Book Title 1
Book Editors
I0S Press, 2003

An introduction to Combinatorial
Hopf Algebras

— Examples and realizations —

Florent Hivert

LIFAR - Université de Rouen — Faculté des Sciences et des Techniques —
Avenue de 'université — 76801 SAINT ETIENNE DU ROUVRAY - FRANCE

e-mail: Florent.Hivert@univ-rouen.fr

Abstract.

Keywords. Combinatorics, combinatorial Hopf algebras, symmetric
functions, sorting algorithms, search trees.

1. introduction — some motivations

In the past recent years, several very different people coming from various part of
science were naturally led to the same kind of objects, namely "The Combinatorial
Hopf Algebras". A Hopf algebra is roughly speaking both an algebra and the
dual of an algebra which are compatible. Consequently there is a product rule
which allows one to compose the objects and a co-product rule which decompose
the objects. Though there is for the moment no good definition of what is a
"combinatorial" Hopf algebra, there are plenty of examples each of them having
a very rich combinatorics. It’s seems to be a field where algebraists, computer
scientists and physicists can understand each other more or less and managing
to work together as shown during the first meeting on this subjects in Montreal
(2001) and Banff (2003).

One of the precursor of the subject is certainly Rota [27,28,14] which was
the first to emphasizes the importance of Hopf algebra in combinatorics. He was
inspired by the work of Mac-Mahon [24] on symmetric functions. Indeed, the hopf
algebra of symmetric function is the prototype of what is a combinatorial Hopf
algebra. This was deeply used by Zelevinsky [30] is his study of the representation
of the classical groups. The representation theory is one very important motiva-
tion in the study of combinatorial Hopf algebra. They appears as character ring
or Grothendieck ring of tower of algebras. This point of view has been further
extended to various extension of the Hecke algebras (Hecke-Clifford, Cyclotomic
Hecke algebras or Ariki-Koike algebras) in [16,17,6,2,13].

2 Combinatorial Hopf Algebras

Another strong motivation coming from algebra is the study of operads [19,
20]. One of the main character of the present paper was defined in this setting
namely the algebra of binary trees of Loday and Ronco [21,22]. The motivation
was the study of a certain class of algebra called Dendriform algebras. These are
algebras where the product decompose into the sum of two operations verifying
some relations.

The physicists were led to the study of combinatorial Hopf algebras trough
the quantum field theory. The main problem here is to give a meaning to some
complicated diverging series. The classical approach use Feynman’s Diagrams
is more a receipt than a well founded theory. A systematic approach has been
initiated by Connes and Kreimer [5] using some combinatorial Hopf algebras on
planar trees. Their algebra is very close to the algebra of Loday and Ronco. This
approach is extended by Brouder and Frabetti in [3,4].

In this paper, we present a contribution coming from theoretical computer
science to the subject. It appears that the most important examples arise naturally
in the study of some very basic searching and sorting algorithms and that this
knowledge allows us to very simply construct these objects. All the axioms of
Hopf algebras, which are usually very tedious to check using the standard way to
define a Hopf algebras, are here mostly obvious coming from simple facts.

The key idea is not to define, as usual, a combinatorial object together with a
product, a coproduct and then to show the various axioms like the associativity,
the co-associativity, and the compatibility, but rather to realize the hopf algebra as
a vector space of some maybe complicated non-commutative polynomials verifying
some "symmetry" invariance. When this invariance is appropriate the product
is inherited from the product of polynomials and the coproduct is defined using
the so-called "alphabet doubling trick". Then the only things to prove is that
the space is stable by the product and the co-product. This is usually done by
proving the rules that are usually given as a definition. The main ingredient of the
construction of a Hopf algebra is then an algorithm which compute the "symmetry
class" S(w) of a word. Then the definition

F, = Z w (1)

w | S(w)=0c

where o is a "symmetry class" defines all what is needed, provided the algorithm
verifies certain compatibility properties which are very easy to check. Here the
word "symmetry" is to be understood in a very large sense and I must confess
that it took several years to my research team to realize how wide is this sense.

The goal of the present paper is to introduce interested people to this beautiful
subject and certainly not to build a formal base for the theory of Hopf algebras.
Though we gives all the formal definitions, the reader is strongly advised to refer
to basic textbooks on this subject as [29,1,26].

Combinatorial Hopf Algebras 3
2. A very simple example

We start by giving a simple example namely the non-commutative polynomials
hoping that this introduce smoothly the formalism and the key ideas.

2.1. The free algebra

One of the simplest combinatorial object is the word, that is finite sequences of
letters coming from a set X called the alphabet. For example, ababd is a word over
the alphabet X = {a,b,¢,d,e}. There exists an empty word which is denoted e,
and the concatenation (gluing) of to word w and w is denoted by w - w’ or simply
by ww'. The word ababd concatenated with bab gives ababdbab. The empty word
is a neutral element for the concatenation which is associative: for all words w,
w’ and w”, one has

//:w_(w/_w//)::w.w/_w// (2)

ecw=w-e=w and (w-w')-w
On resume all these properties by saying that the set of words X* endowed with the
unit € and the product - is a monoid. If one wants to count some multiplicities, one
are naturally led to consider linear combinations of words with integer coefficients,
that is element of the free algebra generated by X with scalar in Z denoted by
Z(X). A typical element of Z(X) is of the form) c¢,w, for example 3abc +
5baba + 2¢. The product is naturally extended by linearity

<Z cww> <Z cw/w/> = Z CopCo? W+ W (3)

For example, (3abc + 5baba + 2¢€)(3a + bb) = 9abca + 15babaa + 6a + 3abcbb +
5bababb+ 2bb. Note that the product symbol - is here implicit. It should be noticed
that each word w have a length denoted by ¢(w) and that the concatenation is
compatible to this length in the sense that

Lw-w') = L(w) + L(w'). (4)

Hence the space Z(X) decompose into

Z(X) = Pzx) (5)

neN

where Z™(X) is the linear combination of words of length n. Such a linear combi-
nation is called homogeneous of degree n and the compatibility property can be
restated as the inclusion:

ZM(X) Z™(X) C ZH™(X) . (6)

All these facts (unit, associativity, homogeneous decomposition compatible with
the product) is resumed by saying that Z(X) is a graded algebra.

4 Combinatorial Hopf Algebras

2.2. A first co-product

In order to defines Hopf algebra we now want to introduce the notion of co-
product. Recall that a coproduct is a notion dual to the notion of a product. A
product is a composition law and consequently a coproduct is a decomposition law.
A very simple but powerful way to define coproduct is the "alphabet doubling"
trick presented here on an example.

Let w be a word. We compute the coproduct A(w) by the following sequence
of operation. First we compute the sum of all possible replacement of the letters
of w by any of two different copy of it, say a small one and a capital one. The
letter a is replaced by a or A, the letter b is replaced by b or B and so on. Then
we decide that the small letters and the capital one commute with each other,
thus we can put the small one on the left and the capital one on the right. Finally,
the concatenation of the two words wW is replaced by a tensor product w ® w’
where ' is the word in small letters associated to W. Here is a example:

A(aba) = aba + Aba + aBa + abA + ABa + AbA + aBA + ABA
abae + baA + aaB + abA + aAB + bAA + aBA + ¢ ABA
aba®e+ba®R®Ra+aa@b+abRa+a®@ab+b® aa+a ® ba+ € R aba

Recall now that the tensor product symbol is bilinear that is for any scalar ¢
and objects U and V one has

c(UV)=(cU)@V =U®& (V). (7
It is then possible to collect the preceding example to get the multiplicities:
Aaab) =aab®@1+2(ab®a)+aa®@b+2(a®@ab) +b®aa+ 1 ® aab.

Moreover, we decide to extends this operation by linearity, hence defining a linear
operation

A Z(X) — Z(X) @ Z(X) . (8)
This operation goes in the reverse way of a product: indeed, a product on A is
usually defined as a bilinear operation Ax A — A, but it can consequently be seen
as a linear operation A ® A — A. This can be formalized using the duality, but
for the moment we prefer to concentrate on some properties of this operations.
2.3. Co-associativity
If w is a word, the coproduct A(w) is a linear combination) c¢(w; ® ws) of

symbol w; ® ws. We can therefore decide to compute the linear combination
> e(A(wr) ® we) that is (A @ Id)(A(w)) where 1d is the identity map and

(f@g(zey) = flz)®g(y). 9)

If we do the same on the right we get the same result:

Combinatorial Hopf Algebras 5

Z c(A(wr) ® wy) = Z clwr @ A(ws)) . (10)

This is not surprising because if we go back to the definition of the coproduct we
realize that both of these expression are computed by taking three copies of the
original alphabet: In the left hand side each letter « is replaced by a or A and
then by a or (A or A’) whereas in the right hand side the letter a is replaced by
a or A and then by (a or ') or A’. If we have used three different colors, there
would have been no differences.

Thus we have the following identity

(A®Id)o A= (Id®A)o A (11)

where o is the composition of functions. This property is called co-associativity
because it is dual to the associativity property. Indeed, if the product Ax A— A
is considered as a linear operation 1 : A® A — A, then the associativity property
can be rewritten has

po(p®ld)=po(Ideu) (12)

The word dual is here to be understood as "reversing" (transpose the matrices)
the operation. In this paper we decide not to emphasize on duality, therefore the
reader is strongly encouraged to have a look at [1,29,26] for a more developed the-
ory including the diagrammatic notation together with the "reversing the arrows"
principle.

If we denote ¢ the operation which send all the word to 0 except the empty
one sent to 1 we have the following identity

(c®1d)(A(w)) = (Id ®@c)(A(w)) = w (13)

through the identification s @ w = w® s = w if s is a scalar. Again, this is obvious
in our example since (Id ®c)A(w) amounts to do the doubling alphabet tricks
and then to erase the terms w ® W where W is not empty. This property is dual
to the property

ple @ w) = plw ®€) = w (14)

and c is therefore called a co-unit.
We resume these properties in the following definition

Definition 1. A co-algebra over the field K is o K-vector space H together with
two maps

A:H—H®H and c¢c: H—K (15)

such that A is a co-associative coproduct (Equation (11)) admitting c for co-unit
(Equation (13)).

6 Combinatorial Hopf Algebras

Before going further in should be noted that the co-product is compatible
with the length is the sense that

AZ™X) C P ZHX) 7/ (X) . (16)

i+j=m
One says that the co-algebra is graded.
2.4. Compatibility between the product and the co-product

We want here to introduce on our example the main axiom of the theory of Hopf
algebras. First of all, we naturally extend the multiplication to tensors as

(u@v)(u' @v") =uu @vv. (17)

Let v and w to words. Their co-product can be writen as linear combinations
> s(v1 ® v2) and Y t(w; ® wa) where s and t are scalars. We want to compare
A(v)A(w), that is

(Z s(n1 ® Ug)) (Z t(wy ® wg)) = Z st(viwy @ vaws) (18)

with the co-product A(v - w). Let us do it first on an example. We start with
Ala) =a®e+e®a
Alab) =ab®e+a®@b+b®a+e® ab

First we expand the product of these two expressions:

A(ab)A(a) = (abRe+a®b+bRa+e®ab)(a® e+ e® a)
—aba®et+aa®@b+baxka+a®abt+abRa+aRba+bRaa+e® aba.

The direct computation of the coproduct of a - ba gives
Aaba) =aba®e+ba®a+aa®@b+ab®a+a®@ab+bRaa+a®ba+e®aba,

which is the same linear combination. Actually, this is easily seen to be always
true since the concatenation clearly commute with the "doubling alphabet trick".
Moreover, the co-product of a word v = lyl5 . . . [, is noting but the tensor notation
of the product

(lh+ Li)(la + L) ... (I + Ly) (19)

where the small I’s and the capital L’s commutes with the other. Thus it is clear
that if v =1} ...1, both A(v)A(w) and A(vw) are the tensor notation for

and thus are equal.
This lead us to the following definition

Combinatorial Hopf Algebras 7

Definition 2. A bi-algebra, is a vector space H endowed with a structure of algebra
(-, 1) together with a structure of co-algebra (A, c) satisfying the compatibility
relation

Azy) = A(x)A(y) - (21)

A bi-algebra is said to be graded for a degree ¢ if both the algebra and the co-
algebra are graded. If moreover the homogeneous component of degree 0 is the line
spanned by the unit the bi-algebra is said to be connected.

Note 1. All the bi-algebras considered in this paper are graded and connected. In
the usual definition of o Hopf algebra one more ingredient is required called the
antipode. The graded-connected hypothesis ensure that the antipode is defined and
thus oll the bi-algebras considered here are Hopf algebras. Therefore we will stick
to the name Hopf algebra without speaking about the antipode.

3. The bubble sort algorithm and the free quasi-symmetric functions
3.1. Basic properties

The goal of this section is to construct the Hopf algebra of permutations first
defined by Malvenuto-Reutenauer [25] and called here the algebra of free quasi-
symmetric functions. This algebra arise naturally is the study of a very simple
(and inefficient) sorting algorithm called the bubble sort. Let us recall this algo-
rithm

Algorithm 3 (Bubble sort).
INPUT : a word
OUTPUT : the associated sorted word.

e Given a word w = lils . ..1l,, find two adjacent letters l;,1l;11, in the wrong
order l; > l;+1 and exchange them.
e Repeat the procedure until the word is sorted.

Of course there is a need for a strategies of searching for the two letters.
Actually there are several one, for example:

left-to-right scanning strategy;
right-to-left scanning strategy;
go-and-back scanning strategy;
try the leftmost one, etc.

The chosen strategy is irrelevant for our study, we therefore stick to the left-to-

right scanning strategy.
Here are examples of the execution of the bubble sort on three words:

8 Combinatorial Hopf Algebras

X

ook W W W E Qe
X

T QQQQU »
X

[NI S N
X

X
X

X
X
X

X
O O U UXUj BN SERSEH S
S GEGEIVEIGEIVEIV v}
X
OO U UXH DWW w
S GEIvEIVEIVEIVEv]
X
o oo o N wwww
SRS RN \IXQ o oo o

X
[S R I . A S

X
>wwe e QWw

X
BAOQW®wE L QAQ

Lot W W W TN

X
QQ>x>»nEEl

X
SEECA IO RN I O

X
N TSR IS CRICINY

X
W QQQQE»»

N e T e
N N N - N - NS
X

QAT UoOU DWW
T A

As it can be seen, though they are difference, the bubble sort behave the same.
We want to formalize this notion of execution of the bubble sort.

Definitions 4. An inversion of a word w = l1l5...1, is a pair (i < j) of integers
such that

) <j and ;> lj . (22)
A descent of a word w = l1ls .. .1, is an integer i such that
li > liJr]_ . (23)

Clearly at each step, the bubble sort choose a descent and remove it. Moreover,
doing that is removes only one inversion and thus, the number of inversions is the
number of steps of the bubble sort algorithm.

Let &,, denote the symmetric group of size n, that is the group of the n!
permutations of the set {1,...n}. A permutations o is identified with the word
o(1)a(2)---o(n). Such a word is called standard. Among the permutations, we
are interested in the elementary transposition o; = (i,i+ 1) which exchange ¢ and
i+ 1 and leave all the integer unchanged. There is an action of the symmetric
group on words from the right:

(a1a2---ap) - 0 = Ag(1)Ao(2) "~ Oo(n) - (24)
For example abbac - 31452 = baach

Definition 5. An execution of the bubble sort is a sequence of transpositions
[0iy,--.,0,], sorting the word in increasing order. Actually, one easily sees that
the resulting permutation

exec(w) =0 =04, 0 00y, (25)

encodes the whole information.

Hence the goal of the bubble sort is to compute the smallest (using the min-
imal number of elementary transpositions) permutation o := exec(w) such that
w - o is sorted. A natural question is to describe the set of the words which have
the same bubble sort execution.

The answer is provided by the following simple notion:

Combinatorial Hopf Algebras 9

Definition 6. Given a word w = l1ls ...l of length n, there exists a unique per-
mutation Std(w) := o of &,, which have the same inversion as w:

fori<j then o(@) >o(j) #f L>1;. (26)
The permutation Std(w) € &,, is called the standardized of w.

The simplest way to prove this is to give a effective algorithm. Std(w) can also
be defined as the permutation obtained by iteratively scanning w from left to right,
and labelling 1,2, ... the occurrences of its smallest letter, then numbering the
occurrences of the next one, and so on. For example Std(abcadbcaa) = 157296834
as seen on the following picture:

abcadbdcaa
aq b5 C7 a2 dg b@ Cg a3 Q4
157296834
Here is the link between the notion of standardization and bubble sort executions.

1

Proposition 7. For any word w, the word w - Std(w) ™" is sorted. Moreover,

exec(w) = Std(w) ™' . (27)

Proof. Clearly, exec(w) = exec(Std(w)), because exec(w) depends only on the
inversion of w and by definition w and Std(w) have the same inversions. Now,
for any permutation o, the result of the sorting is o - exec(o) and is the identity
permutation. But for permutations, the action and the composition coincide o-u =
o o u. Consequently exec(o) = o~ L. O

3.2. Ezecution and concatenation

We are now interested in the following natural question: Let u and v two words
of execution ¢ and . What are the possible executions of the sorting of the word
uv 7 More formally, let A be a totally ordered alphabet. Define the language (set
of word) L, (A):

Ly(A) :={we A" | exec(w) =0} (28)
For example:
L2 = {sorted words of length 2}
Li23..., = {sorted words of length n}

Lyp—1..21 = {strictly decreasing words of length n}
Loy43 = {bacb,bade, cade, cbde, ...} = {yxtz | z <y < z <t}
The question is now restated as: describe the language L, (A)Lg(A) for any

permutations « and (.
The answer is provided by the shuffle product

10 Combinatorial Hopf Algebras

Definition 8. The shuffle product W of two words is the element of Z(A) defined
recursively by

wle = ellw =w
zullyy = z(uWyv) + y(zullov) T,y €A, u,v € A*.

Alternatively, uWv is defined as the sum of all ways of building a word w
together with two complementary subwords equal to v and v. Here is an example:

aba'—'—lcb = abacb + abcab + abcba + acbab + acbba + acbba + cabab + cabba + cabba + cbaba

= abacb + abcab + abeba + acbab + acbba + acbba + cabab + 2 cabba + cbaba

Of course the sum of the coefficients of u v is the binomial coefficient (Z(“Z)(J; g(”)).

Then the main result of this section is the following theorem

Theorem 9 (Duchamp-H.-Thibon [6]). For any permutations o € &,,, and § €
S, the language LoLg is a disjoint union of languages L,,:

Lalg= || Ly, (29)

pEaW B[m]

where fim] =01 +m...Bh+meSn+1,n+2,....,n+m).

Here are some examples of products:

L13L123 = L3ss12 U L3g152 U L3a125 U L31as2 U L1425

U L31245 U L13452 U Ly3425 U L13245 U L12345

Ly1L123 = L3as21 U Lgos1 U Laaors U Lagast U Laoars

U L32145 U Lozasy U Loza1s U Lazias U Lo13ss

It is remarkable that Equation (29) is independent of the underlying language
A, the only difference is that if A is too small, then some L, (A) are empty, for
instance L3 2 1({a, b}) is empty. For this reason, it is easier to work with an infinite
language.

A formal proof of this theorem can be found in [6]. It essentially rely on the
following equivalence for any permutation o103 ... 0,44 :

e Std(o102...0,) = a and Std(op41 ... Ontm) = B iS equivalent to
e o~ ! occur in the shuffle of ¢! and g1

3.8. Free Quasi symmetric functions

At this stage a simple remark is required. To be able to later take care of multi-
plicities, instead of working with languages, it is better to work with their char-
acteristic series. The language L,(A) is then replaced by the noncommutative
formal series

Combinatorial Hopf Algebras 11

Fo(A)= > weZA). (30)

exec(w)=0
Thus we work in a sub-algebra of the free algebra.

Definition 10. The subalgebra of C(A)

FQSym(A) = P (P CF.(A) (31)

n>00€e6,,
is called the algebra of free quasi-symmetric functions.

It is convenient as this point to take an infinite alphabet A. Indeed, if A
is infinite then the structure of FQSym(A) is independent of A, the resulting
algebra is denoted FQSym. Note that there is an empty permutations () and
that F(y = e which can be identified with the scalar 1.

Thus the theorem 9 is now seen as the product rule of FQSym:

Proposition 11 (Duchamp-H.-Thibon [6]). « € &,, and 3 € &,,. Then,

F.Fs= > F, (32)

o€al f[m]
This was the original definition of Malvenuto-Reutenauer [25]. For example:

F132F21 = Fi3265 + F13625 + F13652 + F16325 + Fi6352
+ Fies32 + Fei325 + Foi352 + Feis32 + Fes132

3.4. The co-product of FQSym

We want now to give FQSym a structure of a Hopf algebra, namely we need to
define a coproduct. We will use an adapted alphabet doubling trick. From now
on all alphabet are supposed infinite.

Definition 12. Let A and B be two infinite, totally ordered, mutually commuting
alphabets. The ordered sum A+B of A and B is the union of A and B where the
variables of A are smaller than the variables of B.

Then the coproduct of F, defined is defined as follows: We expand F, over
the alphabet A+B. Since the variable of A and B commute mutually, we reorder
the resulting expression to put the letters from A on the left and those from B on
the right. We have now an expression in K(A) K(B). But it happens, and this is
the only thing to prove, that this expression actually belongs to the sub-algebra
FQSym(A)FQSym(B). Then we use the tensor notation to get an element of
FQSym(A) ® FQSym(B) ~ FQSym ® FQSym. To summarize the coproduct
is defined by

F, — Fo(A+B) — > Fo(A)F3(B) — > F,@Fy (33)

12 Combinatorial Hopf Algebras

For example, let A = {a <b<---}and B={A < B <---}. In A+B, one has
z < A. then by definition

F310 = Z YzxT = Z yzx—#Zyya:

r<y<z r<y<z <y
This given

F312(A+B) = bba+bca + bAa + AAa+ ABa + BBA+---
=bbal+bcal+ baA +aAA+aAB+1BBA+---
A(F312) = F312®1 +F3@F 1+ F1®Fs + 1®F3s

The precise rule is given by

Proposition 13 (Duchamp-H.-Thibon [6]). The coproduct in FQSym is given by

A(Fo) = ZFStd(wl...wk) ® FStd(wk+1...wn)) (34)
k=0

for all permutation 0 = wy ... w,.

The proof is very similar to Theorem 9 and can be found in [6].

At this stage some remarks are in order. By construction, the co-product is co-
associative because (A+B)+C = A+(B+C). Moreover the compatibility relation
holds because the expansion of F,(A+B)Fz(A+B) is the same as the expansion
of Fo(A)Fg(A) provided A and B are infinite. Thus the only non-trivial thing is
that

FQSym(A+B) c FQSym(A)FQSym(B). (35)

which is precisely the result of the previous propositions. Hence we have proved
for free that

Theorem 14. FQSym is a Hopf algebra.

This illustrate the strategy of the construction of Hopf algebra by realizations.
Let us summarize it. The element of the Hopf algebra are defined (realized) as a
vector space H of some kind of complicated polynomials (commutative or not).
The product is inherited from the product of polynomials. The co-product is
defined using an alphabet doubling trick. Then one must prove that the space H
is stable by the product and the coproduct. This is usually done by proving an
explicit formula. Then for free we have the associativity, the co-associativity and
the compatibility.

This is a interesting exercise to prove the compatibility relation using the
explicit formulas for the product and co-product.

Going back to the bubble sort, The coproduct answers the following question:
If a word w is sorted by a permutation o = exec(w), what is the execution of the
sort of the sub-word obtained from the k biggest (n — k smallest) letters of the
word w ?

Combinatorial Hopf Algebras 13
4. The binary search trees

We want to apply the preceding strategy to define a Hopf algebra on binary
rooted trees. This algebra has been first defined by Loday and Ronco [21] and is
closely related to the renormalisation Hopf algebra of Connes and Kreimer [5].
As in the previous section, we start with a simple and powerful algorithm from
computer science, namely the binary-searching algorithm. The reader interested
in this algorithm can refer to [15]. The construction given here is fully described
in [9,10,12].

4.1. The binary search insertion algorithm

Through this paper, by binary tree we means (un-complete) planar rooted binary
tree, that is a binary tree is either void @) or a pair of (possibly void) binary trees
grafted on a node. The size of a binary tree is it’s number of node. The number of

2n
binary trees of size n is the Catalan number C,, := () Here are the first value

n+1"
together with the associated trees:

1,1,2,5, 14,42, 132,429, 1430, 4862, 16796

0 . FXR SN
I TR P

By labeled trees we means a tree with a label attached to each node, the label
are taken either from the alphabet A or from N.

Definition 15. A binary search tree T' is a labeled binary tree such that for each
node n the label of n is greater or equal than all the labels of the left subtree and
strictly smaller than all the label of the right one.

A decreasing trees T is a labeled binary tree such that for each node n the label
of n is greater or equal than all the labels of the left subtree and strictly greater
than aoll the label of the right one.

A labeled trees which is labeled by the first natural number 1, ..., n where each
number appear only once is called standard.

Here are some examples:

binary tree (BT) search tree (BST) decreasing tree (DT)

14 Combinatorial Hopf Algebras

The fundamental properties of binary search trees is given by the following
proposition.

Proposition 16. If T is a binary search tree and a is a letter, there exists one and
only one position to add a leaf labeled a such that the resulting tree T «— a is a
binary search tree.

It is proved by the following algorithm.

Algorithm 17 (Binary search tree insertion).
INPUT: a binary search tree T and an letter a
OUTPUT: the binary search tree T — a.

if T is empty then return the tree (@);

compare a with the root of T;

if it’s smaller or equal insert recursively a in the left subtree;
if it’s greater insert recursively a in the right subtree.

Here is an example:

Then the insertion of a word w is the result of the consecutive insertion of its
letters the resulting tree is denoted by Tree(w). The reader have to be careful
that for compatibility with the convention of [21], we decided to read the letters of
the word from right to left. The figure 1 shows the insertion of the word cadbaedb.
The meaning of the second tree will be explained later.

4.2. The sylvester monoid

In this subsection, we first focus on the following question. Given a binary search
tree T', how to describe the set of words that inserts to 7' 7 We are lead to a
monoid structure on binary search trees called the sylvester monoid.

We start be reading some words from a tree

Definitions 18. o The infix reading of a labeled tree is the word w obtained
by reading recursively the left subtree, the root and the right subtree;
o the (left to right) postfix reading of a tree T is the word wr obtained by
reading the left subtree, then the right and finally the root.

It is clear that the infix reading gives the sorting of the word. This is the
binary search tree sorting algorithm.

Combinatorial Hopf Algebras 15

@) &)

b,8 d,7 @ @ e,6 a,b

@,®—>@,—>,_>,_>
(e ®

'**. ‘C’»%
e'@'».’('?»
tb () e @ & @

@ @ (d) e@ 9 (3) @

Figure 1. sylvester insertion of the word cadbaedb.

Proposition 19. Let T be a binary search tree and wr its postfix reading. Then
Tree(wr) = T. Moreover wr is the smallest word (for the lexicographic order) w
such that Tree(w) =T

The word corresponding to the previous tree is the word wpr = abacdedb.
Note that the biggest word w such that Tree(w) = T is obtained by a right to
left postfix reading, in our example we get ecddbaab.

Let us first define the sylvester monoid by means of congruencies without
using any trees.

Definition 20. Let wi and wy two words. They are said to be sylvester adjacent if
there exists three words u,v,w and three letters A < B < C such that

wy =uvACvBw and wys=uCAvBuw. (36)

The sylvester equivalence is the transitive closure of the sylvester adjacency.
That is, two words u,v are sylvester equivalent if there exists a chain

U= Wy, Wa,..., Wy =10 (37)

of words such that w; and w;y1 are adjacent for a all i. In this case we write

U Esylv v

Definition 21. The sylvester monoid Sylv(A) is the quotient of the free monoid
A* by the sylvester equivalence: Sylv(A) := A*/ =51

16 Combinatorial Hopf Algebras

Note that =, is a congruence on A*, that is for any words u, v, v2, w such
that v1 =sy10 V2 then uviw =441, uvow. For example the class of the word 21354
is the set

{52134,25134,21534, 21354} .

The fundamental theorem is the following:

Theorem 22. Two words u and v are equivalent if and only if they corresponds to
the same binary search tree: Tree(u) = Tree(v).

Consequently the postfix readings (wr)r of the binary search trees gives a
section of the sylvester monoid, that is there is one and only one tree-word in
each equivalence class of =,,.

This is very similar to a classical construction in algebraic combinatoric called
the plactic monoid [18,23]. The plactic monoid is related to an algorithm called
Schensted algorithm the same way the Sylvester monoid is related to the binary
search algorithm.

Actually, it in possible to have not only the analogue of Schensted insertion,
but also the full Robinson-Schensted correspondence. Suppose that o € &,, is a
permutation of {1,2,...,n}. To o we associate a decreasing tree DT (o) as follows.
The root is labeled by the biggest letter n of o and if as a word o = unwv, then
the left subtree is DT(u) and the right subtree is DT(v). For each w € A*, we
set Q(w) = DT((Stdw)~1). For example, with w = cadbaedb, one has Std(w) =
51632874, the inverse is Std(w) ™! = 25481376, the decreasing tree is therefore

Q(cadbaedb) =

The following theorem is the analogue of the Robinson-Schensted correspon-
dence w +— (P(w),Q(w)), where P(w) and Q(w) are two young tableaux
of the same shape (Q(w) is standard). The trees play here the role of the
tableaux [18,23].

Theorem 23. For each word w € A*, the tree Tree(w) is obtained by replacing in
Q(w) each label i by the i-th letter of w.

The tree Q(w) records the reverse order of creation of the node in the binary
insertion of w.

The map w — (P(w), Q(w)) is a bijection between A* and the set of pairs
of binary search trees and standard decreasing tree of the same shape (unlabeled
tree).

The following theorem is the analogue of the Robinson-Schensted correspon-
dence w — (P(w),Q(w)), where P(w) and Q(w) are two young tableaux

Combinatorial Hopf Algebras 17

of the same shape (Q(w) is standard). The trees play here the role of the
tableaux [18,23].

The two first points are easy to see and can be checked on the following
example:

@ ® @ O T ®» ¢ ©

The third point is proved by giving the converse bijection: the word corre-
sponding to a pair (BST, DT) is obtained by reading the labels of BST in the
order of the label of DT. Note that, in opposition to the plactic insertion the
labels does never move until they reach a leaf.

cadbaedb +——

4.8. The algebra of trees

We want now to investigate the following question. When we project the F,(A)
into the Sylvester algebra

Fo(A)= > wr—F,(A/ =)= > Tree(w), (38)

exec(w)=0c exec(w)=0c

what remains of the Hopf-algebra structure ? Let us denote G, = F -1 so that
Go(A) = X gtd(w)—o w- It is clear that Tree(std(w)) and Tree(w) have the same
shape. Moreover, there is only one BST of a given shape so that

Proposition 24 (compatibility with standardization). Let u,v be two words. Then
the following are equivalent

® U =gylv U5
o Std(u) =sy10 Std(v) and for all letter a one has |ul, = |vlq,
e Sh(Std(u)) = Sh(Std(u)) and for all letter a one has |u|, = |v|a,

where |w|, denotes the number of a in the word w.

Therefore G, (A/ =4y1,) depends only on the shape of Tree(o). Let us define

QT - GU(A/ Esylv) (39)

for any o such that Sh(Tree(o)) = T. Then the monoid structure of Sylv(A)
makes it clear that the product G,G,(A/ =sy1,) depends only on the shape of
o and p. Therefore the quotient FQSym(A/ =,) inherits naturally an algebra
structure. Here is an example of product

Qi “Qp * Qo F Qe FQ QL
+Q<.‘+Q(.>\+QA+Q<\.+Q‘.\\

(40)

18 Combinatorial Hopf Algebras

To deal with the co-algebra structure we need to investigate G, (A+B/ =oylv)-
This is done by the following proposition. For any subset I of the alphabet A and
any word w on A, let us denote w/I the word obtained from w by erasing the
letters that are not in [.

Proposition 25 (compatibility with restriction to intervals). Suppose that I is an
interval of A. Then u =gy, v implies u/I =gy, v/1.

As a consequence, since A and B are intervals of the alphabet A+B on has
that G,(A+B/ =) depends only on the shape of . Therefore the quotient
FQSym(A/ =,,,) inherits naturally a co-algebra structure. Here is an example
of co-product

AQQ:QQ®1+Q<.>®Q.+Q<.\.®Q%

tQa¥Qa Qe Qe Qe Qu

+1®Q<.>\.

Hence we have proved that

Theorem 26. The equivalence relation =41, is compatible with the Hopf-algebra
structure on FQSym. The quotient Hopf algebra is a Hopf algebra whose basis
are indexed by binary trees.

This Hopf algebra, is isomorphic to the algebra of Loday and Ronco.
Actually we could have worked in a dual way:

Theorem 27. The space spanned by

Pri= > w= Y Fr (42)

DT(w)=T Sh(BST(0))=T
if a sub-hopf algebra of FQSym which is dual to FQSym(A/ =4,1,).
The compatibility with restriction to intervals shows that the vector space
spanned by the Py is stable under the product.
5. Toward a general theory
5.1. Free Schur functions
In the preceding section we used a certain relation on words to define a quo-

tient Hopf algebra of FQSym. Actually, we only used very few properties of this
congruences and there are several other well known examples.

Combinatorial Hopf Algebras 19

Let’s just describe without proof another very important one. It is related
to Robinson-Schensted algorithm. We will not recall the algorithm, the reader
should refer to [23] for the details. Recall a partition A = (A > --- > Ay of nis a
non-increasing sequence of positive numbers of sum n. A partition is depicted by
a so called Ferrer’s diagram as follows: the partitions (5, 3, 2) is depicted as

Then a filling of the boxes of such a diagram is a tableau if and only if the content
of the boxes are increasing along rows and strictly increasing along columns.

The Robinson-Schented correspondence is a bijection from the set of words
to the set of pairs of tableaux and standard tableaux of the same shape. The
first tableau corresponding to a word w in denoted P(w) the second @Q(w). The
following example shows the algorithm on the word acdbaedbe.

0.0 =L [a, [1] <2 [a]e). (12 - [ale]a). [1[2]3]

o . [¢] 5]
b4 c 4 a5 —
bla] [1]2]3] b g=
alald] [1]2]3]
e,6 Z E d,7 7 ?
2.1y , 4 —— |ble , 147
alald]le] [1]2]3]6] alald]d] [1]2]3]6]
b cle 98 o cle 98
— [b]|d ;147 —— |bldla] ,[4]7]9
alalblad] [1]2]3]6] alalblc] [1]2]3]6]

The quotient of the free monoid by the relation "have the same P(w) tableau"
is a monoid called the plactic monoid. It can be equivalently defined by Knuth
relations:

Theorem 28. Let =pq.: be the transitive closure of the two following relations

cexzye-s = -eezay--- for x<y<z (43)
ceyzre-o for r<y<z (44)

Then, for two words w1 and w2, the equality P(wy) = P(w2) holds if and only if
W1 =plact W2-

20 Combinatorial Hopf Algebras

Here are two examples of plactic rewriting.
abaacbc = abacabc and acabdbc = acadbbe

We then define

Sti= > Fo= > w, (45)

Tab(o)=t Q(w)=t

where w — (P(w),Q(w)) is the usual Robinson-Schensted map. Then we have
the following analogue of Theorem 27

Theorem 29. The space spanned by
St = Z FG‘ = Z 5 (46)
Tab(o)=t Q(w)=t
if a sub-hopf algebra of FQSym which is dual to FQSym(A/ =p4ct).

This provide a very simple proof of the Littlewood-Richardson rule for com-
puting the multiplication of Schur functions or equivalently for computing the
decomposition of the tensor product of representations of GL .

5.2. General theorems

The planar binary trees Hopf algebra and the free symmetric functions Hopf
algebra are actually two examples of a more general construction. The main data
is a plactic-like monoid. Let summarize the following definitions.

Definitions 30. A congruence = on the free monoid A* is an equivalence relation
which is compatible with the concatenation, that is, for any words u, vy, v, w such
that v1 = vy then uviw = uvgw.

A congruence = is generated by transpositions if it is the transitive closure
of a (not necessarily finite) set of relation of the type

uabv = ubav (47)

where u, v are words and a, b letters.
We are now in position to state the main theorem.

Theorem 31. Suppose that = is a congruence generated by transpositions which is
compatible with the standardization and the restriction to intervals. For any class
C of standard words (i.e.: permutations) for the congruence =, let

P, =) F,. (48)
oeC

Then the space spanned by P; is a sub Hopf algebra of FQSym which is dual to
the quotient FQSym(A/ =).

Combinatorial Hopf Algebras 21

The proof is essentially the same than in the case of the plactic monoid
and ca be found in [6]. There are more instances of the following construc-
tion. For example, the hypoplactic monoid [16], leading to the pair quasi-
symmetric/noncommutative symmetric functions.

References

[1] E. Abe, Hopf algebras, Cambridge tract in mathematics, Cambridge University
Press 1980.

[2] N. Bergeron, F. Hivert and J.-Y. Thibon, The peak algebra and the Hecke-clifford
algebras at ¢ = 0, J. Combinatorial Theory A, 117 (2004), 1-19.

[3] C. Brouder and A. Frabetti, Renormalization of QED with planar binary trees,
Europ. Phys. J. C 19 (2001), 715-741.

[4] C. Brouder and A. Frabetti, QED Hopf algebras on planar binary trees, J. Algebra,
267 (2003), no. 1, 298-322.

[5] A. Connes and D. Kreimer, Hopf algebras, renormalization and noncommutative
geometry, Comm. Math. Phys. 199 (1998), no. 1, 203-242.

[6] G. Duchamp, F. Hivert and J.-Y Thibon, Noncommutative symmetric functions. VI.
Free quasi-symmetric functions and related algebras, Internat. J. Algebra Comput.
12 (2002), no. 5, 671-717.

[7] .M. Gelfand, D. Krob, B. Leclerc, A. Lascoux, V.S. Retakh and J.-Y. Thibon,
Noncommutative symmetric functions, Adv. in Math., 112 (1995), 218-348.

[8] I. Gessel, Multipartite P-partitions and inner products of skew Schur functions,
in riCombinatorics and algebraz, C. Greene, ed., Contemporary Mathematics 34
(1984), 289-301.

[9] F. Hivert, J.-C. Novelli and J.-Y. Thibon, Un analogue du monoide plazique pour
les arbres binaires de recherche, C. R. Acad. Sci. Paris, 335 (2002), 1-4.

[10] F. Hivert, J.-C. Novelli and J.-Y. Thibon, Sur quelques propriétés de l’algébre des
arbres binaires, C. R. Math. Acad. Sci. Paris, 337(9) (2003), 565-568.

[11] F. Hivert and N. Thiéry, Mupad-combinat, an open-source package for research in
algebraic combinatorics, Séminaire Lotharingien de Combinatoire, 51 (2003), 70 p.
electronic.

[12] F. Hivert, J.-C. Novelli and J.-Y. Thibon, The algebra of binary search trees, The-
oretical Computer Science, 339(1) (2005), 129-165.

[13] F. Hivert, J.-C. Novelli and J.-Y. Thibon, Yang-Bazter bases of 0-Hecke algebras and
representation theory of 0-Ariki-Koike-Shoji algebras, Advances in Mathematics, to
appears.

[14] S. A. Joni and G.-C. Rota, Coalgebra and bialgebra in combinatorics, Stud. an Appl.
Math. 61 (1979) 93-139.

[15] D. E. Knuth, The art of computer programming, vol.3: Sorting and searching,
(Addison-Wesley, 1973).

[16] D. Krob and J.-Y. Thibon, Noncommutative symmetric functions IV : Quantum
linear groups and Hecke algebras at ¢ = 0, J. Alg. Comb., 6 (1997), no. 4, 339-376.

[17] D. Krob and J.-Y. Thibon, Noncommutative symmetric functions V: A degenerate
version of Ug(gln), Internat. J. Algebra Comput., 9 (1999), no. 3-4, 405-430.

[18] A. Lascoux and M.-P. Schiitzenberger, Le monoide plazique in Noncommutative
structures in algebra and geometric combinatorics (Naples, 1978), pp. 129-156,
Quad. Ricerca Sci., 109, CNR, Rome, 1981.

[19] J.-L. Loday, Dialgebras and Related Operads, Lecture Notes in Mathematics, 1763,
Springer-Verlag, 2001,7-66

22 Combinatorial Hopf Algebras

[20] J.-L. Loday, Realization of the Stasheff polytope, math.AT /0212126, to appear in
Arch. Math. (Basel).

[21] J.-L. Loday and M.O. Ronco, Hopf algebra of the planar binary trees, Adv. Math.,
139 (1998) n. 2, 293-309.

[22] J.-L. Loday and M.O. Ronco, Order structure on the algebra of permutations and
of planar binary trees, J. Algebraic Combin., 15 (2002) n. 3, 253-270.

[23] A. Lascoux, B. Leclerc and J.-Y. Thibon, The plactic monoid, Chapter 5 of M.
Lothaire, Algebraic Combinatorics on Words, Cambridge University Press.

[24] P. A. MacMahon, Combinatorial analysis, Cambridge University Press, (1915)
Chelsea reprint 1960.

[25] C. Malvenuto and C. Reutenauer, Duality between quasi-symmetric functions and
Solomon descent algebra, J. Algebra, 177 (1995), 967-982.

[26] S. Montgomery, Hopf algebras and their action on rings, AMS 1994, 240p.

[27] G.-C. Rota, Hopf algebra methods in combinatorics, Colloques internationaux
C.N.R.S, Orsay (1976) 363-365, reprinted in Gian-Carlo in combinatorrics,
Birkhauser, 1995.

[28] G.-C. Rota, Baster algebras and combinatorial identities I, II, Bull. A.M.S. 75
(1969) 325-334.

[29] M. Sweedler, Hopf algebras, Benjamin 1969.

[30] A. Zelevinsky, Representations of Finite Classical Groups. A Hopf Algebra Ap-
proach, Lecture Notes in Mathematics, 869, Springer-Verlag, Berlin-New York, 1981,
184 pp.

