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Abstract. According to Barthelman and Blumensath, the following fam-

ilies of in�nite graphs are isomorphic: (1) pre�x-recognisable graphs,

(2) graph solutions of VR equational systems and (3) MS interpreta-

tions of regular trees. In this paper, we consider the extension of pre�x-

recognisable graphs to pre�x-recognisable structures and of graphs solu-

tions of VR equational systems to structures solutions of positive quan-

ti�er free de�nable (PQFD) equational systems. We extend Barthelman

and Blumensath's result to structures parameterised by in�nite graphs

by proving that the following families of structures are equivalent: (1)

pre�x-recognisable structures restricted by a language accepted by an in-

�nite deterministic automaton, (2) solutions of in�nite PQFD equational

systems and (3) MS interpretations of the unfoldings of in�nite determin-

istic graphs. Furthermore, we show that the addition of a fuse operator,

that merges several vertices together, to PQFD equational systems does

not increase their expressive power.

1 Introduction

The automatic veri�cation of properties on in�nite structures is an important

technique for proving behavioural properties on programs. A natural encoding of

a program behaviour is an in�nite directed graph where vertices are states of the

machine, and edges mimic the transition steps of the program. Properties on the

program can then be expressed as logical formulas referring to this graph (or its

unfolding when considering e.g temporal logics). The problem of model-checking

is then to decide the satisfaction of a formula over the graph. This problem is

usually undecidable. However, on certain families of in�nite graphs and for some

given logics the model-checking problem is decidable.

In this work, we are dealing with monadic second-order (MS) logic: an exten-

sion of �rst-order logic which allows quanti�cation over sets of vertices. The �rst

decidability result for this logic over an in�nite graph was provided by B�uchi for

the in�nite semi-line. Rabin extended this result to the in�nite binary tree.

With the work of Muller and Schupp on pushdown graphs [MS85], the focus

of study shifted from in�nite graphs to families of in�nite graphs.

Since then, many families of graphs have been presented with various decid-

ability and structural properties. Those families can be classi�ed according to

their representation into three categories.



The equational representation describes an in�nite structure as the solution

of an equational system. The family of structures (or graphs) obtained in this

way depends on the choice of the operators. The most famous examples are

hyperedge replacement equational structures (HR) [Cou89] and the vertex

replacement equational graphs (VR) [Cou90]. The VR operators also have

been extended into vertex replacement with product operators [Col02].

The transformational representation consists in applying some �nite se-

quence of transformations over an already-known structure. Transformations

can be the unfolding of graphs [CW98], Shelah-Muchnik-Walukiewicz tree-

like construction [Wal96], or logically de�ned transformations (FO interpre-

tations, inverse �nite or rational mappings [Cau96,Urv02], MS interpreta-

tions or general MS-de�nable transductions [Cou94]).

The internal representation amounts to give an exact description of both

the universe and the relations of the structure. The most used universe is

the set of words over a given �nite alphabet. Relations over words can then

be de�ned by means of many techniques:

Rewriting: Pre�x (or su�x) rewriting of words describes the family of push-

down graphs [MS85,Cau92]. When the set of rules is recognisable, it leads

to pre�x-recognisable graphs [Cau96].

Transductions: Relations recognised by synchronised transductions describe

the class of automatic graphs [S�en92] and structures [Blu99]. When the trans-

duction is rational, it de�nes the rational graphs [Mor00].

Structures de�ned over the universe of closed terms have also been presented

[DT90,Blu99,L�od02,Col02].

The above mentioned techniques are not independent from each other. Many

connections have been stated in the literature. In our case we are specially in-

volved with the following: the graphs solution of VR equational systems are

isomorphic to pre�x-recognisable graphs [Bar97] and to MS interpretations of

in�nite regular trees [Blu01].

To some extent, these classes of graphs are de�ned upon �nite objects. In

particular, a VR-equational graph is the solution of a �nite system of equations

and pre�x-recognisable graph is a rewriting system restricted to the language

accepted by a �nite automaton. These two kinds of graphs are equivalent and

can be obtained by MS-de�nable transduction of the unfolding of a �nite graph.

We generalise this triple equivalence to structures de�ned by in�nite ob-

jects. We show that interpretation of in�nite systems of PQFD equations (which

is a natural extension of VR operators introduced in [Bar97]), PR-structures

restricted by in�nite deterministic automaton and MS-de�nable transductions

of the unfoldings of deterministic in�nite graphs are equivalent. Furthermore,

this equivalence is e�ective in the sense that MS-de�nable transductions link

the system of equations, the automaton and the graph.

In [CM02], the authors prove that for describing sets of �nite structures the

addition of a fuse operator | which merges vertices together | to PQFD-

like operators does not increase the expressivity of the considered systems. The

authors also emphasizes on how this extension uni�es the description of HR-



equational et VR-equational graphs. We naturally investigated the in�nite coun-

terpart of this result and proved under reasonable technical restrictions that the

addition of a fuse operator to PQFD operators does not increase their expressive

power. The two results are however technically signi�cantly di�erent.

The rest of the paper is divided as follows. Section 2 introduces the ba-

sic de�nitions. Section 3 presents structures de�ned by equational systems and

Section 4 de�nes unfolding and states the �rst inclusion. Section 5 introduces

PR-systems and states the last two inclusions.

2 De�nitions

Relational structures

We de�ne the global signature � to be equal to

S

n>0

�

n

where �

n

is an in�nite

set of symbols of arity n. For any R in �, jRj designates the arity of R.

A relational structure S is a pair (U ;Val) where U is an `at most countable'

set called the universe and Val associates to a symbol of arity n a subset of

U

n

.We will write R

S

instead of Val(R). Moreover, we suppose that Val has a

�nite support (i.e. the set of R such that Val(R) 6= ; is �nite). A signature � of

S is a �nite set which contains the support of Val .

The restriction of a structure S = (U ;Val) to a universe U

0

� U is denoted

Sj

U

0

and designates the structure (U

0

;Val

0

) where Val

0

(R) = Val(R) \ (U

0

)

jRj

.

Two structures S and S

0

of respective universe U and U

0

are isomorphic

(written S � S

0

) if there exists a one to one mapping � from U onto U

0

such

that for any symbol R 2 �, R

S

(x

1

; : : : ; x

n

), R

S

0

(�(x

1

); : : : ; �(x

n

)).

Graphs

A directed graph G (or simply a graph) labelled by a �nite set E is a relational

structure admitting a signature with binary symbols only (identi�ed with E).

The universe is denoted by V and its elements are called vertices. A directed

graph is rooted if its signatures contain an unary relation root which is interpreted

as a singleton. By slight abuse, we will use the constant root in our formulas.

The graph is said to be deterministic if for any x; y; z 2 V and for any relation

e 2 E, if e(x; y) and e(x; z) then y = z.

A path � in a graph G labelled by E is a �nite sequence v

1

e

1

: : : e

n�1

v

n

in (V E)

�

V such that for all i 2 [1; n � 1], e

i

(v

i

; v

i+1

). For any w 2 E

�

, we

write x

w

=) y if there exists a path v

1

e

1

: : : e

n�1

v

n

between x and y such that

w = e

1

: : : e

n�1

. For W � E

�

a language, x

W

=) y holds i� for some w 2 W ,

x

w

=) y.

Given a graph G labelled by E of universe V and a �nite set of fresh

binary symbols K = fk

1

; : : : ; k

n

g (i.e K \ E = ;), the K-copying of G is

the graph G

0

of universe V � [0; n] and such that for any relation R 2 E,

R

G

0

=

��

(x

1

; 0); : : : ; (x

jRj

; 0)

�

j (x

1

; : : : ; x

jRj

) 2 R

G

	

and for k

i

2 K, k

G

0

i

=

f((x; 0); (x; i)) j x 2 V g.
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Fig. 1. The step-ladder graph.

Example 1. Throughout this paper we illustrate all the techniques for describing

structures with one example: the step-ladder graph depicted in Figure 1.

Monadic second order logic

In the following, we assume that �rst order variables are ranged over by x; y; z : : :

whereas monadic second order variables are ranged over by X;Y; Z : : : First

order variables are interpreted as elements of the universe whereas monadic

second order variables are interpreted as subsets of the universe. The atomic

predicates of monadic formulas are x 2 X , x = y and R(x

1

; : : : ; x

jRj

). Monadic

formulas are then inductively de�ned as 9X:�, 9x: �, :� and �_	 for � and 	

formulas. MS formulas have the usual semantic [Tho97]. If �(x

1

; : : : ; x

n

) is an

MS formula and if (u

1

; : : : ; u

n

) is a tuple of elements of U , S j= �(u

1

; : : : ; u

n

)

means that S models � when x

i

is interpreted by u

i

for all i 2 [1; n].

A MS interpretation I is given by a MS formula �(x) together with a �nite

set of formulas (�

R

)

R2�

where �

R

has free variables in fx

1

; : : : ; x

jRj

g. I asso-

ciates to each structure S of universe U the structure I(S) of universe U

I(S)

=

fx 2 U j S j= �(x)g and such that if R 2 �, R

I(S)

=

�

�x 2 (U

0

)

jRj

j S j= �

R

(�x)

	

(if R =2 �, R

I(S)

= ;).

An MS-de�nable transduction T [Cou94] is the composition of a K-copying

operation and an MS interpretation. This transformation preserves the decid-

ability of the MS theory.

3 Equational systems

In this section we present how to describe in�nite structures as solutions of equa-

tional systems over a given set of operators. Classical examples of this approach

are hyperedge replacement systems [Cou89] or vertex replacement (VR) [Cou90]

graphs.

For the rest of this section, we �x a signature �. For V a given set of variable

names, we write B

+

(V) the set of positive boolean formulas over variables V .

Those formulas are built upon predicates of the signature applied to variables in



V , of the boolean connectives ^ and _, and the constants t (true) and f (false).

Quanti�ers as well as negation are not allowed.

We use the set of symbols PQFD = PQFD

0

[ PQFD

1

[ PQFD

2

with:

PQFD

0

= foneg PQFD

2

= f�g

PQFD

1

= fpqfd[(�

R

)

R2�

] j 8R 2 �; �

R

2 B

+

(x

1

; : : : ; x

jRj

)g

Symbols in PQFD

i

have arity i. The mapping gives their semantic:

Singleton structure one: U

one

= f0g and R

one

= ; for any symbol R ,

Positive quanti�er-free de�nable interpretation pqfd[(�

R

)]:

given a relational structure S, U

pqfd[(�

R

)](S)

= U

S

,

and R

pqfd[(�

R

)](S)

(u

1

; : : : ; u

jRj

) i� S j= �

R

(u

1

; : : : ; u

jRj

) ,

Disjoint union �: given two structures S

1

and S

2

,

U

S

1

�S

2

= f1g � U

S

1

[ f2g � U

S

2

and,

for any symbol R, R

S

1

�S

2

= f((1; x

1

); : : : ; (1; x

jRj

)) j R

S

1

(x

1

; : : : ; x

jRj

)g

[ f((2; x

1

); : : : ; (2; x

jRj

)) j R

S

2

(x

1

; : : : ; x

jRj

)g :

A similar set of operators has been introduced by Barthelman [Bar97].

Let us emphasize that this set of operators provides a strict and natural

extension to relational structures of vertex replacement (VR) graph operators.

Let us illustrate how to obtain VR systems with PQFD systems on graphs. The

usual de�nition of VR operators works over coloured directed graphs: directed

graphs labelled by a �nite set E and extended with a mapping which associates

to each vertex a color belonging to some given �nite set C of colors. In our case,

we can encode such a graph into a structure over the signature � = C[E where

symbols in C and E have respective arity 1 and 2 and encode respectively the

fact that a vertex has a given color, and the presence of an edge between two

nodes. We can now introduce the four VR operators, and their equivalent PQFD

expression.

Single vertex constant of color c| simply written c| represents the graph

with one vertex of colour c and no edge.

It can be expressed as pqfd[�

c

](one) with �

c

0

= f for any c

0

6= c, �

c

= t

and �

a

= f for any a 2 E .

Disjoint union | written � as for structures | performs the disjoint union

of two coloured graphs.

It can naturally be encoded by the disjoint union of structures �.

Renaming color c

1

into color c

2

of a coloured graph G | written ren

c

1

;c

2

(G)

| changes the color mapping in such a way that every vertex of color other

than c

1

keeps its original color, and vertices of original color c

1

have new

color c

2

.

Let us suppose for simplicity that c

1

6= c

2

. The renaming operator can be

encoded by pqfd[(�

R

)

R2�

](G) with �

c

1

= f , �

c

2

= c

1

(x

1

) _ c

2

(x

1

), �

c

=

c(x

1

) for c 2 C � fc

1

; c

2

g, and �

a

= a(x

1

; x

2

) for a 2 E.

Adding edges labelled by a between color c

1

and color c

2

to a graph G |

written add

c

1

;c

2

;a

(G) | adds to the coloured graph G all possible edges



labelled by a with as origin a vertex of color c

1

and as destination a vertex

of color c

2

.

The edge-adding operator can be encoded by pqfd[(�

R

)

R2�

](G) with �

a

=

a(x

1

; x

2

) _ (c

1

(x

1

) ^ c

2

(x

2

)), �

b

= b(x

1

; x

2

) for b 2 E � fag and �

c

= c(x

1

)

for any c 2 C.

PQFD operators can be used in equational systems: One can equip structures

with the partial order of inclusion de�ned by S � S

0

i� U

S

� U

S

0

and R

S

� R

S

0

for any symbol R. This ordering is a complete partial order (cpo) admitting

the only structure of empty universe ? as smallest element. The semantic of

operators is continuous with respect to this cpo. It means that a (even in�nite)

system of equations using PQFD operators admits a unique smallest solution.

Example 2. Let us illustrate in�nite VR systems of equations for producing the

graph of Figure 1. Let us �rst introduce the intermediate coloured graphs X

n

presented in Figure 2.

X

n

=

1

b

0

b

: : :

b

0

b

2

n vertices

3

0

0

4

0

0

0

0

0

.

.

.

.

.

.

a

c

a

c

Y

n

=

b

b

b

b

b

n

vertices

n+ 1

vertices

Fig. 2. The graphs X

n

and Y

n

.

The X

n

graphs can be de�ned by the following recursive equations:

X

0

= add

1;2;b

(1� 2) and X

n+1

= ren

3;2

(ren

2;0

(add

2;3;b

(X

n

� 3))) (1)

We can now de�ne the Y

n

coloured graphs (notice Y

0

is isomorphic to the graph

of Figure 1). They satisfy the following equation:

Y

n

= ren

2;4

(ren

1;3

(ren

4;0

(ren

3;0

(add

1;3;a

(add

4;2;c

(X

n

� Y

n+1

)))))) (2)

In fact the coloured graphs X

n

and Y

n

are the smallest possible graphs sat-

isfying the equations (1) and (2): the step-ladder graph is the smallest solution

of this equational system. Let us notice that, though in�nite, this equational

system can be represented by an in�nite graph as depicted in Figure 3.

This process of encoding the equational system into a rooted graph is general.

Formally, a rooted graph E is a PQFD-equational system if its edges:

{ are labelled by f�

1

; �

2

g [ PQFD

0

[ PQFD

1

and



E =

X

0

X

1

X

2

Y

0

Y

1

Y

2

where

=

r

2;4

r

1;3

r

4;0

r

3;0

a

1;3;a

a

4;2;c

�

2

�

1

=

a

1;2;b

�

1

�

2

1

2

r

3;2

r

2;0

a

2;3;b�

1

�

2

3

=

Fig. 3. An in�nite VR equational system E describing the graph of Figure 1

{ for all element x of U

S

,

� if there is an edge labelled by one of target x then no edges originate

from x.

� else, either two edges originate from x, and are labelled by respectively

�

1

and �

2

,

or only one edge has origin x, and this edge is labelled by one or

pqfd[(�

R

)] for some �

R

.

The solution of such a system is de�ned as follows: let �

E

be the smallest function

from vertices of E to structures satisfying:

{ If one

E

(x; y) then �

E

(x) = one ,

{ if pqfd[(�

R

)]

E

(x; y) then �

E

(x) = pqfd[(�

R

)](�

E

(y)) ,

{ and if �

1

E

(x; y) and �

2

E

(x; z) then �

E

(x) = �

E

(y)��

E

(z) .

then the semantic of the equational system E , written [[E ]] is the graph �

E

(root).

We will also make use of another operator: for p 2 �

1

a unary symbol,

the operator fuse

p

applied to a structure S keeps the structure unchanged but

collapses all the elements x satisfying p

S

(x) into a single one. Formally, we de�ne

the equivalence relation �

p

over U

S

by x �

p

y i� x = y or p

S

(x) and p

S

(y). The

classes of equivalence for �

p

of an element x is written [x]

p

. The semantic of

fuse

p

is then de�ned by fuse

p

(S) = S

0

with U

S

0

= f[x]

p

j x 2 U

S

g and for any

n-ary symbol R, R

S

0

= f([v

1

]

p

; : : : ; [v

n

]

p

) j R

S

(v

1

; : : : ; v

n

)g. The set of operators

PQFD increased with fuse operators is written PQFD + F .

In fact, the cpo used has to be slightly changed for the fuse operators to be

continuous. Furthermore, the fuse operators make it necessary to put some extra



restrictions to the system: a PQFD + F equational system is said normalised if

there is no predicate R(y

1

; : : : ; y

jRj

) such that y

i

= y

j

for i 6= j in any formula

appearing in a pqfd operator.

4 The transformational approach

Successively applying a �nite number of transformations to a relational structure

is a second technique for obtaining new relational structures. In this work, we

are basically using two such transformations: MS-de�nable transduction and

unfolding.

MS-de�nable transduction has already been presented. We de�ne here a ver-

sion of unfolding suitable for deterministic rooted graphs only. Given a deter-

ministic rooted graph G labelled by E with a vertices set V , �

G

is the function

from E

�

to V such that �

G

(u) = x with root

u

) x (since the graph is determinis-

tic, there is at most one such x). The unfolding of G is the deterministic rooted

graph Unf (G) with a set of vertices V

0

= fu j 9x 2 V; root

u

) xg and such

that for all edge symbol a, a

Unf (G)

(u; v) i� a

G

(�

G

(u); �

G

(v)). The function �

G

is a morphism of graph and is called the reduction (following the terminology of

bisimulation).

We are interested here in transforming a deterministic graph by applying

successively an unfolding and a MS-de�nable transduction.

Example 3. Let G be the graph presented in Figure 4.a with its root marked

by an unlabelled edge and let I be the MS interpretation (�; f�

a

; �

b

; �

c

g) with

�(x) = true, �

a

(x

1

; x

2

) = a(x

1

; x

2

), �

b

(x

1

; x

2

) = b(x

1

; x

2

) and �

c

(x

1

; x

2

) =

(9x

0

1

:9x

0

2

: x

0

1

b

�

=) x

1

^ x

0

2

b

�

=) x

2

^ a(x

0

2

; x

0

1

)) ^ :(9z: a(x

1

; z) _ a(x

2

; z))

where x

b

�

=) y is a MS formula stating that there is a path between x and y

using only edges labelled by b. I(Unf (G)) is the step-ladder of Figure 1 (Figure

4.b presents the unfolding of G).

a

b

b

a

b

b

a

b

b

b

b

b

b

a

b

b

b

a

b

b

b

b

a

(a) (b)

Fig. 4. The graph G (a) and its unfolding (b).

Those two transformations are su�cient for expressing PQFD + F equational

systems:

Lemma 1. Given a normalised PQFD + F equational system E, there exists an

MS interpretation I such that I(Unf (E)) is isomorphic to [[E ]].



Proof (sketch). The �rst remark used in the proof is that unfolding preserves

the solution of equational systems: [[E ]] = [[Unf (E)]].

For simplicity, let us suppose �rst that no fuse operators are used. Under

this hypothesis, each element of U

[[E]]

can be uniquely identi�ed with the one

operator appearing in Unf (E) which has introduced it (if this operator is removed

from the tree, then the element disappears from the structure). Let us call � this

injective mapping from U

[[E]]

to V

Unf (E)

. Then, there exists formulas �

R

for all

symbol R of arity n in the signature such that Unf (E) j= �

R

(�(x

1

); : : : ; �(x

n

)) i�

R

[[E]]

(x

1

; : : : ; x

n

) holds. Let �(x) be (9y; one(x; y)), then the interpretation I =

(�; (�

R

)) is such that I(Unf (E)) is isomorphic to [[E ]] (and � is the isomorphism).

If fuse operators are used, a similar �mapping can be provided: the di�erence

is that it maps elements of U

[[E]]

to either one operators or fuse operators. The

intention is that an element of U

[[E]]

is uniquely represented by a one operator

i� no fuse operator `touched' it in the equational system, in the other case, the

element is uniquely represented by the closest to the root fuse operator in which

it was involved. Apart from this distinction, the same technique is applied for

providing the interpretation I.

5 Pre�x-recognisable structures

In this section, we focus on the internal representation of structures. Pre�x-

recognisable graphs have been introduced by Caucal [Cau96]. A possible de-

scription of these graphs is by systems of word rewriting. Blumensath [Blu01]

extended this de�nition to relations of arbitrary arity. Those structures, when

restricted to binary relations coincide with pre�x-recognisable graphs. We give

here a similar (and equivalent) de�nition of pre�x-recognisable structures.

For simplicity, we �x a common in�nite alphabet A. Let R, R

0

be two rela-

tions over A

�

of respective arities k and l, we designate by R�R

0

the (k+l)-ary

relation de�ned by (R � R

0

)(u

1

; : : : ; u

k

; v

1

; : : : ; v

l

) if and only if R(u

1

; : : : ; u

k

)

and R

0

(v

1

; : : : ; v

l

). Let R be a k-ary relation over A

�

and U a language of A

�

,

we designate by U � R the k-ary relation de�ned by (U � R)(uv

1

; : : : ; uv

k

) i�

u 2 U and R(v

1

; : : : ; v

k

). Let R be a k-ary relation and � a permutation of [1; k],

R

�

(x

1

; : : : ; x

k

) i� R(x

�(1)

; : : : ; x

�(k)

).

De�nition 1. The set of pre�x-recognisable (PR) relations over A

�

is the small-

est set of relations satisfying:

{ for U a rational subset of A

�

, the unary relation U is in PR,

{ if R;R

0

2 PR then R�R

0

2 PR ,

{ for R;R

0

2 PR of same arity, R [ R

0

2 PR ,

{ for R 2 PR and U a rational subset of A

�

, U �R 2 PR,

{ for R 2 PR and � a permutation of [1; jRj], R

�

2 PR.

Remark that the de�nition of each rational language only involves a �nite

number of letters in A. Thus each relation in PR refers to a �nite number of

letters.



A PR-structure is a relational structure of universe A

�

with all interpretations

in PR.

Pre�x-recognisable graphs [Cau96] can be de�ned as graphs with edges de-

�ned by a �nite union of relations of the form U(V �W ) (with U , V and W

rational languages) and vertices de�ned by a rational language L. This naturally

corresponds to the class of binary PR-systems restricted by a �nite automaton.

We extend this notion of restriction to in�nite deterministic automaton.

In this article, we will use the term automaton to designate a rooted deter-

ministic graph labelled by a �nite subset of A. Moreover, we will assume that this

graph comes with a set of vertices Final. As for �nite automaton, we associate

to every automaton A a language L

A

� A

�

consisting of all words corresponding

to the labelling of a path from root to an element in Final .

A PR-system R is a pair (S;A) where S is a PR-structure and A is an

automaton. In the following, R will also designate the structure obtained by

restricting S to L

A

.

Example 4. Our example graph of Figure 1 can be described by a PR-system

R = (S;A). The PR-structure S has three non-empty binary relations a,b and c

such that a

S

= x

�

y

�

�(f"g�(y+z)), b

S

= x

�

�(f"g � x) and c

S

= x

�

�(xy

�

z � y

�

z).

The automaton A is presented in Figure 5.a. Its root is pointed by an unlabelled

edge and all its states are in Final . The language recognised by A is the set of

pre�xes of fx

n

y

n

z j n � 0g. The graph obtained by restricting S to the language

recognised by A (Figure 5.b) is isomorphic to the step-ladder (Figure 1).

x

y

z

x

y

y

x

y

y

z

a

a

a

b

c

a

a

a

b

c

"

z

x

xx

xy

xyz

xxy

xxyy

xxyyz

(a) (b)

Fig. 5. The automaton A (a) and the PR-system R (b).

Lemma 2. For any MS-de�nable transduction T and any deterministic graph

G, there exists a PR-system R = (S;A) such that T (Unf(G)) is isomorphic to

R and A is obtained from G by an MS-de�nable transduction.

Proof (sketch). Let us consider here the simpler case where T is a non-erasing

MS interpretation (true; (�

R

)

R2�

). For T a tree and x one of its nodes, T

=x

denotes the subtree of T rooted at x.

For every formula �

R

of arity n, there exists an associated parity automaton

A

R

. This automaton works on deterministic trees with n distinguished vertices



m

1

; : : : ;m

n

calledmarks. The autaton accepts a tree T i� T j= �

R

(m

1

; : : : ;m

n

).

We can always suppose that the states Q of A

R

are enriched with informations

about the expected marks: there is a mapping � from Q to 2

[1;n]

such that if

a node x of T is assigned a state q in a successful run of A

R

then the marks

appearing in T

=x

are exactly the one of indices in �(q).

We want to attach to every node of Unf (G) the set of transitions of A

R

starting a successful run on Unf (G)

=x

. LetM

R

be this application. By de�nition

of the runs of the automaton, the same transitions lead to the same winning

runs for any two bisimilar starting nodes (x is bisimilar to y i� Unf (G)

=x

�

Unf (G)

=y

). It follows that there is a mapping B

R

attaching transitions to the

vertices of graphs, such that M

R

(Unf (G)) = Unf (B

R

(G)). Furthermore, we

show that this application B

R

is an MS-interpretation (see also [Wal96] for a

similar construction).

Finally, we de�ne a n-ary PR-relation R which simulates the run of the parity

automaton when �(q) 6= ;, and prunes the run according to the information

provided by M

R

whenever �(q) = ;.

Lemma 3. For any PR-system R = (S;A), there exists a PQFD-system E such

that E is obtained by an MS de�nable transduction from A and R is isomorphic

to [[E ]].

Proof (sketch). The proof is syntactical. Let (P

R

)

R2�

be PR-relations and let

A

1

; : : : ; A

k

be the �nite automata accepting the rational languages involved in

the PR-expressions describing the P 's relations and let A be the automaton

restricting the PR-system.

We produce a new equational system working over signature � enriched by

a new symbol for each state of an automaton A

i

. The arity of the symbol is the

arity of the relation in which L

A

i

is used. The equational system is obtained from

A by replacing each edge labelled by a with a pqfd operator which simulates

simultaneously all a transitions of the A

i

's. Disjoint union operators are used to

follow the branching structure of A. one operators are used for each Final state

of A.

6 Conclusion

By combining Lemmas 1,2 and 3, we obtain the following theorem:

Theorem 1. Let F be a family of deterministic graphs closed by MS-de�nable

transductions, the following classes of structures are isomorphic:

{ the solutions of systems of equations over the PQFD operators represented

by a graph in F ,

{ the solutions of normalised systems of equations over the PQFD + F opera-

teors represented by a graph in F ,

{ the structures obtained by applying an MS-de�nable transduction to the un-

folding of a deterministic graph in F ,



{ the pre�x-recognisable structures restricted to the language accepted by a de-

terministic automaton in F .

Le us notice that, according to the third representation, if F has a decidable MS

theory, then it is also the case of the resulting structures.

Removing the normalisation of PQFD + F equational systems is an open

question.
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