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Abstract

Using the formalism of noncommutative symmetric functions, we derive the basic theory of
the peak algebra of symmetric groups and of its graded Hopf dual. Our main result is to
provide a representation theoretical interpretation of the peak algebra and its graded dual as
Grothendieck rings of the tower of Hecke—Clifford algebras at ¢ = 0.
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1. Introduction

Studies on the combinatorics of descents in permutations led to the discovery of a
pair, (QSym,Sym), of mutually dual graded Hopf algebras [8,9,17]. Here, QSym is
the graded Hopf algebra of quasi-symmetric functions, and its graded dual, Sym, is
the graded Hopf algebra of noncommutative symmetric functions. Recent
investigations on the combinatorics of peaks in permutations resulted in the
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discovery of an interesting new pair, (Peak, Peak®), of graded Hopf algebras. The
first one, Peak, originally due to Stembridge [22], is a subalgebra of QSym. As
described in [3], its graded dual, Peak®, can therefore be identified as a homomorphic
image of Sym. We shall see in the following that the existence of Peak® as well as
many of its basic properties were already implicit in [13].

It is known that Peak can also be obtained as a quotient of QSym, in which case
Peak™ is realized as a subalgebra of Sym. On the other hand, each homogeneous
component Sym, of Sym is endowed with another multiplication, the internal
product x, such that the resulting algebra is anti-isomorphic to Solomon’s descent
algebra of the symmetric group ®,. At this stage, a natural question arises. Is Peak]
stable under this operation? As shown in [17], the answer is yes (it is even a left ideal
of Sym,,), and the corresponding right ideal of the descent algebra is spanned by the
sums of permutations having a given peak set. Recent developments [1,2,5,20] unveil
many interesting properties and generalizations of Peak and Peak®. Most notably,
we find in [2] that Peak is the terminal object in the category of combinatorial Hopf
algebras satisfying generalized Dehn—Somerville relations. This reveals some of the
significance of Peak and Peak®. Our main result demonstrates yet another facet of
the importance of these graded Hopf algebras.

We shall start our presentation by showing that many of the basic results in the
literature related to Peak and Peak® can be recovered in a very elegant and
straightforward way by relying upon the techniques developed in [13]. This will be
covered in Sections 2-4.

It is known that the dual pair of Hopf algebras (QSym,Sym) describes the
representation theory of the 0-Hecke algebras of type 4 [14]. More precisely, QSym
and Sym are, respectively, isomorphic to the direct sums of the Grothendieck groups
Go(H,(0)) and Ky(H,(0)). We provide here a similar interpretation for the pair
(Peak, Peak®). This is done by replacing the Hecke algebras with the so-called
Hecke—Clifford algebras, discovered by Olshanski [18]. This new result is presented
in Section 5.

Our presentation is as self-contained as possible, but we encourage the diligent
reader to be familiar with the content of [8,13].

2. The (1 — g)-transform at g = —1

The main motivation for Stembridge’s theory of enriched P-partitions, which led
him to the quasi-symmetric peak algebra [22], was the study of the quasi-symmetric
expansions of Schur’s Q-functions [15,21]. As is well known, these symmetric
functions correspond to the Hall-Littlewood functions with parameter ¢ = —1. The
peak algebra is therefore directly related to what we will call the “(1 — ¢)-transform”
at g = —1.

For our presentation, let Sym denote the graded Hopf algebra of (commutative)
symmetric functions. There are several well-known bases for Sym [15]. It is
algebraically generated by primitive elements, the power sums {p,},., where
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deg(p,) = n. In other words, the elements of Sym are polynomials in the power sums.
Two other important sets of algebraic generators for Sym are the complete
symmetric functions {4,},-, and the elementary symmetric functions {e,},- . It is
often convenient to express these functions as series in a commutative alphabet X.
That is, for a totally ordered countable set X = {x;,xs,...} of commutative
variables, we define / ( ) and e,(X) as the coefficients of 7" in

1
H_(X)

and E;(X)=
i1 - 1Xi
respectively. The power sum p,(X) are then obtained as the coefficient of %t” in

P/(X) =log(H,(X)). Explicitly, that gives p,(X) =3, X/,
h(X) = Z Xi, XX, and e, (X) = Z Xi, X+ Xi, -

I<ii<ib <<y I<ij<ih<--<iy,

In this classical setting, the (1 — ¢)-transform 0, is the algebra endomorphism of
Sym defined on the power sums by 0,(p,) = (1 — ¢")p,. In A-ring notation, which is
particularly convenient for dealing with such transformations, it reads
S(X)—f((1 —¢g)X). One has to pay attention to the abuse of notation in using
the same minus sign for the A-ring and for scalars, though these operations are quite
different That is, 6_; maps p, to 2p, if n is odd, and to 0 otherwise. Thus,

01(£(X)) =f((1 —¢g)X),_, is not the same as f((1 + 1)X) = f(2X).

The main results of [13] are concerned with the extension of the (1 — ¢)-transform
to the graded Hopf algebra Sym of noncommutative symmetric functions. As a
noncommutative algebra, Sym, is freely generated by the noncommutative complete
symmetric functions {S,},-, where deg(S,) = n. The comultiplication structure is
given by S,— > 1 S;®S,_; with the convention that Sy = 1. This algebra can be
represented using series in a noncommutative alphabet 4. More precisely, for a
totally ordered countable set 4 = {a;,as, ...} of noncommutative variables, we
define S, (A4) as the coefficient of /" in the expression

- 1 1 1
oi(4) Hlfta' 1—tay 1 —tay ’

i>1 !

where the parameter ¢ commutes with all variables and the (noncommutative)
product is taken in the natural order of the variables. The abelianization map
%: Sym— Sym which sends the noncommutative alphabet 4 to the commutative
alphabet X is a Hopf homomorphism. In [13], we are interested in defining a (1 — ¢)-
transform on Sym which commutes with 7. A consistent definition of 0,(F) =
F((1—¢q)A) is proposed, and its fundamental properties are obtained. We briefly
recall here the necessary steps. One first defines the complete symmetric functions
Su((1 — g)A) via their generating series [13, Definition 5.1]

1 - q Z " S 1 - ) qt(A)ilat(A)a (1)

n=0

and then 0, is defined as the ring homomorphism such that 6,(S,) = S,((1 — g)A4).
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To have a better understanding of the morphism 6, we need to recall more facts
about Sym. Given a sequence (F}),-; of noncommutative symmetric functions and a
composition I = (i1, i, ..., i), we set F! = F; F;,---F;. By definition, the set {S'},
where I runs over all compositions, is a homogeneous linear basis of Sym. For
I=(i,0,...,i), let /(I) = r and given two compositions I and J we say that J <[ if
I is a refinement of J. Also, for a composition I = (i1, i, ...,i) of n=1i] + i+
o+ 0, let Des(I)={i, iy +i1,....01 + - +i1}={1,2,...,n— 1} denote the
descent set of I. We define the ribbon noncommutative functions R; =

ZKI(—l)M)*/U)SJ. Clearly, the set of all ribbon functions {R;} forms a linear
basis of Sym. Consider now the algebra & = @®,-0C®, where C6,, is the group
algebra of the symmetric group ®, on n elements. As seen in [13, Section 2.2], there is
a  linear  isomorphism o' =p:Sym—® such that B(R;)=D;=
{we®, |w(i)>w(i+ 1)<ieDes(I)}. The image of f is know as the Solomon
descent algebra and is closed under composition of permutation in C®,. We define
the internal product * of Sym as the anti-pullback of the composition of permutations
in C®,. That is F « G = a(f(G)-f(F)). Specializing [13, Theorem 4.17] to our
definition of the morphism 8,, we obtain

F((1 = q)4) = F(4) x a1((1 — g)4). (2)

The most important property of 0, is its diagonalization [13, Theorem 5.14]: there
is a unique family of Lie idempotents 7,(g) (i.e., elements in the primitive Lie algebra
such that x(m,(¢q)) = 1 p,) with the property

O04(mn(q)) = (1 = ¢")mu(q). 3)

Moreover, 0, is semi-simple, and its eigenvalues in the nth homogeneous components
Sym, of Sym are p,(1 —¢) =[[,(1 — ¢"), where 4 runs over the partitions of n.
The projectors on the corresponding eigenspaces are the maps Fi—F x n!(q) [13,
Section 3.4].

Another result [13, Section 5.6.4], which is just a translation of an important
formula due to Blessenohl and Laue [6], gives 0,(R;) in closed form for any ribbon
R;. To be more in line with the current literature, we digress slightly from the
notation of [8]. Let [i,j] = {i,i+ 1,i+2,...,j}. Welet AAB= (4 — B)u(B— A) be
the symmetric difference of two sets. Given 4 = {ay,aa, ...,a,_1 } =[1,n — 1] we let
A+1={a1+ lL,an+1,...,a,-1 + 1} =[2,n]. For a composition J of n, one defines
HP(J) ={aeDes(J)|a#1,a—1¢Des(J)}=[2,n—1], and hi(J)=|HP(J)|+ 1.
One usually refers to HP(J) as the peak set of J. We are now in a position to give
the formula for 0,(R;) [13, Lemma 5.38 and Proposition 5.41]:

Ri((1—q)4) = > (1 — )" (—q)""" R, (4), (4)

HP(J) < Des(I) A(Des(I)+1)

where b(1,J) is some explicit integer, which is not of any use when ¢ = —1.
Setting ¢ = —1 in the formulas above leads us immediately to the peak classes in
Sym. We say that a set P<[2,n — 1] is a peak set when ae P = a — 1¢ P. For a peak
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set P let

mp= Y R (5)

HP(I)=P
At ¢ = —1, Eq. (4) now reads as
0_1(R)) = Z 2P, (6)

P< Des(I)A(Des(I)+1)
which is [20, Proposition 5.5] or [1, Proposition 5.8].

Let us denote for short 0_; by a tilde, F:= 0_{(F), and let Sym be its image. Since
by definition

Sym = {F((1 = q)4),-_}, (7)

it is immediate that % is a graded Hopf subalgebra of Sym. Indeed, Fr— F((1 —
q)A) is an algebra morphism, and also a coalgebra morphism, since [13, Section 5.1]

AS,((1=q)4) = Y Sil(1 =) ®S;((1 - g)4) (8)

i+j=n
for all values of ¢. Also, it is a left ideal for the internal product, since by Eq. (2)
Sym = Sym(A) « o1((1 = 9)4),_,. 9)

We already know that S—);n is contained in the subspace Z of Sym spanned by {IIp}.
The dimension of the homogeneous component £, of 2 is easily seen to be equal to
the Fibonacci number f, (with the convention fy = f; = f> = 1, fuio = fur1 +fn for
n>0). Indeed, the set {P<=[2,n— 1]|ae P = a — 1¢ P} has cardinality f,. Remark
that the number of compositions of # into odd parts is also f,.

But, thanks to Eq. (3), we know that the elements

! (=1) = i (=D (=1) -, (= 1), (10)

where i = (i}, ..., i) runs over compositions of n into odd parts, form a basis of
Sym,,. Hence,

Sym = 2,. (11)

Also, since the commutative image of 7, (g) is % pn for all g, this makes it clear that the

commutative image of Sfy;n is the subalgebra of Sym generated by odd power-sums
P2let1-

To summarize, we have shown that the peak classes ITp in Sym form a linear basis
of a graded Hopf subalgebra 2 of Sym, which is also a left ideal for the internal
product, and we have described a basis of it, which is mapped onto products of odd
power sums by the commutative image homomorphism. Since the n,(—1) are Lie
idempotents, this also determines the primitive Lie algebra of 2 as the free Lie
algebra generated by the 7y, 1(—1). It is interesting to remark that all this has been
obtained without much effort by setting ¢ = —1 in a few formulas of [13].
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3. The quasi-symmetric side

To recover Stembridge’s algebra, we have to look at the dual of £2. Since £ can be
regarded either as a homomorphic image of Sym (under 0_;) or as a subalgebra of
Sym (spanned by the peak classes IIp), the dual 2* can be realized either as a
subalgebra, or as a quotient of QSym.

Recall that QSym is the graded Hopf algebra of quasi-symmetric functions. A
linear basis of this algebra is given by the complete quasi-symmetric functions {Fy}
where I runs over all compositions n>0. The multiplication in QSym
is commutative, and F; can be expressed in term of a commutative alphabet
X = {X],Xz, } as

F](X): Z Xiy Xiy * - X, -

1< < <+ <ipreDes(I)=iy <iry

Recall that we have a nondegenerate duality between QSym and Sym defined by
[8,16]

(FL Ry =0 (12)
This induces a duality of graded Hopf algebra between QSym and Sym. The dual to
the abelianization map y: Sym— Sym is the inclusion Sym< QSym.

Let us first consider the noncommutative peak algebra 2 = Peak® as the image of

the Hopf epimorphism ¢ = 6_;. Then, the adjoint map

Q" P > QSym (13)
is an embedding of Hopf algebras. The duality between £ and 2" is given by

Co(F),G) = (F,9"(G)). (14)

Hence, if we denote by II}, the dual basis of ITp, we have for any ribbon R; with
descent set D = Des(I)

APFLif P DA(D + 1),
0 otherwise.

(o™ (ITp), Ry = {Ip,p(R;)) = { (15)
Thus, in its realization as a subalgebra of QSym, #* is spanned by Stembridge’s
quasi-symmetric functions

Op = ¢*(II;) = 2! > F (16)
P<Des(I)A(Des(I)+1)

Note also that thanks to the identity (1 +¢)(1 —¢) = 1 — ¢?, the kernel of ¢ is
seen to be the ideal of Sym generated by the S,((1 + ¢)A4),__, for n>1. These are the
Zn Of [].

Finally, we can also consider £ as an abstract algebra with basis (ITp), and define
a monomorphism ¥ : Z —»Sym by

Yy(Ip) = Z Ry. (17)

HP(I)=P
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Then, its adjoint y* : QSym — 2" is an epimorphism. The product map 3 = ¢*of" :
2" - P* has been considered by Stembridge [22], and its diagonalization is given in
[S]. We can easily recover its properties from the results of the previous section, since
clearly 9 = (fop)" coincides with 0_;. Its eigenvalues are then the integers 2/(*),
where A runs over partitions into odd parts. The spectral projectors are again
constructed from the idempotents =;(—1). Precisely, the projector onto the
eigenspace associated with the eigenvalue 2 of & in QSym, is the adjoint of the
endomorphism of Sym,, given by F+ F % U where Uy = > n;(—1), the sum being
over all odd partitions of n with exactly k parts. The dimensions of these eigenspaces
can also be easily computed.

4. Miscellaneous related results

Here are some more results related to the recent literature. We choose to include
them here for completeness.

4.1. Noncommutative tangent numbers

By definition, % is generated by the S,, n>1. If we set ¢= —1 in [13,
Proposition 5.2] we establish that S, =2H, for n>1, where Hy = 1 and

n—1
Hy =Y Ry, (18)
k=0
Then [8, Proposition 5.24] gives us that
H=Y H,=(1-1" (19)
n=0

where t is the (left) noncommutative hyperbolic tangent

t=> (=) T, Topr =Ry (20)
k>0
Hence, % is contained in the subalgebra generated by the 7%, and since we
already know that the dimension of SAyHm,, is the number of odd compositions of n, we
have in fact equality. Thus, the 77 = T}, --- T; (I odd) form a multiplicative basis of
§§fn (this is the same as the basis I'” of [20]).

4.2. Peak Lie idempotents

An homogeneous element L, € Sym of degree # is called a Lie idempotent (see [19])
if it belong to the primitive Lie algebra of Sym and y(L,) = % pn. They are
idempotent with respect of the internal product . In [20], the images L, = 0_,(L,) of
some classical Lie idempotents L, are calculated.
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In [13] these families of Lie idempotents are readily identified and the computation
of there image under 6_, is for most of them straightforward. Let us start with x,(g)
as discussed in Section 2. We have seen in Eq. (10), that the n/(—1), I odd, form a

basis of §yvn1, so that S;l/nn contains Lie idempotents iff » is odd.

Let us now consider the family of Dynkin elements 1 ¥,(4) where ¥,(4) is the
coefficient of /"~! in a,(A)”%a,(A). The images ¥, = ¥, ((1 — ¢)4) of the Dynkin
elements ¥, are given in closed form for any ¢ in [13, Proposition 5.34]. It suffices to
set ¢ = —1 in this formula to obtain [20, Proposition 7.3].

Next, consider the family of elements ! ®,(4) defined by the coefficient of /” in

logo,(A4). The expression for @, in [20, Proposition 7.2] is an interesting new
formula. The first part of the analysis can be simplified by applying Eq. (19) to the
calculation of the generating series logg;. Indeed,

log 61 =log(1 +t) —log(l —t)
t2k+1

=2 —_
2k + 1
(1) D)2

0 T

=2
I and /(1) odd

Finally, to obtain the image of Klyachko’s idempotent K,(q) (see [13, Proposition
6.3] for a definition of K, (g)) one has to set t = —1 in [13, Proposition 8.2].

4.3. Structure of the peak algebras (P, *)

Using the construction of [13, Section 3.4] restricted to odd partitions 4 of n, it
follows from Eq. (3) that the idempotents E;(n(—1)), associated to the sequence
7,(—1), form a complete set of orthogonal idempotents of #,. Regarding 2, as a
quotient of the descent algebra makes it clear that the left ideals 2, x E;(n(—1)) are
the indecomposable projectives modules of £,. We obtain explicitly the multi-
plicative structure of (2, *) by adapting [13, Lemma 3.10] to the sequence 7, (—1)
(instead of ¥,), and then imitating the rest of the argument presented there for the
descent algebra.

4.4. Hall-Littlewood basis

The peak algebra 2 = Peak™ can be regarded as a noncommutative version of the
subalgebra of Sym spanned by the Hall-Littlewood functions Q;(X;—1), where 4
runs over strict partitions. Actually, it is easy to show that the noncommutative
Hall-Littlewood functions of [4,10] at ¢ = —1 yield two different analogous bases of
2. We do it here for [10] but a similar argument can be applied to [4].

Recall that the polynomials H;(A4;q) of [10] are defined as noncommutative
analogues of the 0,/ = Q,(X /(1 — q); ¢). To obtain the correct analogues of Schur’s
g-functions, one has to apply the (1 — ¢) transform before setting ¢ = —1.
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More precisely, for two compositions ,J, let Des(I) = {a1 <ay < --- <ay()-1 } and
Des(J) = {b1<by<--- <byy)—1 }, and set Bre(I,J) = [1,/(I) — 1] — {#{a; : a;<Db;} :
I1<i</(J)— 1} <1, 4(I) — 1]. We have

>
H](A; q) _ Z gliehretta) R](A)‘

J<I
Proposition 4.1. The specialized noncommutative Hall-Littlewood functions
Qr=H,(1 -q)4;9),__,, (21)

where I runs over all peak compositions, form a basis of 2.

Indeed, the factorization of H-functions at roots of unity imply that
Q[ = Qil i Q[3i4 o Qizk—]izk Qi2k+] (22)
(where i1 = 0 if I is of even length), and simple calculations yield

b Qn = 2HQ)7
b anl,l = 2(H{n—l} + H(b)v
® and for 2<k<n—2, Qu,_y = 4(I 1y + Hyeyry + Iy),

where I1p is defined in Eq. (5). From this, it is straightforward to prove that the
family Q; is triangular with respect to the family ITp, and hence the proposition
follows.

5. Representation theory of the 0-Hecke—Clifford algebras

The character theory of symmetric groups (in characteristic 0), as worked out by
Frobenius, can be summarized as follows. Let R, denote the free abelian group
spanned by isomorphism classes of irreducible representations of C®,. Endow the
direct sum

R = @1120 Rn (23)

with the addition corresponding to direct sum, and multiplication R, ® R, = R, 1,
corresponding to induction from ®,, x ®, to ®,,, via the natural embedding. The
linear map sending the class of an irreducible representation [/] to the Schur function
s, is then a ring isomorphism between R and Sym (see, e.g., [15]). Moreover, we can
define a structure of graded Hopf algebra on R with comultiplication corresponding
to restrictions from ®, down to G; x ®,_; and summing over k. The linear map
above gives rise to an isomorphism of graded Hopf algebras.

It is known that the pair of graded Hopf algebras (Sym, QSym) admits a similar
interpretation, in terms of the tower of the 0-Hecke algebras H,,(0) of type 4, (see
[14]). Recall that the (Iwahori-) Hecke algebra H,(q) is the C-algebra generated by
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elements 7T; for i<n with the relations:

T? = (q— )T +q for 1<i<n—1,
T,T/:T/Tl for |l*]|>1, (24)
T;TinT, =T W/T;Tiw for 1<i<n—2

(here, we assume that geC). The 0-Hecke algebra is obtained by setting ¢ = 0 in
these relations. Then, the first relation becomes Tf = —T;. If we denote by G, =
Go(H,(0)) the Grothendieck group of the category of finite dimensional H,(0)-
modules, and by K, = Ko(H,(0)) the Grothendieck group of the category of
projective H,(0)-modules, the direct sums ¥ = @,>0G, and A = @,>0K,,
endowed with the same operations as above, are respectively isomorphic with
OSym and Sym.

The aim of this final section is our main result: to provide a similar interpretation
for the pair (2, 2*). The relevant tower of algebras is the 0-Hecke—Clifford algebras,
which are degenerate versions of Olshanski’s Hecke—Clifford algebras.

5.1. Hecke—Clifford algebra

The complex Clifford algebra CI, is generated by n elements ¢; for i<n with the
relations

cicj = —cje; fori#j and ¢ =—1. (25)
For each subset D = {ij <ir<--- <ix}={l,...,n}, we denote by ¢p the product
cp = H ¢ = Ci\Ciy -+ Cip - (26)
ieD

It is easy to see that (cp)py; 18 @ basis of the Clifford algebra.
The Hecke—Clifford superalgebra [18] is the unital C-algebra generated by the ¢;,

and n — 1 elements ¢#; satisfying the Hecke relations in the form
2=(q-qgHu+1 for 1<i<n—1,
tity = tjt; for [i —j|>1, (27)
tititi = tisititiy  for 1<i<n -2

and the cross-relations
ticj = ¢jt; for i#j,j+1,
tici = Cir1t; for 1<i<n—1, (28)
(ti+q—q Ve =ci(ti+qg—q7 ") for 1<i<n—1.

The Hecke—Clifford algebra has a natural Z,-grading, for which the ¢; are even and

the ¢; are odd. Henceforth, it will be considered as a superalgebra.

Setting #; = ¢~ ' T; and taking the limit ¢— 0 after clearing the denominators, we
obtain the 0-Hecke—Clifford algebra HCI,(0), which is generated by the 0-Hecke
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algebra and the Clifford algebra, with the cross-relations

TjCj:CjTi for l#],]ﬁ*l,
Tici = ci1 T; for 1<i<n—1, (29)
(Tj+1)Cj+1:Cj(Ti+1) for 1<l<l’l—1

Let 6 = 0, ---0;, be a reduced word for a permutation g€ ®,. The defining relations
of H,(q) ensure that the element 7, == T;, --- T; is independent of the chosen reduced
word for ¢. The family (75),., is a basis of the Hecke algebra. Thus a basis for
HCl,(q) is given by (epTs)pcyr,
HCl,(g) is 2"n! for all q.

.... noe,, and consequently, the dimension of

5.2. Quasi-symmetric characters of induced modules

Since H,(0) is the sub-algebra of HCI,(0) generated by the T;, our main tool
in the sequel will be the induction process with respect to this inclusion. Let us recall
some known facts about the representation theory of H,(0). There are 2!
simple H,(0)-modules. These are all one dimensional and can be conveniently

labelled by compositions 7 of n. The structure of the simple module S; := Ce; is given
by

(30)

{—81 if jeDes(I),
Tier = .
0 otherwise.

As described in [14], there is an isomorphism ch: % — QSym which we call the
Frobenius characteristic. This maps the simple module S; to the quasi-symmetric
function Fj.

Let us define the HCI,(0)-module M; as the module induced by S; through the
natural inclusion map, that is

M; = Indyy("* (Sr) = HCly( ®)S, 31)
A basis for M; is given by (cper)pcyy, . - A basis element can be depicted
conveniently as follows. The boxes of the ribbon diagram associated with I are
numbered from left to right and from top to bottom. We put a “x”* in the i-th box if
ie D. For example ¢{1346) €2,13) = C1€3€4C6 €(2,13) 18 depicted by

[1]2 [ x
(2,1,3) = 3 C{1,3,4,6} €(2,1,3) = X (32)
4[5]6] x| [x]

We can graphically view the set Des(I) as the set of boxes with a box below, and the
set HP(I) as the set of boxes with boxes below and to the left. In the example above,
Des(2,1,3) = {2,3} are the boxes labeled 2 and 3, and HP(2,1,3) = {2} is only the
box 2.
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We now remark that 7; acts only on the ith and (i + 1)th boxes. On the graphical
representation, drawing only the boxes i and i + 1, rules (29) read

L[ T]
Ti [x[]
[x]

T, =
]

,
n

0
0

ml

=

T[T = [+
T = -E+[]
) - _ 33
TH - H (33)
- [
Tl =

At this point, we can make a couple of useful remarks. Looking at the support of

relation (33), we define
- H-E E-H

These relations can be interpreted as the cover relation of a (partial) order <; on the
subset D of {1, ...,n}. Here is a picture of the Hasse diagram of this order for the
composition I = (2,1, 1). The poset clearly has two components corresponding to
the two Z,-graded homogeneous components of Myyy).

[Ix]=[x]  Ix]—[]

(34)

x [Tx Tx B
X X X X
X X
Vd AN Ve AN
7/ AN 7/ AN
7/ AN 7/ N
7/ AN Ve N
[ ]x] [ 1]
H H Il [
L] L]
<] mn [T ]
[] L]
N AN 7/
AN Ve AN 7/
AN Ve AN 7
AN Ve AN Ve
(] (] ] (]
X X
(%)

The importance of this order comes from the following lemma, a direct
consequence of Eq. (33).

Lemma 5.1. The action of each T; is triangular with respect to the order <, that is for
all D,

T; cper = a(i, I, D) cper + smaller terms

with a(i,I,D)e{0,—1}.

(35)

The a(i, I, D) are the eigenvalues of the T;. They are equal to 0 in the leftmost
columns of Eq. (33) and to —1 in the rightmost ones.

A second consequence of Eq. (33) is that in a vertical (two boxes) diagram, the
eigenvalue depends only on the content of the upper box whereas in a horizontal
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diagram it depends only on the content of the rightmost box. Thus the content of the
boxes without a box below or on the left does not matter for computing the
eigenvalues. This can be translated into the following lemma.

Lemma 5.2. Suppose that ke{l, ... n} is such that k is not a descent of I and has no
box to its left. Then for all D, the eigenvalues o(i, I, D) satisfy

a(i,I,D) = a(i,I, {k}uD). (36)
Such a k is called a valley of the composition I.

Note that 1 and n can be valleys. There is obviously one more valley than the
number of peaks.

Thanks to the order <;, one can easily describe the structure of the restriction of
M; to H,(0). Our first goal is to get a composition series of Resy, )M in order to
compute its Frobenius characteristic. This can be done as follows. Let us choose a

linear extension Dy, D;, ..., Dy of <;. For k=1, define
M =@ Cecp, e, (37)
1<k

and M) :={0}. Then, thanks to Lemma 5.1, M¥ is clearly a sub-module of
ReSH,,(O)MIa and

{0} = M)cM] =M} <M} = Resy,o)M; (38)

is a composition series of the module Resy, ) M;. Let us compute the simple
composition factors of the module Sp,; = Cex(p,r) = M}/M}". For 1<k<n,
the generator Ty acts as Tiexp,r) = ®(k, I, Di)exp,1)- The eigenvalue a(k,I,D;)
equals —1 if

(k+1eD; and k¢ Des(I)) or (k¢D; and keDes(I)), (39)

and 0 otherwise. Hence, according to Eq. (30), ch(Sp,;) = Fx where Des(K) =
Des(K(Dj, 1)) = {l<k<n|a(k,I,D;) = —1}. When p is a peak of I, that is p#1,
p— 1¢Des(I) and peDes(I), then |{p — 1,p} nDes(K)| = 1. Indeed, if peD; then
p — leDes(K) and p¢ Des(K) and if p¢ D, then p — 1 ¢ Des(K) and p e Des(K). Thus,
P = HP(I)= Des(K)A(Des(K) + 1). Moreover, for k¢ PU (P — 1), we can always
find a D; such that ke Des(K(D;,I)). All K such that P< Des(K)A(Des(K) + 1) can
be obtained, and thanks to Lemma 5.2 there are 2/71*! sets D; giving the same Fx.
Thus, we have proved the following proposition.

Proposition 5.3. The Frobenius characteristic of Resy, )M depends only on the peak
set P of the composition I and is given by Stembridge’s O function

ch(Resy,o)My) = @p = 2IF1*! > Fx. (40)
P<Des(K)A(Des(K)+1)
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5.3. Homomorphisms between induced modules

The previous proposition suggests that Resy, o) M is isomorphic to Resy, )M iff
I and J have the same peak sets. This is actually true, and in fact, M; and M, are
even isomorphic as HCI,(0)-supermodules, as we will establish now.

Theorem 5.4. Let I be a composition with valley set V, and let Cly be the subalgebra of
Cl, generated by (cy),. . For ce Cly define a map f. from M to itself by

Sfe(xer) = xcer  for all xeCl,. (41)

Then cw f, defines a right action of Cly on M; which commutes with the left
HCI,(0)-action. Moreover the map cf. is a graded isomorphism from Cly to
EndHC[,,(O) (M[) .

Proof. Since M; is freely generated as a Cl,-module by ¢g;, a morphism
f€Endgcy,0)(M;) is determined by f(e;) = xer for xe Cl,. On the other hand, for
x€ Cl,, amap f(er) = xey is in Endycy, o) (M) if and only if Tif\(e7) = Tjxer = xTjer
for all 1<j<n. Thus, to prove the theorem, it is sufficient to see that
fx€ Endycy,0)(My) if and only if xe Cly. Equivalently,

—x¢r if jeDes(I),

. (42)
0 otherwise,

for all 1<j<n, Tjxe = {
if and only if xe Cly.

Let us first assume that x = ¢p for D= V. This means that in the graphical
representation of xg; there is no box below nor to the left of a box with a “x”. If
jeDes(I), the lower two equations of the right column of Eq.(33) then show
that Tjxe; = —xe;. The top two equations on the left show that if j¢ Des(/) then
Tixer = 0. By linearity, we get that if xe C/y then Eq. (42) holds. Conversely, let
x e Cl, satisfy Eq. (42). Let c¢pe; be in the support of x, minimal with respect to <;. If
D < V then there is a box j with a ““x”* and a box below or to the left. Using Lemma
5.1 and Eq. (33) this would be a contradiction to Eq. (42). Hence c¢p e Cl. We can
subtract it from x and repeat the argument above recursively to conclude that
xXe CZV O

Theorem 5.5. The induced supermodules My and M are isomorphic if and only if the
peak sets of I and J coincide.

Proof. One direction of this theorem is implied by the previous section. If M; is
isomorphic to M, then we must have that Resy, )M is isomorphic to Resy, o) M.
In particular, they must have the same Frobenius characteristic. Thanks to
Proposition 5.3, ch(Resy, o) M;) depends only on the peak set of /. Thus, if M;
and M are isomorphic then 7 and J have the same peak sets.

The converse will follow once we construct explicit isomorphisms between any
modules M; and M; in the same peaks class (HP(I) = HP(J)), such that I and J
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differ exactly by one descent. Isomorphisms between any modules M; and M;
in the same peaks class in general will be obtained by composition of the constructed
ones.

Let I = Ju{k} be such that HP(I) = HP(J). Graphically, there are two possible
cases to consider:

- B e ] (43)

or
- - o (44)

In case (43), we construct a map f which sends e;+—>n = (c{x 41y — 1)es. We remark
that both # and ¢; are even. Furthermore,

—n if ieDes(I),

. (45)
0 otherwise.

for all I<i<n, Tm= {
Indeed, for i¢ {k —1,k}, the T; commute with ¢y x413. Moreover i€ Des([) if and
only if ie Des(J), hence Eq. (45) follows in these cases. If i = k — 1€ Des(I), then
Ti_1n = (C{k,l’kJrl}Tk_] + Clh—1h+1} — Clkh+1} — Ti—1)e; = —n, and if i = ke Des(I),
then Tyn = (—cpupr1y Tk — Cppps1y + 1 — Ti)es = —n. This allows us to define a
nontrivial HCI,(0) supermorphism f:M;— M; where f(cper) = cpn. Thanks to
Eq. (45), the submodule spanned by 7 in M is isomorphic to M;. But since both
spaces have the same dimension we have that f is an isomorphism.
For case (44), we proceed in the same way, sending &7+ (cqx k1) + 1)e7. This
constructs a graded isomorphism from M; to M;. O

5.4. Simples supermodules of HCI,(0)

We are now in a position to construct the simple supermodules of HCI,(0). Our
approach is similar to Jones and Nazarov [11]. Let I be a composition with peak set
P and valley set V = {v,v,...,v}. Choose a minimal even idempotent of the
Clifford superalgebra CI;,. For example

ey = %(1 + mcuﬂu:) (1 + \/jlcv3c04) (1 + \/ICUZ,CWH) (46)

where [ == L%J = LWTHJ Define HCIS; = Cl,eyer as the HCI,(0)-module generated
by ese;. One has to show that HCIS; does not depend on the chosen minimal
idempotent e, but this is an easy consequence of the representation theory of Cly
which is know to be supersimple (see e.g. [12]). Suppose that e¢; and ¢} are two
minimal even idempotents of CIy. Since Cly, is supersimple, there exist
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x,,X',y'€Cly such that e¢; = x'¢j)’ and e, = xe;y. Then by the representation
theory of Cly, we know that f, and f,; are two mutually reciprocal isomorphisms

between Clye; and Clye; and hence between Cl,erer and Cl,eje;.
Pl+1
When #n is even Clye; has dimension 2% and when #n is odd the dimension is
|Pl+1 Lll’\_ﬂJ
272 ! In short we can write 2L 2 J for the dimension in both cases. Thus HCIS;
_ {lP\;lJ
has dimension 2 2

A direct corollary to Theorem 5.4 is the following.

|P|+1

Corollary 5.6. The induced module My is the direct sum of 2{ 2 J isomorphic copies
of HCISk, where K is the peak composition associated to 1.

We are now ready to show our main theorem and define the
Frobenius characteristic map between HC/,(0) modules and 2*, which we again
denote by ch.

Theorem 5.7. The set {HCIS; = Cl,eier}, where I runs over all compositions with
distinct peak sets, is a complete set of pairwise nonisomorphic simple supermodules of
HCI,(0). Moreover, there is a graded Hopf isomorphism defined by

ch:% — P

|P|+1

HCIS; -2 { 2 J O ur(), (47)

where HP(I) is the peak set of I, and 4 = @ ,>¢ Go(HCI,(0)).

Thus the (1 — g)-transform at ¢ = —1 can be interpreted as the induction map
from Gy(H,(0)) to Go(HCL,(0)). This maps ¥ to .

Proof. Suppose that S is a simple supermodule of HCl,(0). Decompose the H,(0)-
socle of S into simple modules and choose a non-zero vector v in one of these simple
factors. Then v is a common eigenvector of all the 7}, so that there is a / such that
gr+— v defines a H,(0)-morphism ¢ : S;— S. Then, since S is supersimple, v generates
S under the action of HCI,(0). Thus by induction, there is a surjective morphism
M;—S. Hence, each simple module of HCI,(0) must be a quotient of some M; and
consequently of some HCIS).

Now, we know that given two HCISj, either they are isomorphic (when they have
the same peak sets) or else there is no morphism between them. Thus HCIS; has to
be simple. The multiplication and comultiplication structures are induced from ¥
and QSym and the Frobenius characteristic between them. [
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By duality, we obtain ch*:2 —%* where ¥* = @ ,>0Ko(HCI,(0)). We also remark
that the dimension of the superradical of HCI(0) is thus

Mpl Z 22/17(\1’\4»1)’ (48)
P

where the sum is over all peak sets of n. It is still an open problem to find nice
generators for this radical.

5.5. Decomposition matrices

The generic Hecke—Clifford algebra HCl,(g) has its simple modules U, labelled by
partitions into distinct parts, and under restriction to H,(gq), U, has as Frobenius
characteristic

ch(U;) =270 g, (49)

where Q; is Schur’s Q-function (see [11,18]).
By Stembridge’s formula [22], we have

ch(U;) =27 VDREN" 0,0, (50)
TeSTH

where & T* is the set of standard shifted tableaux of shape A, and A(T) the peak set
of T. The quasisymmetric characteristics of the simple HCI,(0) modules are
proportional to the @-functions, and the coefficients d;; in the expression

ch(U;) = dych(HCIS)) (51)
1

form the decomposition matrices of the Hecke—Clifford algebras at g = 0.
For /A a strict partition of n, and I a peak composition of n with peak set P, one has
explicitly

1 1 )
dyy =202/WI= /DI (e T | A(T) = P} (52)

This is the analog for HCI,(0) of Carter’s combinatorial formula for the
decomposition numbers of H,(0) [7].

Here are the decomposition matrices [d;;] for n<9. Note that for n = 2,3, HCI,(0)
is semi-simple.
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