approximations in [28].) Composition is the ordinary function composition and

for each complete lattice A, the identity morphism idA : A
•→ A is the identity

function idA×A = idA × idA = 〈πA×A1 , πA×A2 〉 : A×A→ A×A.
The category CL has finite products. (Actually it has all products). Indeed,

a terminal object of CL is any 1-element lattice T . Suppose that A1, . . . , An are
complete lattices. Then consider the direct product A1 × · · · ×An as an object
of CL together with the following morphisms πA1×···×An

i : A1× · · · ×An
•→ Ai,

i ∈ [n]. For each i, πA1×···×An
i is the function

A1 × · · · ×An ×A1 × · · · ×An → Ai ×Ai

defined by

πA1×···×An
i (x1, . . . , xn, x

′
1, . . . , x

′
n) = (xi, x

′
i),

so that in SET, πA1×···×An
i can be written as

〈πA1×···×An×A1×···×An
i , πA1×···×An×A1×···×An

n+i 〉 = πA1×···×An
i × πA1×···×An

i .

It is easy to see that the morphisms πA1×···×An
i , i ∈ [n], determine a product

diagram in CL. To this end, let f i = 〈f i1, f i2〉 : C
•→ Ai in CL, for all i ∈ [n], so

that each f i is a ≤p-monotonic function C×C → Ai×Ai. Then let h = 〈h1, h2〉
be the function C×C → A1×· · ·×An×A1×· · ·×An, where h1 = 〈f11 , . . . , fn1 〉
and h2 = 〈f12 , . . . , fn2 〉. Thus, h1 and h2 are functions C × C → A1 × · · · ×An.

We prove that h is the target tupling of f1, . . . , fn in CL. First, since
each f i1 is monotonic in its first argument and anti-monotonic in the second
argument, the same holds for h1. In the same way, h2 is anti-monotonic in the
first argument and monotonic in the second. Thus, h is ≤p-monotonic. Next,

writing just πi for πA×···×An
i and πi for πA×···×An

i , where i ∈ [n], we have

πi ◦ h = πi ◦ 〈h1, h2〉
= (πi × πi) ◦ 〈〈f11 , . . . , fn1 〉, 〈f12 , . . . , fn2 〉〉
= 〈πi ◦ 〈f11 , . . . , fn1 〉, πi ◦ 〈f12 , . . . , fn2 〉〉
= 〈f i1, f i2〉
= fi.

It is also clear that h is the unique morphism C
•→ A1 × · · · × An in CL with

this property.
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Proposition 1 CL is a cartesian category in which the product of any objects
A1, . . . , An agrees with their product in CL.

By the above argument, the tupling of any sequence of morphisms f i =
〈f i1, f i2〉 : C

•→ Ai in CL is h = 〈h1, h2〉, where h1 is the tupling of the functions
f i1 and h2 is the tupling of the functions f i2 in SET. We will denote it by

〈〈f1, . . . , fn〉〉 : C
•→ A1 × · · · ×An.

For further use, we note the following. Suppose that ρ : [m] → [n] and
A1, . . . , An are complete lattices. Then the associated morphism ρA1,...,An :
A1 × · · · ×An

•→ Aρ(1) × · · · ×Aρ(m) in CL is the function

A1 × · · · ×An ×A1 × · · · ×An → Aρ(1) × · · · ×Aρ(m) ×Aρ(1) × · · · ×Aρ(m)

given by

(x1, . . . , xn, x
′
1, . . . , x

′
n) 7→ (xρ(1), . . . , xρ(m), x

′
ρ(1), . . . , x

′
ρ(m)).

Thus,
ρA1,...,An = ρA1,...,An × ρA1,...,An ,

where ρA1,...,An is the morphism associated with ρ and A1, . . . , An in SET (or
CL). This is in accordance with idA = idA × idA.

Suppose that f : C
•→ A and g : D

•→ B in CL, so that f is a function
C×C → A×A and g is a function D×D → B×B. Then f×g : C×D •→ A×B
in the category CL is the function

(idA × 〈πB×A2 , πB×A1 〉 × idB) ◦ h ◦ (idC × 〈πD×C2 , πD×C1 〉 × idD)

from C ×D × C ×D to A×B ×A×B, where h is f × g : C × C ×D ×D →
A×A×B ×B in SET. Hence, h = 〈h1, h2〉 with

h1(x, y, x′, y′) = (f1(x, x′), g1(y, y′))

h2(x, y, x′, y′) = (f2(x, x′), g2(y, y′)).

3.1 Some subcategories

Motivated by [9, 10, 28], we define several subcategories of CL. Suppose that
A,B are complete lattices. Following [9], we call an ordered pair (x, x′) ∈ A×A
consistent if x ≤ x′. Moreover, we call f : A

•→ B in CL consistent if it
maps consistent pairs to consistent pairs. It is clear that if f : A

•→ B and
g : B

•→ C in CL are consistent, then so is g ◦ f : A
•→ C, moreover, idA

is always consistent. Also, for any sequence A1, . . . , An of complete lattices,
the projections πA1×···×An

i : A1 × · · · × An
•→ Ai, i ∈ [n] are consistent. And

when fi : C
•→ Ai, for all i ∈ [n], then 〈〈f1, . . . , fn〉〉 : C

•→ A1 × · · · × An is
consistent iff each fi is. Hence, the consistent morphisms in CL determine a
cartesian subcategory of CL with the same product diagrams. Let CCL denote
this subcategory.
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We define two subcategories of CCL. The first one, ACL, is the subcat-
egory determined by those morphisms f = 〈f1, f2〉 : A

•→ B in CL such that
f1(x, x) ≤ f2(x, x) for all x ∈ A. The second, EACL, is the subcategory deter-

mined by those f : A
•→ B with f1(x, x) = f2(x, x). These are again cartesian

subcategories with the same product diagrams.
As noted in [9], most applications of approximation fixed point theory use

symmetric functions. We introduce the subcategory of CL having complete
lattices as object but only symmetric ≤p-preserving functions as morphisms.

Suppose that f : A
•→ B in CL, say f = 〈f1, f2〉, We call f symmetric if

f2(x, x′) = f1(x′, x), i.e., when

f2 = f1 ◦ 〈πA×A2 , πA×A1 〉 : A×A→ B.

We will express this condition in a concise way as f2 = fop1 .

It is easy to prove that if f : A
•→ B and g : B

•→ C are symmetric, then
so is g ◦ f . Moreover, idA is always symmetric. Thus, symmetric morphisms
determine a subcategory of CL, denoted SCL. In fact, SCL is a subcategory
of EACL, since when f = 〈f1, f2〉 : A

•→ B is symmetric, then necessarily
f1(x, x) = f2(x, x) for all x ∈ A. Moreover, it is again a cartesian subcategory
with the same products.

Since the first component of a symmetric morphism uniquely determines the
second component, SCL can be represented as the category whose objects are
complete lattices having as morphisms A

•→ B (where A and B are complete
lattices) those functions f : A × A → B which are monotonic in the first and
anti-monotonic in the second argument. Composition, denoted •, is then defined
as follows. Given f : A

•→ B and g : B
•→ C, g • f : A

•→ C is the function

g ◦ 〈f, fop〉 : A×A→ C,

where fop denotes f ◦ 〈πA×A2 , πA×A1 〉, so that g • f(x, x′) = g(f(x, x′), f(x′, x)).

The identity morphism A
•→ A is the projection πA×A1 .

4 Fixed points

Suppose that A and B are complete lattices, ordered by≤, and let f : A×B → A
be a monotonic function. The least fixed point operation on CL maps f to the
monotonic function f† : B → A such that for all y ∈ B, f†(y), sometimes also
denoted µx.f(x, y), is the least solution of the fixed point equation x = f(x, y).
The existence of f†(y) is guaranteed by the Knaster-Tarski fixed point theorem.
It is also known that f†(y) is the least z ∈ A such that f(z, y) ≤ z which implies
the monotonicity of †.

Remark 2 Sometimes we will apply the least fixed point operation to functions
f : A × B → A, where A,B are complete lattices, which are monotonic in the
first argument but anti-monotonic in the second. Such a function may be viewed
as a monotonic function A×Bd → A, where Bd is the order dual of B. Hence,
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in this case, f† is a monotonic function Bd → A, or –as we will consider it– an
anti-monotonic function B → A. More generally, we will also consider functions
that are monotonic in some arguments and anti-monotonic in others, but always
take the least fixed point w.r.t. an argument in which the function is monotonic.

In this section, we recall from [9] the construction of stable and well-founded
fixed points. More precisely, only symmetric functions were considered in [9], but
it was remarked that the construction also works for non-symmetric functions.

Suppose that f = 〈f1, f2〉 : A
•→ A in CL, so that f is a ≤p-monotonic

function A × A → A × A. Then f1 : A × A → A is monotonic in its first
argument and anti-monotonic in its second argument, and f2 : A × A → A
is monotonic in its second argument and anti-monotonic in its first argument.
Define the functions s1, s2 : A→ A by

s1(x′) = µx.f1(x, x′)

s2(x) = µx′.f2(x, x′)

and let S(f) : A × A → A × A be the function S(f)(x, x′) = (s1(x′), s2(x)).

Since s1 and s2 are anti-monotonic, S(f) is a morphism A
•→ A in CL. We call

S(f) the stable function for f . It is known that every fixed point of S(f) is a
fixed point of f , called a stable fixed point of f . Indeed, let (x, x′) be a fixed
point of S(f), so that x = s1(x′) and x′ = s2(x). By the definition of s1 and
s2, we have s1(x′) = f1(s1(x′), x′) and s2(x) = f2(s2(x), x). So

f(x, x′) = (f1(x, x′), f2(x, x′))

= (f1(s1(x′), x′), f2(s2(x), x))

= (s1(x′), s2(x))

= (x, x′).

We let f4 denote the set of all stable fixed points of f . Since S(f) is ≤p-
monotonic, there is a ≤p-least stable fixed point f‡, called the well-founded
fixed point of f .

The above construction can slightly be extended. Suppose that f = 〈f1, f2〉 :

A × B •→ A in CL, so that f is a function A × B × A × B → A × A. Then
f1 : A × B × A × B → A is monotonic in its first and second arguments and
anti-monotonic in the third and fourth arguments, while f2 : A×B×A×B → A
is monotonic in the third and fourth arguments and anti-monotonic in the first
and second arguments. Now let s1, s2 : A×B ×B → A be defined by

s1(x′, y, y′) = µx.f1(x, y, x′, y′)

s2(x, y, y′) = µx′.f2(x, y, x′, y′).

We have that s1 is monotonic in its second argument and anti-monotonic in the
first and third arguments, and s2 is monotonic in the third argument and anti-
monotonic in the first and second arguments. Define S(f) : A× A× B × B →
A×A by

S(f)(x, x′, y, y′) = (s1(x′, y, y′), s2(x, y, y′)).
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Then S(f), as a function (A×A)× (B×B)→ A×A, is ≤p-monotonic in both
of its arguments. We call S(f) the stable function for f . (Note that S(f) can be
considered as a morphism L× L′ → L of the category CL, where L and L′ are
the complete bilattices A×A and B×B considered as complete lattices ordered
by the relation ≤p.) For each y, y′ ∈ B, let f4(y, y′) denote the set of solutions
of the fixed point equation (x, x′) = S(f)(x, x′, y, y′). Hence, f4 is a function
from B×B to the power set of A×A, that we call the stable fixed point function.
In particular, for each y, y′ ∈ B there is a ≤p-least element of f4(y, y′). We
denote it by f‡(y, y′). Since S(f) is ≤p-monotonic, so is f‡ : B × B → A × A.

Hence f‡ : B
•→ A in CL.

We have thus defined a dagger operation ‡ on CL, called the (parametric)
well-founded fixed point operation. In the next two sections, we investigate the
equational properties of this operation.

Remark 3 The parametric well-founded fixed point operation ‡ is just the
pointwise extension of the operation defined on morphisms A

•→ A. Indeed,
when f : A × B •→ A and (y, y′) ∈ B × B, then let g : A

•→ A be given by
g(x, x′) = f(x, y, x′, y′). Then f‡(y, y′) = g‡ and f4(y, y′) = g4.

Remark 4 Suppose that f : 2
•→ 2 is given by f(x, x′) = (¬x′,¬x), where

¬0 = 1 and ¬1 = 0. Then f is symmetric but f‡ is not, since f‡ = (0, 1). Hence
SCL is not closed w.r.t. the parametric well-founded fixed point operation.
Since f† is not in EACL but SCL is a subcategory of EACL, this example
also shows that EACL is not closed under the parametric well-founded fixed
point operation.

Remark 5 We provide an example showing that when f : A × B •→ A in CL
is consistent, f‡ may not be consistent. Indeed, let A = 2 and B = T (terminal

object), and let f : A
•→ A be given by f(x, x′) = (1,¬x ∨ x′). Then f is

consistent, since f(0, 0) = f(0, 1) = f(1, 1) = (1, 1), but f‡ = (1, 0), so that
f‡ is not consistent. Since f is in fact in EACL, this example also shows that
neither ACL nor EACL is closed with respect to the well founded fixed point
operation.

Note that the above f is not symmetric. In fact, if f : A
•→ A is symmetric,

then f‡ : T
•→ A is consistent. This follows from Remark 3 and Theorem 23 in

[9].

We summarize the results of this section.

Proposition 6 The well-founded fixed point operation ‡ is an external dagger
operation over CL. Neither of the subcategories CCL,ACL,EACL,SCL is
closed under ‡.

5 Some valid identities

Iteration categories capture the equational properties of several fixed point op-
erations including the least fixed point operation over CL. Axiomatizations
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of iteration categories can be conveniently divided into two parts, axioms for
Conway categories and the commutative [11, 2] or group identities [13], or the
generalized power identities of [12]. Known axiomatizations of Conway cate-
gories include the group consisting of the parameter (1), composition (6) and
double dagger (8) identities, and the group consisting of the parameter (1), fixed
point (2), pairing (7) and permutation (3) identities. In this section we estab-
lish several of the above mentioned identities for the parametrized well-founded
fixed point operation over CL. In the next section we will show that several
others fail.

Proposition 7 The parameter identity holds in CL:

(f ◦ (idA × g))‡ = f‡ ◦ g, (1)

for all f : A×B •→ A and g : C
•→ B.

Proof. Let h = f ◦(idA×g) : A×C •→ A. Then S(h) : A×A×C×C → A×A
is given by

S(h)(x, x′, z, z′) = (µx.f1(x, g1(z, z′), x′, g2(z, z′)),

µx′.f2(x, g1(z, z′), x′, g2(z, z′)))

= S(f)((idA×A × g)(x, x′, z, z′)),

where f = 〈f1, f2〉 and g = 〈g1, g2〉. Thus, S(h) = S(f) ◦ (idA×A × g) in SET
(or CL), and therefore h4 = f4 ◦ (idA×A × g), using a suggestive notation.
Moreover, h‡ = f‡ ◦ g, since the parameter identity holds for the least fixed
point operation over CL. 2

Proposition 8 The fixed point identity holds:

f ◦ 〈〈f‡, idB〉〉 = f‡, (2)

for all f : A×B •→ A.

Proof. By Remark 3, it is sufficient to prove our claim only in the case when
f : A

•→ A, i.e., f is a ≤p-monotonic function A×A→ A×A. But it is known,

see e.g. Theorem 19 in [9], that if f : A
•→ A, then each stable fixed point of

f is a (≤t-minimal) fixed point, so f ◦ f‡ = f‡. (We also have f ◦ f4 = f4.)

2

Proposition 9 The permutation identity holds:

(ρ ◦ f ◦ (ρ−1 × idB))‡ = ρ ◦ f‡, (3)

for all f : A1 × · · · ×An ×B
•→ A1 × · · · ×An and permutation ρ : [n]→ [n].
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Proof. We prove this only when B is the terminal object (cf. Remark 3), so

that f can be viewed as a morphism f = 〈f1, f2〉 : A1×· · ·×An
•→ A1×· · ·×An,

where f1, f2 are appropriate functions

A1 × · · · ×An ×A1 × · · · ×An → A1 × · · · ×An.

Let g = ρ ◦ f ◦ ρ−1 in CL, so that g = 〈g1, g2〉 where g1, g2 are functions

Aρ(1) × · · · ×Aρ(n) ×Aρ(1) × · · · ×Aρ(n) → Aρ(1) × · · · ×Aρ(n).

First we show that

S(g) = ρ ◦ S(f) ◦ ρ−1 (4)

in CL, i.e.,

S(g) = (ρ× ρ) ◦ S(f) ◦ (ρ−1 × ρ−1)

in SET. Below we will denote by x, x′ n-tuples in A1 × · · · × An. Similarly,
let y, y′ denote n-tuples in Aρ(1) × · · · × Aρ(n). Note that if x = (x1, . . . , xn) ∈
A1 × · · · × An, then ρ(x) = (xρ(1), . . . , xρ(n)) in Aρ(1) × · · · × Aρ(n). And if
y = (y1, . . . , yn) ∈ Aρ(1) × · · · × Aρ(n), then ρ−1(y) = (yρ−1(1), . . . , yρ−1(n)) in
A1 × · · · ×An. Let

s1(x′) = µx.f1(x, x′)

s2(x) = µx′.f2(x, x′).

Then S(f)(x, x′) = (s1(x′), s2(x)). Similarly, let

t1(y′) = µy.ρ(f1(ρ−1(y), ρ−1(y′)))

t2(y) = µy′.ρ(f2(ρ−1(y), ρ−1(y′))).

Then S(g)(y, y′) = (t1(y′), t2(y)). Since the permutation and parameter identi-
ties hold for the least fixed point operation over CL, we obtain that

t1(y′) = ρ(s1(ρ−1(y′))

t2(y) = ρ(s2(ρ−1(y)),

proving (4). Now from (4), since the permutation identity holds for the least
fixed point operation over CL, it follows that g‡ = ρ ◦ f‡ in CL. Moreover,
it follows that the stable fixed points of g are of the form (ρ(x), ρ(x′)), where
(x, x′) is a stable fixed point of f . (A suggestive notation: g4 = ρ ◦ f4.) 2

We now establish a special case of the pairing identity (7). It will be shown
later that the general form of the identity does not hold.

Proposition 10 The following identity holds:

〈〈f, g ◦ (πA×B2 × idC)〉〉‡ = 〈〈f‡ ◦ 〈〈g‡, idC〉〉, g‡〉〉, (5)

where f : A×B × C •→ A and g : B × C •→ B.
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Proof. It suffices to consider the case when there is no parameter (cf. Re-

mark 3). So let f = 〈f1, f2〉 : A × B •→ A and g = 〈g1, g2〉 : B
•→ B, so that

f1, f2 : A × B × A × B → A and g1, g2 : B × B → B. Let h = 〈〈f, g ◦ πA×B2 〉〉 :

A×B •→ A×B in CL. Then h‡ can be constructed as follows. First consider

µ(x, y).(f1(x, y, x′, y′), g1(y, y′)) and

µ(x′, y′).(f2(x, y, x′, y′), g2(y, y′)).

Since (5) and the parameter identity hold for the least fixed point operation
over CL, we know that these functions can respectively be written as

(µx.f1(x, µy.g1(y, y′), x′, y′), µy.g1(y, y′)) and

(µx′.f2(x, y, x′, µy′.g2(y, y′)), µy′.g2(y, y′)).

Now h‡ can be obtained by solving the system of equations

(x, x′) = (µx.f1(x, µy.g1(y, y′), x′, y′),

µx′.f2(x, y, x′, µy′.g2(y, y′))

(y, y′) = (µy.g1(y, y′), µy′.g2(y, y′))

for its least solution w.r.t. ≤p. However, this system of equations is equivalent
to the system

(x, x′) = (µx.f1(x, µy.g1(y, y′), x′, µy′.g2(y, y′)),

µx′.f2(x, µy.g1(y, y′), x′, µy′.g2(y, y′))

(y, y′) = (µy.g1(y, y′), µy′.g2(y, y′))

in the sense that both systems have the same solutions. Now the second system
of equations is just

(x, x′) = S(f)((x, x′), S(g)(y, y′))

(y, y′) = S(g)(y, y′).

It follows that h4 consists of all ((x, y), (x′, y′)) such that (y, y′) is a stable fixed
point of g and (x, x′) is in f4(y, y′). In particular, since the least fixed point
operation over CL satisfies (5), it holds that h‡ = 〈〈f‡ ◦ g‡, g‡〉〉 as claimed. 2

Remark 11 The identity (5) has already been established in Theorem 3.11 of
[28], see also the Splitting Set Theorem of [24].

We prove one more property that is not an identity, but a quasi-identity. It
is stronger that the group or commutative identities [2, 13], yet most of the stan-
dard models satisfy it. (Actually the commutative identities were introduced
in [11] in order to replace this quasi-identity by weaker identities, since when
it comes to equational theories, the best way to present them is by providing
equational bases.)
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Proposition 12 The weak functorial dagger implication holds: for all f : An×
B
•→ An and g : A×B •→ A in CL, if f◦(∆n×idB) = ∆n◦g, then f‡ = ∆n◦g‡.

Proof. First recall that ∆A
n (or just ∆n when A is understood) denotes the

diagonal morphism A
•→ An in CL and ∆A

n (or just ∆n when A is understood)
denotes the diagonal morphism A→ An.

We spell out the proof only in the case when B is a terminal object. So let
f : An

•→ An and g : A
•→ A in CL, say f = 〈f1, f2〉 and g = 〈g1, g2〉, where

fi : An ×An → An and gi : A×A→ A are appropriate functions for i = 1, 2.
The assumption f ◦∆n = ∆n ◦ g can be rephrased as

fi ◦ (∆n ×∆n) = ∆n ◦ gi, i = 1, 2,

i.e.,

f1(x, . . . , x, x′, . . . , x′) = (g1(x, x′), . . . , g1(x, x′))

f2(x, . . . , x, x′, . . . , x′) = (g2(x, x′), . . . , g2(x, x′))

for all x, x′ ∈ A. Since the weak functorial dagger implication and the parameter
identity hold for the least fixed point operation over CL, it follows that

h1(x′, . . . , x′) = (k1(x′), . . . , k1(x′))

h2(x, . . . , x) = (k2(x), . . . , k2(x))

where h1(x′1, . . . , x
′
n) and h2(x1, . . . , xn) are respectively the components of the

least solution of

(x1, . . . , xn) = f1(x1, . . . , xn, x
′
1, . . . , x

′
n) and

(x′1, . . . , x
′
n) = f2(x1, . . . , xn, x

′
1, . . . , x

′
n)

and k1(x′) and k2(x) denote the components of the least solution of

x = g1(x, x′) and

x′ = g2(x, x′).

Hence

S(f)(x1, . . . , xn, x
′
1, . . . , x

′
n) = (h1(x′1, . . . , x

′
n), h2(x1, . . . , xn)),

moreover, S(g)(x, x′) = (k1(x′), k2(x)). Consider now the equations

(x1, . . . , xn, x
′
1, . . . , x

′
n) = (h1(x′1, . . . , x

′
n), h2(x1, . . . , xn))

and

(x, x′) = (k1(x′), k2(x)).

Since the weak functorial dagger implication and the parameter identity hold
for the least fixed point operation over CL, the ≤p-least solution of the first
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equation can be obtained as the 2n-tuple whose first n components are equal
to the first component of the ≤p-least solution of the second equation, and
whose second n components are equal to the second component of the ≤p-least
solution of the second equation. This means that f‡ = (∆n ×∆n) ◦ g‡ in SET,
i.e., f‡ = ∆n ◦ g‡ in CL. (It also holds that if (x, x′) is a stable fixed point of
g, then (x, . . . , x, x′, . . . , x′) is a stable fixed point of f .) 2

For the definition of the commutative and group identities, we refer to [2, 11].

Corollary 13 The commutative identities and the identities associated with
finite groups hold for the parametrized well-founded fixed point operator over
CL.

In fact, each identity associated with a finite automaton [13] holds.

6 Some identities that fail

Proposition 14 The composition identity

(f ◦ 〈〈g,πA×C2 〉〉)‡ = f ◦ 〈〈(g ◦ 〈〈f,πB×C2 〉〉)‡, idC〉〉, (6)

f : B × C •→ A, g : A× C •→ B, fails in CL, even in the following simple case:
f ◦ (f ◦ f)‡ = (f ◦ f)‡, where f : A

•→ A.

Proof. Let f : 2
•→ 2 be given by f(x, x′) = (¬x′,¬x) (see also Remark 4).

Then f ◦ f is the identity function on 2 × 2, hence (f ◦ f)‡ = (0, 0). On the
other hand, f ◦ (f ◦ f)‡ = (1, 1). 2

Proposition 15 The squaring identity (f ◦ f)‡ = f‡ fails, where f : A
•→ A.

Proof. Let f be as in the previous proof. Then (f ◦ f)‡ = (0, 0) as shown
above. But f‡ = (0, 1). 2

Since the fixed point, parameter and permutation identities hold but the
composition identity fails, the pairing identity (found in [1, 7]) also must fail,
see [2]. We can give a direct proof.

Proposition 16 The pairing identity

〈〈f, g〉〉‡ = 〈〈f‡ ◦ 〈〈h‡, idC〉〉, h‡〉〉, (7)

where h = g◦〈〈f‡, idB×C〉〉 fails, where f : A×B×C •→ A and g : A×B×C •→ B.

Proof. Let f, g : 2×2
•→ 2 in CL, so that f and g are appropriate functions

2× 2× 2× 2→ 2× 2,

f(x, y, x′, y′) = (¬y′,¬y)

g(x, y, x′, y′) = (¬x′,¬x).
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Then

〈〈f, g〉〉(x, y, x′, y′) = (¬y′,¬x′,¬y,¬x)

and thus 〈〈f, g〉〉‡ = (0, 0, 1, 1). On the other hand, f‡(y, y′) = (¬y′,¬y), hence
h = g ◦ 〈〈f‡, id2〉〉 is the identity function on 2× 2 and h‡ = (0, 0) and f‡ ◦ h‡ =
(1, 1). It follows that 〈〈f‡ ◦ h‡, h‡〉〉 = (1, 0, 1, 0). 2

Each of the above examples involved symmetric morphisms. We now refute
the double dagger identity, but we use a non-symmetric morphism.

Proposition 17 The double dagger identity

f‡‡ = (f ◦ (〈〈idA, idA〉〉× idB))‡, (8)

f : A × A × B
•→ A, fails in CL, even in the particular case when B = T

(terminal object).

Proof. Let g : 2 × 2
•→ 2 be given by g(x, y, x′, y′) = (¬y′,¬x), and let

h = g ◦ 〈〈id2, id2〉〉 : 2
•→ 2, so that h(x, x′) = (¬x′,¬x). We already know that

h‡ = (0, 1). But g‡(y, y′) = (¬y′, y) and g‡‡ = (1, 0). 2

7 Some applications

The established identities can be seen as abstract versions of transformations
over logic programs that preserve the well-founded semantics (in the bilattice
setting). For one example, consider the simple propositional logic program

p :− q,∼ r q :− r,∼ p r :− p,∼ q

Identifying p, q, r, we obtain
p :− p,∼ p

By the weak functorial implication established above, the two programs are
equivalent in the sense that each component of the well-founded semantics of
the first program agrees with the well-founded semantics of the second. (For
a treatment of the semantics of logic programs in approximation fixed point
theory, see [9, 8].)

By formulating transformations as identities, one can use standard (many-
sorted) equational logic to derive other identities that in turn give rise to new
transformations. For example, the following identity is an equational conse-
quence of those established in the paper:

〈〈f, g ◦ πA×B2 〉〉‡ = 〈〈f ◦ (idA × g), g ◦ πA×B2 〉〉‡
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where f : A×B •→ A and g : B
•→ B. Indeed,

〈〈f ◦ (idA × g), g ◦ πA×B2 〉〉‡ =

= 〈〈(f ◦ (idA × g))‡ ◦ g‡, g‡〉〉, by Prop. 10.2

= 〈〈f‡ ◦ g ◦ g‡, g‡〉〉, by the parameter identity

= 〈〈f‡ ◦ g‡, g‡〉〉, by the fixed point identity

= 〈〈f, g ◦ πA×B2 〉〉‡, by Prop. 10.2.

More generally, it holds that

〈〈f, g ◦ πA×B2 〉〉‡ = 〈〈f ◦ (idA × 〈g,πB×C2 〉), g ◦ πA×(B×C)
2 〉〉‡

where f : A×B × C •→ A and g : B × C •→ B.
This identity can be interpreted as a version of the fold/unfold transforma-

tion [27, 26]. For example, it yields that the logic programs

p :− q, r r :− s, t

and
p :− q, s, t r :− s, t

are equivalent for the well-founded semantics.
On the other hand, the following identity, which is a generalization of the

above folding/unfolding identity, fails:

〈〈f ◦ 〈〈πA×B1 , g〉〉, g〉〉‡ = 〈〈f, g〉〉‡

where f : A× B •→ A and g : A× B •→ B. And this again follows by standard
equational reasoning using our positive and negative results. For suppose that
the identity holds. Then the following special case obtained by letting A = B
and instantiating f with h◦πA×A2 and g with h◦πA×A1 , where h : A

•→ A, holds
as well:

〈〈h ◦ h ◦ πA×A1 , h ◦ πA×A1 〉〉‡ = 〈〈h ◦ πA×A2 , h ◦ πA×A1 〉〉‡.

Moreover, using Proposition 9, also

〈〈h ◦ πA×A2 , h ◦ h ◦ πA×A2 〉〉‡ = 〈〈h ◦ πA×A2 , h ◦ πA×A1 〉〉‡.

But by Proposition 10,

〈〈h ◦ h ◦ πA×A1 , h ◦ πA×A1 〉〉‡ = 〈〈(h ◦ h)‡, h ◦ (h ◦ h)‡〉〉,

and by Proposition 10 and 9,

〈〈h ◦ πA×A2 , h ◦ h ◦ πA×A2 〉〉‡ = 〈〈h ◦ (h ◦ h)‡, (h ◦ h)‡〉〉.

We conclude that

h ◦ (h ◦ h)‡ = (h ◦ h)‡,

contradicting Proposition 14.
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8 Conclusion

We extended the well-founded fixed point operation of [9, 28] to a parametric
operation and studied its equational properties. We found that several of the
identities of iteration theories hold for the parametric well-founded fixed point
operation, but some others fail. By showing that some identities of iteration
theories do not hold, we tried to have a better understanding why logic programs
with the well-founded semantics cannot be manipulated using standard fixed
point methods. And by showing that some other identities hold, we tried to
understand to what extent the standard techniques can be used for manipulating
logic programs.

Two interesting questions arise for further investigation. The first concerns
the algorithmic description of the valid identities of the well-founded fixed point
operation. Does there exist an algorithm to decide whether an identity (in the
language of cartesian categories equipped with a dagger operation) holds for
the well-founded fixed point operation? The second concerns the axiomatic
description of the valid identities of the well-founded fixed point operation.
These questions are also relevant in connection with modular logic programing,
cf. [19, 23, 24].

An alternative semantics of logic programs with negation based on an infinite
domain of truth values was proposed in [25]. The infinite valued approach has
been further developed in the abstract setting of ‘stratified complete lattices’ in
[4, 17, 18, 15, 16]. In particular, it has been proved in [15] that the stratified
least fixed point operation arising in this approach does satisfy all identities
of iteration theories. So in this regards, the infinite valued semantics behaves
just as the Kripke-Kleene semantics [21], as it corresponds to the least fixed
points. In fact, the iteration theory identities are sound and complete for both
the Kripke-Kleene semantics and the infinite valued semantics.
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de Queiroz, editors, Logic, Language, Information, and Computation - 21st
International Workshop, WoLLIC 2014, Valparáıso, Chile, September 1-
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