
Algorithms on Strings

Maxime Crochemore

Christophe Hancart

Thierry Lecroq

Algorithms on Strings

Cambridge University Press

Algorithms on Strings – Maxime Crochemore, Christophe Han-

cart et Thierry Lecroq

Table of contents

Preface VII

1 Tools 1
1.1 Strings and automata 2
1.2 Some combinatorics 8
1.3 Algorithms and complexity 17
1.4 Implementation of automata 21
1.5 Basic pattern matching techniques 26
1.6 Borders and prefixes tables 36

2 Pattern matching automata 51
2.1 Trie of a dictionary 52
2.2 Searching for several strings 53
2.3 Implementation with failure function 61
2.4 Implementation with successor by default 67
2.5 Searching for one string 76
2.6 Searching for one string and failure function 79
2.7 Searching for one string and successor by default 86

3 String searching with a sliding window 95
3.1 Searching without memory 95
3.2 Searching time 101
3.3 Computing the good suffix table 105
3.4 Automaton of the best factor 109
3.5 Searching with one memory 113
3.6 Searching with several memories 119
3.7 Dictionary searching 128

4 Suffix arrays 137
4.1 Searching a list of strings 138
4.2 Searching with common prefixes 141
4.3 Preprocessing the list 146

VI Table of contents

4.4 Sorting suffixes 147
4.5 Sorting suffixes on bounded integer alphabets 153
4.6 Common prefixes of the suffixes 158

5 Structures for index 165
5.1 Suffix trie 165
5.2 Suffix tree 171
5.3 Contexts of factors 180
5.4 Suffix automaton 185
5.5 Compact suffix automaton 197

6 Indexes 205
6.1 Implementing an index 205
6.2 Basic operations 208
6.3 Transducer of positions 213
6.4 Repetitions 215
6.5 Forbidden strings 216
6.6 Search machine 219
6.7 Searching for conjugates 223

7 Alignments 227
7.1 Comparison of strings 228
7.2 Optimal alignment 234
7.3 Longest common subsequence 245
7.4 Alignment with gaps 255
7.5 Local alignment 258
7.6 Heuristic for local alignment 261

8 Approximate patterns 269
8.1 Approximate pattern matching with jokers 270
8.2 Approximate pattern matching with differences 274
8.3 Approximate pattern matching with mismatches 286
8.4 Approximate matching for short patterns 295
8.5 Heuristic for approximate pattern matching with differ-

ences 304

9 Local periods 311
9.1 Partitioning factors 311
9.2 Detection of powers 320
9.3 Detection of squares 324
9.4 Sorting suffixes 332

Bibliography 341

Index 353

Preface

This book presents a broad panorama of the algorithmic methods used
for processing texts. For this reason it is a book on algorithms, but
whose object is focused on the handling of texts by computers. The
idea of this publication results from the observation that the rare books
entirely devoted to the subject are primarily monographs of research.
This is surprising because the problems of the field are known since the
development of advanced operating systems, and the need for effective
solutions becomes crucial since the massive use of data processing in
office automation is crucial in many sectors of the society.

In a written or vocal form, text is the only reliable vehicle of abstract
concepts. Therefore it remains the privileged support of information sys-
tems, despite of significant efforts towards the use of other media (graphic
interfaces, systems of virtual reality, synthesis movies, etc). This aspect
is still reinforced by the use of knowledge databases, legal, commercial
or others, which develop on the Internet thanks in particular to the Web
services.

The content of the book carry over into formal elements and technical
bases required in the fields of Information retrieval, of automatic index-
ing for search engines, and more generally of software systems, which
includes the edition, the treatment and the compression of texts. The
methods that are described apply to the automatic processing of natural
languages, to the treatment and analysis of genomic sequences, to the
analysis of musical sequences, to problems of safety and security related
to data flows, and to the management of the textual databases, to quote
only some immediate applications.

The selected subjects address pattern matching, the indexing of tex-
tual data, the comparison of texts by alignment and the search for local
regularities. In addition to their practical interest, these subjects have
theoretical and combinatorial aspects which provide astonishing exam-
ples of algorithmic solutions.

The goal of this work is principally educational. It is initially aimed
at graduate and undergraduate students. But it can also be used by

VIII Preface

software designers.
We warmly thank the researchers who took time to read and com-

ment on the preliminary outlines of this book. They are: Saïd Abded-
daïm, Marie-Pierre Béal, Christian Charras, Sabine Mercier, Laurent
Mouchard, Gregory Kucherov, Johann Pelfrêne, Bruno Petazzoni, Math-
ieu Raffinot, Giuseppina Rindone, Marie-France Sagot. Remaining er-
rors are ours.

Finally, extra elements to the contents of the book are accessible
on the site http://chl.univ-mlv.fr/ or from the web pages of the
authors.

Maxime Crochemore

Christophe Hancart

Thierry Lecroq

London and Rouen,
April 2006

1 Tools

This chapter presents the algorithmic and combinatorial framework in
which are developed the following chapters. It first specifies the con-
cepts and notation used to work on strings, languages and automata.
The rest is mainly devoted to the introduction of chosen data structures
for implementing automata, to the presentation of combinatorial results,
and to the design of elementary pattern matching techniques. This or-
ganization is based on the observation that efficient algorithms for text
processing rely on one or the other of these aspects.

Section 1.2 provides some combinatorial properties of strings that oc-
cur in numerous correctness proofs of algorithms or in their performance
evaluation. They are mainly periodicity results.

The formalism for the description of algorithms is presented in Sec-
tion 1.3, which is especially centered on the type of algorithm presented
in the book, and introduces some standard objects related to queues and
automata processing.

Section 1.4 details several methods to implement automata in mem-
ory, these techniques contribute in particular to results of Chapters 2, 5
and 6.

The first algorithms for locating strings in texts are presented in
Section 1.5. The sliding window mechanism, the notions of search au-
tomaton and of bit vectors that are described in this section are also
used and improved in Chapters 2, 3 and 8, in particular.

Section 1.6 is the algorithmic jewel of the chapter. It presents two
fundamental algorithmic methods used for text processing. They are
used to compute the border table and the prefix table of a string that
constitute two essential tables for string processing. They synthesize a
part of the combinatorial properties of a string. Their utilization and
adaptation is considered in Chapters 2 and 3, and also punctually come
back in other chapters.

Finally, we can note that intuition for combinatorial properties or
algorithms sometimes relies on figures whose style is introduced in this
chapter and kept thereafter.

2 Tools

1.1 Strings and automata

In this section we introduce notation on strings, languages and automata.

Alphabet and strings

An alphabet is a finite non-empty set whose elements are called letters.
A string on an alphabet A is a finite sequence of elements of A. The
zero letter sequence is called the empty string and is denoted by ε. For
the sake of simplification, delimiters and separators usually employed in
sequence notation are removed and a string is written as the simple
juxtaposition of the letters that compose it. Thus, ε, a, b and baba are
strings on any alphabet that contains the two letters a and b. The set
of all the strings on the alphabet A is denoted by A∗, and the set of all
the strings on the alphabet A except the empty string ε is denoted by
A+.

The length of a string x is defined as the length of the sequence
associated with the string x and is denoted by |x|. We denote by x[i],
for i = 0, 1, . . . , |x| − 1, the letter at index i of x with the convention
that indices begin with 0. When x 6= ε, we say more specifically that
each index i = 0, 1, . . . , |x| − 1 is a position on x. It follows that the
i-th letter of x is the letter at position i− 1 on x and that:

x = x[0]x[1] . . . x[|x| − 1] .

Thus an elementary definition of the identity between any two strings x
and y is:

x = y

if and only if

|x| = |y| and x[i] = y[i] for i = 0, 1, . . . , |x| − 1 .

The set of letters that occur in the string x is denoted by alph(x). For
instance, if x = abaaab, we have |x| = 6 and alph(x) = {a, b}.

The product – we also say the concatenation – of two strings x
and y is the string composed of the letters of x followed by the letters
of y. It is denoted by xy or also x · y to show the decomposition of the
resulting string. The neutral element for the product is ε. For every
string x and every natural number n, we define the n-th power of the
string x, denoted by xn, by x0 = ε and xk = xk−1x for k = 1, 2, . . . , n.
We denote respectively by zy−1 and x−1z the strings x and y when
z = xy. The reverse – or mirror image – of the string x is the string
x∼ defined by:

x∼ = x[|x| − 1]x[|x| − 2] . . . x[0] .

1.1 Strings and automata 3

b a b a a b a b a

Figure 1.1 An occurrence of string aba in string babaababa at (left) position
1.

A string x is a factor of a string y if there exist two strings u and v
such that y = uxv. When u = ε, x is a prefix of y; and when v = ε, x is
a suffix of y. The string x is a subsequence1 of y if there exist |x|+ 1
strings w0, w1, . . . , w|x| such that y = w0x[0]w1x[1] . . . x[|x| − 1]w|x|; in a
less formal way, x is a string obtained from y by deleting |y|− |x| letters.
A factor or a subsequence x of a string y is proper if x 6= y. We denote
respectively by x �fact y, x ≺fact y, x �pref y, x ≺pref y, x �suff y,
x ≺suff y, x �sseq y and x ≺sseq y when x is a factor, a proper factor,
a prefix, a proper prefix, a suffix, a proper suffix, a subsequence and a
proper subsequence of y. One can verify that �fact, �pref , �suff and
�sseq are orderings on A∗.

The lexicographic order, denoted by ≤, is an order on the strings
induced by an order on the letters and denoted by the same symbol. It is
defined as follows. For x, y ∈ A∗, x ≤ y if and only if, either x �pref y, or
x and y can be decomposed as x = uav and y = ubw with u, v, w ∈ A∗,
a, b ∈ A and a < b. Thus, ababb < abba < abbaab assuming a < b.

Let x be a non-empty string and y be a string, we say that there is
an occurrence of x in y, or, more simply, that x occurs in y, when
x is a factor of y. Every occurrence, or every appearance, of x can
be characterized by a position on y. Thus we say that an occurrence
of x starts at the left position i on y when y[i . . i + |x| − 1] = x
(see Figure 1.1). It is sometimes more suitable to consider the right
position i + |x| − 1 at which this occurrence ends. For instance, the
left and right positions where the string x = aba occurs in the string
y = babaababa are:

i 0 1 2 3 4 5 6 7 8
y[i] b a b a a b a b a

left positions 1 4 6
right positions 3 6 8

The position of the first occurrence pos(x) of x in y is the mini-
mal (left) position at which starts the occurrence of x in yA∗. With the
notation on the languages recalled thereafter, we have:

pos(x) = min{|u| : {ux}A∗ ∩ {y}A∗ 6= ∅} .

The square bracket notation for the letters of strings is extended to

1We avoid the common use of “subword” because it has two definitions in literature:
one of them is factor and the other is subsequence.

4 Tools

factors. We define the factor x[i . . j] of the string x by:

x[i . . j] = x[i]x[i + 1] . . . x[j]

for all integers i and j satisfying 0 ≤ i ≤ |x|, −1 ≤ j ≤ |x| − 1 and
i ≤ j + 1. When i = j + 1, the string x[i . . j] is the empty string.

Languages

Any subset of A∗ is a language on the alphabet A. The product defined
on strings is extended to languages as follows

XY = X · Y = {xy : (x, y) ∈ X × Y }

for every languages X and Y . We extend as well the notion of power as
follows X0 = {ε} and Xk = Xk−1X for k ≥ 1. The star of X is the
language:

X∗ =
⋃

n≥0

Xn .

We denote by X+ the language defined by:

X+ =
⋃

n≥1

Xn .

Note that these two latter notation are compatible with the notation
A∗ and A+. In order not to overload the notation, a language that is
reduced to a single string can be named by the string itself if it does not
lead to any confusion. For instance, the expression A∗abaaab denotes
the language of the strings in A∗ having the string abaaab as suffix,
assuming {a, b} ⊆ A.

The notion of length is extended to languages as follows:

|X| =
∑

x∈X

|x| .

In the same way, we define alph(X) by

alph(X) =
⋃

x∈X

alph(x)

and X∼ by

X∼ = {x∼ : x ∈ X} .

The sets of factors, prefixes, suffixes and subsequences of the strings
of a language X are particular languages that are often considered in the
rest of the book; they are respectively denoted by Fact(X), Pref (X),
Suff (X) and Subs(X).

1.1 Strings and automata 5

The right context of a string y relatively to a language X is the
language:

y−1X = {y−1x : x ∈ X} .

The equivalence relation defined by the identity of right contexts is de-
noted by ≡X , or simply2 ≡. Thus

y ≡ z if and only if y−1X = z−1X

for y, z ∈ A∗. For instance, when A = {a, b} and X = A∗{aba},
the relation ≡ admits four equivalence classes: {ε, b} ∪ A∗{bb}, {a} ∪
A∗{aa, bba}, A∗{ab} and A∗{aba}. For every language X, the relation
≡ is an equivalence relation that is compatible with the concatenation.
It is called the right syntactic congruence associated with X.

Regular expressions and languages

The regular expressions on an alphabet A and the languages they
describe, the regular languages, are recursively defined as follows:

• 0 and 1 are regular expressions that respectively describe ∅ (the
empty set) and {ε};

• for every letter a ∈ A, a is a regular expression that describes the
singleton {a};

• if x and y are regular expressions respectively describing the regular
languages X and Y , then (x)+(y), (x).(y) and (x)* are regular
expressions that respectively describe the regular languages X ∪ Y ,
X · Y and X∗.

The priority order of operations on the regular expressions is *, ., then
+. Possible writing simplifications allow to omit the symbol . and some
parentheses pairs. The language described by a regular expression x is
denoted by Lang(x).

Automata

An automaton M on the alphabet A is composed of a finite set Q of
states, of an initial state 3 q0, of a set T ⊆ Q of terminal states and of
a set F ⊆ Q×A×Q of arcs – or transitions. We denote the automaton
M by the quadruplet:

(Q, q0, T, F) .

2As in all the rest of the book, the notation is indexed by the object to which they
refer only when it could be ambiguous.

3The standard definition of automata considers a set of initial states rather than
a single initial state as we do in the entire book. We leave the reader to convince
himself that it is possible to build a correspondence between any automaton defined
in the standard way and an automaton with a single initial state that recognizes the
same language.

6 Tools

We say of an arc (p, a, q) that it leaves the state p and that it enters
the state q; state p is the source of the arc, letter a its label and
state q its target. The number of arcs outgoing a given state is called
the outgoing degree of the state. The incoming degree of a state is
defined in a dual way. By analogy with graphs, the state q is a successor
by the letter a of the state p when (p, a, q) ∈ F ; in the same case, we say
that the pair (a, q) is a labeled successor of the state p.

A path of length n in the automaton M = (Q, q0, T, F) is a sequence
of n consecutive arcs

〈(p0, a0, p
′
0), (p1, a1, p

′
1), . . . , (pn−1, an−1, p

′
n−1)〉 ,

that satisfies

p′k = pk+1

for k = 0, 1, . . . , n− 2. The label of the path is the string a0a1 . . . an−1,
its origin the state p0, its end the state p′n−1. By convention, there
exists for each state p a path of null length of origin and of end p; the
label of such a path is ε, the empty string. A path in the automaton M
is successful if its origin is the initial state q0 and if its end is in T . A
string is recognized – or accepted – by the automaton if it is the label
of a successful path. The language composed of the strings recognized
by the automaton M is denoted by Lang(M).

Often, more than its formal notation, a diagram illustrates how an
automaton works. We represent the states by circles and the arcs by di-
rected arrows from source to target, labeled by the corresponding letter.
When several arcs have the same source and the same target, we merge
the arcs and the label of the resulting arc becomes an enumeration of the
letters. The initial state is distinguished by a short incoming arrow and
the terminal states are double circled. An example is shown Figure 1.2.

A state p of an automaton M = (Q, q0, T, F) is accessible if there
exists a path in M starting at q0 and ending in p. A state p is co-
accessible if there exists a path in M starting at p and ending in T .

An automaton M = (Q, q0, T, F) is deterministic if for every pair
(p, a) ∈ Q×A there exists at most one state q ∈ Q such that (p, a, q) ∈ F .
In such a case, it is natural to consider the transition function

δ:Q×A→ Q

of the automaton defined for every arc (p, a, q) ∈ F by

δ(p, a) = q

and not defined elsewhere. The function δ is easily extended to strings.
It is enough to consider its extension δ̄:Q×A∗ → Q recursively defined
by δ̄(p, ε) = p and δ̄(p,wa) = δ(δ̄(p,w), a) for p ∈ Q, w ∈ A∗ and a ∈ A.
It follows that the string w is recognized by the automaton M if and

1.1 Strings and automata 7

0 1

2

3 4
a

a

b
a

b

b

b,c

c

c

a

b,c

c

a

Figure 1.2 Representation of an automaton on the alphabet A = {a, b, c}.
The states of the automaton are numbered from 0 to 4, its initial state is 0
and its terminal states are 2 and 4. The automaton possesses 3 × 5 = 15
arcs. The language that it recognizes is described by the regular expression
(a+b+c)*(aa+aba), i.e. the set of strings on the three letter alphabet a, b and
c ending by aa or aba.

only if δ̄(q0, w) ∈ T . Generally, the function δ and its extension δ̄ are
denoted in the same way.

The automaton M = (Q, q0, T, F) is complete when for every pair
(p, a) ∈ Q×A there exists at least one state q ∈ Q such that (p, a, q) ∈ F .

Proposition 1.1
For every automaton, there exists a deterministic and complete automa-
ton that recognizes the same language.

To complete an automaton is not difficult: it is enough to add to
the automaton a sink state, then to make it the target of all undefined
transitions. It is a bit more difficult to determinize an automaton, that
is, to transform an automaton M = (Q, q0, T, F) into a deterministic
automaton recognizing the same language. One can use the so-called
method of construction by subsets: let M ′ be the automaton whose
states are the subsets of Q, the initial state is the singleton {q0}, the
terminal states are the subsets of Q that intersect T , and the arcs are
the triplets (U, a, V) where V is the set of successors by the letter a of
the states p belonging to U ; then M ′ is a deterministic automaton that
recognizes the same language as M . In practical applications, we do not
construct the automaton M ′ entirely, but only its accessible part from
the initial state {q0}.

A language X is recognizable if there exists an automaton M such
that X = Lang(M). The statement of a fundamental theorem of au-
tomata theory that establishes the link between recognizable languages
and regular languages on a given alphabet follows.

Theorem 1.2 (Kleene theorem)

8 Tools

A language is recognizable if and only if it is regular.

If X is a recognizable language, the minimal automaton of X, de-
noted byM(X), is determined by the right syntactic congruence associ-
ated to X. It is the automaton whose set of states is {w−1X : w ∈ A∗},
the initial state is X, the set of terminal states is {w−1X : w ∈ X}, and
the set of arcs is {(w−1X, a, (wa)−1X) : (w, a) ∈ A∗ ×A}.

Proposition 1.3
The minimal automatonM(X) of a language X is the automaton having
the smallest number of states among the deterministic and complete
automata that recognize the language X. The automaton M(X) is the
homomorphic image of every automaton recognizing X.

We often say of an automaton that it is minimal though it is not
complete. Actually, this automaton is indeed minimal if one takes care
to add a sink state.

Each state of an automaton, or even sometimes each arc, can be
associated with an output. It is a value or a set of values associated
with the state or the arc.

1.2 Some combinatorics

We consider the notion of periodicity on strings for which we give the
basic properties. We begin with presenting two families of strings that
have interesting combinatorial properties with regard to questions of
periodicities and repeats examined in several chapters.

Some specific strings

Fibonacci numbers are defined by the recurrence:

F0 = 0 ,

F1 = 1 ,

Fn = Fn−1 + Fn−2 for n ≥ 2 .

These famous numbers satisfy properties all more remarkable than the
others. Among those, we just give two:

• for every natural number n ≥ 2, gcd(Fn, Fn−1) = 1,

• for every natural number n, Fn is the nearest integer of Φn/
√

5, where
Φ = 1

2
(1 +

√
5) = 1,61803 . . . is the golden ratio.

Fibonacci strings are defined on the alphabet A = {a, b} by the
following recurrence:

f0 = ε ,

1.2 Some combinatorics 9

f1 = b ,

f2 = a ,

fn = fn−1fn−2 for n ≥ 3 .

Note that the sequence of lengths of the strings is exactly the sequence of
Fibonacci numbers, that is, Fn = |fn|. Here are the first ten Fibonacci
numbers and strings:

n Fn fn

0 0 ε
1 1 b

2 1 a

3 2 ab

4 3 aba

5 5 abaab

6 8 abaababa

7 13 abaababaabaab

8 21 abaababaabaababaababa

9 34 abaababaabaababaababaabaababaabaab

The interest in Fibonacci strings is that they satisfy many combina-
torial properties and they contain a large number of repeats.

The de Bruijn strings considered here are defined on the alphabet
A = {a, b} and are parameterized by a non-null natural number. A non-
empty string x ∈ A+ is a de Bruijn string of order k if each string
on A of length k occurs once and only once in x. A first example: ab

and ba are the only two de Bruijn strings of order 1. A second example:
the string aaababbbaa is a de Bruijn string of order 3 since its factors
of length 3 are the eight strings of A3, that is, aaa, aab, aba, abb, baa,
bab, bba and bbb, and each of them occurs exactly once in it.

The existence of a de Bruijn string of order k ≥ 2 can be verified
with the help of the automaton defined by:

• states are the strings of the language Ak−1,

• arcs are of the form (av, b, vb) with a, b ∈ A and v ∈ Ak−2,

the initial state and the terminal states are not given (an illustration is
shown Figure 1.3). We note that exactly two arcs exit each of the states,
one labeled by a, the other by b; and that exactly two arcs enter each of
the states, both labeled by the same letter. The graph associated with
the automaton thus satisfies the Euler condition: the outgoing degree
and the incoming degree of each state are identical. It follows that there
exists an Eulerian circuit in the graph. Now, let

〈(u0, a0, u1), (u1, a1, u2), . . . , (un−1, an−1, u0)〉

be the corresponding path. The string u0a0a1 . . . an−1 is a de Bruijn
string of order k, since each arc of the path is identified with a factor

10 Tools

of length k. It follows in the same way that a de Bruijn string of order
k has length 2k + k − 1 (thus n = 2k with the previous notation). It
can also be verified that the number of de Bruijn strings of order k is
exponential in k.

The de Bruijn strings are often used as examples of limit cases in the
sense that they contain all the factors of a given length.

Periodicity and borders

Let x be a non-empty string. An integer p such that 0 < p ≤ |x| is called
a period of x if:

x[i] = x[i + p]

for i = 0, 1, . . . , |x| − p − 1. Note that the length of a non-empty string
is a period of this string, such that every non-empty string has at least
one period. We define thus without any ambiguity the period of a non-
empty string x as the smallest of its periods. It is denoted by per(x).
For instance, 3, 6, 7 and 8 are periods of the string x = aabaabaa and
the period of x is per(x) = 3.

We note that if p is a period of x, its multiples kp are also periods of
x when k is an integer satisfying 0 < k ≤ ⌊|x|/p⌋.

Proposition 1.4
Let x be a non-empty string and p an integer such that 0 < p ≤ |x|.

Then the five following properties are equivalent:

1. The integer p is a period of x.

2. There exist two unique strings u ∈ A∗ and v ∈ A+ and an integer
k > 0 such that x = (uv)ku and |uv| = p.

3. There exist a string t and an integer k > 0 such that x �pref tk and
|t| = p.

4. There exist three strings u, v and w such that x = uw = wv and
|u| = |v| = p.

5. There exists a string t such that x �pref tx and |t| = p.

aa ab

ba bb

a

b

a
ba

b

a

b

Figure 1.3 The order 3 de Bruijn automaton on the alphabet {a, b}. The
initial state of the automaton is not given.

1.2 Some combinatorics 11

a a b a a b a a

a a b a a b a a
6

Figure 1.4 Duality between the notions of borders and periods. String aa

is a border of string aabaabaa; it corresponds to period 6 = |aabaabaa| − |aa|.

Proof 1 ⇒ 2: if v 6= ε and k > 0, then k is the quotient of the integer
division of |x| by p. Now, if the triplet (u′, v′, k′) satisfies the same
conditions than the triplet (u, v, k), we have k′ = k then, due to the
equality of length, |u′| = |u|. It follows immediately that u′ = u and
v′ = v. This shows the uniqueness of the decomposition if it exists. Let
k and r be respectively the quotient and the remainder of the Euclidean
division of |x| by p, then u and v be the two factors of x defined by
u = x[0 . . r − 1] and v = x[r . . p − 1]. Thus x = (uv)ku and |uv| = p.
This demonstrates the existence of the triplet (u, v, k) and ends the proof
of the property.

2 ⇒ 3: it is enough to consider the string t = uv.
3 ⇒ 4: let w be the suffix of x defined by w = t−1x. As x �pref tk,

w is also a prefix of x. Thus the existence of two strings u (= t) and v
such that x = uw = wv and |u| = |v| = |t| = p.

4 ⇒ 5: since uw �pref uwv, we have x �pref tx with |t| = p by
simply setting t = u.

5 ⇒ 1: let i be an integer such that 0 ≤ i ≤ |x| − p− 1. Then:

x[i + p] = (tx)[i + p] (since x �pref tx)

= x[i] (since |t| = p) .

This shows that p is a period of x.

We note in particular that Property 3 can be expressed in a more
general way by replacing �pref by �fact (Exercise 1.4).

A border of a non-empty string x is a proper factor of x that is both
a prefix and a suffix of x. Thus, ε, a, aa and aabaa are the borders of
the string aabaabaa.

The notions of borders and of periods are dual as shown by Property 4
of the previous proposition (see Figure 1.4). The proposition that follows
expresses this duality in different terms.

We introduce the function Border:A∗ → A∗ defined for every non-
empty string x by:

Border(x) = the longest border of x .

We say of Border(x) that it is the border of x. For instance, the border
of every string of length 1 is the empty string and the border of the string
aabaabaa is aabaa. Also note that, when defined, the border of a border
of a given string x is also a border of x.

12 Tools

Proposition 1.5
Let x be a non-empty string and n be the largest integer k for which

Borderk(x) is defined (thus Bordern(x) = ε). Then

〈Border(x),Border2(x), . . . ,Bordern(x)〉 (1.1)

is the sequence of borders of x in decreasing order of length, and

〈|x| − |Border(x)|, |x| − |Border2(x)|, . . . , |x| − |Bordern(x)|〉 (1.2)

is the sequence of periods of x in increasing order.

Proof We proceed by recurrence on the length of strings. The state-
ment of the proposition is valid when the length of the string x is equal to
1: the sequence of borders is reduced to 〈ε〉 and the sequence of periods
to 〈|x|〉.

Let x be a string of length greater than 1. Then every border of x
different from Border(x) is a border of Border(x), and conversely. It
follows by recurrence hypothesis that the sequence (1.1) is exactly the
sequence of borders of x. Now, if p is a period of x, Proposition 1.4
ensures the existence of three strings u, v and w such that x = uw = wv
and |u| = |v| = p. Then w is a border of x and p = |x| − |w|. It follows
that the sequence (1.2) is the sequence of periods of x.

Lemma 1.6 (Periodicity lemma)
If p and q are periods of a non-empty string x and satisfy

p + q − gcd(p, q) ≤ |x| ,

then gcd(p, q) is also a period of x.

Proof By recurrence on max{p, q}. The result is straightforward when
p = q = 1 and, more generally when p = q. We can then assume in the
rest that p > q.

From Proposition 1.4, the string x can be written both as uy with
|u| = p and y a border of x, and as vz with |v| = q and z a border of x.

The quantity p− q is a period of z. Indeed, since p > q, y is a border
of x of length strictly less than the length of the border z. Thus y is a
border of z. It follows that |z| − |y| is a period of z. And |z| − |y| =
(|x| − q)− (|x| − p) = p− q.

But q is also a period of z. Indeed, since p > q and gcd(p, q) ≤ p− q,
we have q ≤ p − gcd(p, q). One the other hand we have p − gcd(p, q) =
p + q − gcd(p, q)− q ≤ |x| − q = |z|. It follows that q ≤ |z|. This shows
that the period q of x is also a period of its factor z.

Moreover, we have (p− q) + q − gcd(p− q, q) = p− gcd(p, q), which,
as can be seen above, is a quantity less than |z|.

We apply the recurrence hypothesis to max{p−q, q} relatively to the
string z, and we obtain thus that gcd(p, q) is a period of z.

1.2 Some combinatorics 13

a b a a b a b a a b a b a a b a b a a b

a b a a b a b a a b a

a b a a b a b a a b a a b a b a a b a a b a b a

Figure 1.5 Application of the Periodicity lemma. String abaababaaba of
length 11 possesses 5 and 8 as periods. It is not possible to extend them to
the left nor to the right while keeping these two periods. Indeed, if 5 and 8
are periods of some string, but 1 – the greatest common divisor of 5 and 8 –
is not, then this string is of length less than 5 + 8 − gcd(5, 8) = 12.

The conditions on p and q (those of the lemma and gcd(p, q) ≤ p−q)
give q ≤ |x|/2. And as x = vz and z is a border of x, v is a prefix of
z. It has moreover a length that is a multiple of gcd(p, q). Let t be the
prefix of x of length gcd(p, q). Then v is a power of t and z is a prefix
of a power of t. It follows then by Proposition 1.4 that x is a prefix of
a power of t, and thus that |t| = gcd(p, q) is a period of x. Which ends
the proof.

To illustrate the periodicity lemma, let us consider a string x that
admits both 5 and 8 as periods. Then, if we assume moreover that x is
composed of at least two distinct letters, gcd(5, 8) = 1 is not a period of
x, and, by application of the lemma, the length of x is strictly less than
5 + 8 − gcd(5, 8) = 12. It is the case, for instance, for the four strings
of length greater than 7 which are prefixes of the string abaababaaba of
length 11. Another illustration of the result is proposed in Figure 1.5.

We wish to show in what follows that one cannot weaken the condi-
tion required on the periods in the statement of the periodicity lemma.
More precisely, we give examples of strings x that have two periods p
and q such that p + q − gcd(p, q) = |x|+ 1 but which do not satisfy the
conclusion of the lemma. (See also Exercise 1.5.)

Let β:A∗ → A∗ be the function defined by

β(uab) = uba

for every string u ∈ A∗ and every letters a, b ∈ A.

Lemma 1.7
For every natural number n ≥ 3, β(fn) = fn−2fn−1.

Proof By recurrence on n. The result is straightforward when 3 ≤
n ≤ 4. If n ≥ 5, we have:

β(fn) = β(fn−1fn−2) (by definition of fn)

= fn−1β(fn−2) (since |fn−2| = Fn−2 ≥ 2)

= fn−1fn−4fn−3 (by recurrence hypothesis)

= fn−2fn−3fn−4fn−3 (by definition of fn−1)

14 Tools

= fn−2fn−2fn−3 (by definition of fn−2)

= fn−2fn−1 (by definition of fn−1) .

For every natural number n ≥ 3, we define the string gn as the prefix
of length Fn − 2 of fn, that is, fn with its last two letters chopped off.

Lemma 1.8
For every natural number n ≥ 6, gn = fn−2

2gn−3.

Proof We have:

fn = fn−1fn−2 (by definition of fn)

= fn−2fn−3fn−2 (by definition of fn−1)

= fn−2β(fn−1) (from Lemma 1.7)

= fn−2β(fn−2fn−3) (by definition of fn−1)

= fn−2
2β(fn−3) (since |fn−3| = Fn−3 ≥ 2) .

The stated result immediately follows.

Lemma 1.9
For every natural number n ≥ 3, gn �pref fn−1

2 and gn �pref fn−2
3.

Proof We have:

gn �pref fnfn−3 (since gn �pref fn)

= fn−1fn−2fn−3 (by definition of fn)

= fn−1
2 (by definition of fn−1) .

The second relation is valid when 3 ≤ n ≤ 5. When n ≥ 6, we have:

gn = fn−2
2gn−3 (from Lemma 1.8)

�pref fn−2
2fn−3fn−4 (since gn−3 �pref fn−3)

= fn−2
3 (by definition of fn−2) .

Now, let n be a natural number, n ≥ 5, so that the string gn is both
defined and of length greater than 2. It follows then:

|gn| = Fn − 2 (by definition of gn)

= Fn−1 + Fn−2 − 2 (by definition of Fn)

≥ Fn−1 (since Fn−2 ≥ 2) .

It results from this inequality, from Lemma 1.9 and from Proposition 1.4
that Fn−1 and Fn−2 are two periods of gn. In addition note that, since
gcd(Fn−1, Fn−2) = 1, we also have:

Fn−1 + Fn−2 − gcd(Fn−1, Fn−2) = Fn − 1

= |gn|+ 1 .

1.2 Some combinatorics 15

Thus, if the conclusion of the periodicity lemma applied to the string gn

and its two periods Fn−1 and Fn−2, gn would be the power of a string
of length 1. But the first two letters of gn are distinct. This indicates
that the condition of the periodicity lemma is in some sense optimal.

Powers, primitivity and conjugacy

Lemma 1.10
Let x and y be two strings. If there exist two natural non-null numbers
m and n such that xm = yn, x and y are powers of some string z.

Proof It is enough to show the result in the non-trivial case where nei-
ther x nor y are empty strings. Two sub-cases can then be distinguished,
whether min{m,n} is equal to 1 or not.

If min{m,n} = 1, it is sufficient to consider the string z = y if m = 1
and z = x if n = 1.

Otherwise, min{m,n} ≥ 2. Then we note that |x| and |y| are periods
of the string t = xm = yn which satisfy the condition of the periodicity
lemma: |x|+ |y| − gcd(|x|, |y|) ≤ |x|+ |y| − 1 < |t|. Thus it is sufficient
to consider the string z defined as the prefix of t of length gcd(|x|, |y|)
to get the stated result.

A non-empty string is primitive if it is not the power of any other
string. In other words, a string x ∈ A+ is primitive if and only if every
decomposition of the form x = un with u ∈ A∗ and n ∈ N implies n = 1,
and then u = x. For instance, the string abaab is primitive, while the
strings ε and bababa = (ba)3 are not.

Lemma 1.11 (Primitivity lemma)
A non-empty string is primitive if and only if it is a factor of its square
only as a prefix and as a suffix. In other words, for every non-empty
string x,

x primitive

if and only if

yx �pref x2 implies y = ε or y = x .

An illustration of this result is proposed in Figure 1.6.

Proof If x is a non-empty non-primitive string, there exist z ∈ A+ and
n ≥ 2 such that x = zn. Since x2 can be decomposed as z · zn · zn−1,
the string x occurs at the position |z| on x2. This shows that every non-
empty non-primitive string is a factor of its square without being only a
prefix and a suffix of it.

16 Tools

a b b a b a a b b a b a

a b a b a b a b a b a b

a b a b a b

(a) (b)

Figure 1.6 Application of the Primitivity lemma. (a) String x = abbaba

does not possess any “non trivial” occurrence in its square x2 – i.e. that is
neither a prefix nor a suffix of x2 – since x is primitive. (b) String x = ababab

possesses a “non trivial” occurrence in its square x2 since x is not primitive:
x = (ab)3.

Conversely, let x be a non-empty string such that its square x2 can
be written as yxz with y, z ∈ A+. Due to the length condition, it first
follows that |y| < |x|. Then, and since x �pref yx, we obtain from
Proposition 1.4 that |y| is a period of x. Thus |x| and |y| are periods of
yx. From the periodicity lemma, we deduce that p = gcd(|x|, |y|) is also
a period of yx. Now, as p ≤ |y| < |x|, p is also a period of x. And as p
divides |x|, we deduce that x is of the form tn with |t| = p and n ≥ 2.
This shows that the string x is not primitive.

Another way of stating the previous lemma is that the primitivity of
x is equivalent to saying that per(x2) = |x|.

Proposition 1.12
For every non-empty string, there exists one and only one primitive

string which it is a power of.

Proof The proof of the existence comes from a trivial recurrence on
the length of the strings. We now have to show the uniqueness.

Let x be a non-empty string. If we assume that x = um = vn for two
primitive strings u and v and two natural non-null numbers m and n,
then u and v are necessarily powers of a string z ∈ A+ from Lemma 1.10.
But their primitivity implies z = u = v, which shows the uniqueness and
ends the proof.

If x is a non-empty string, we say of the primitive string z which x is
the power of that it is the root of x, and of the natural number n such
that x = zn that it is the exponent4 of x.

Two strings x and y are conjugates if there exist two strings u and v
such that x = uv and y = vu. For instance, the strings abaab and ababa

are conjugate. It is clear that conjugacy is an equivalence relation. It is
not compatible with the product.

4More generally, the exponent of x is the quantity |x|/per(x) which is not neces-
sarily an integer (see Exercise 9.2).

1.3 Algorithms and complexity 17

Proposition 1.13
Two non-empty strings are conjugate if and only if their roots also are.

Proof The proof of the reciprocal is immediate.
For the proof of the direct implication, we consider two non-empty

conjugate strings x and y and we denote by z and t then m and n their
roots and exponents respectively. Since x and y are conjugate, there
exist z′, z′′ ∈ A+ and p, q ∈ N such that z = z′z′′, x = zpz′ · z′′zq,
y = z′′zq · zpz′ and m = p + q + 1. We deduce that y = (z′′z′)m. Now,
as t is primitive, Lemma 1.10 implies that z′′z′ is a power of t. This
shows the existence of a natural non-null number k such that |z| = k|t|.
Symmetrically, there exists a natural non-null number ℓ such that |t| =
ℓ|z|. It follows that k = ℓ = 1, that |t| = |z|, then that t = z′′z′. This
shows that the roots z and t are conjugate.

Proposition 1.14
Two non-empty strings x and y are conjugate if and only if there exists
a string z such that xz = zy.

Proof ⇒: x and y can be decomposed as x = uv and y = vu with
u, v ∈ A∗, then the string z = u suits since xz = uvu = zy.
⇐: in the non-trivial case where z ∈ A+, we obtain by an immediate

recurrence that xkz = zyk for every k ∈ N. Let n be the (non-null)
natural number such that (n − 1)|x| ≤ |z| < n|x|. There exist thus
u, v ∈ A∗ such that x = uv, z = xn−1u and vz = yn. It follows that
yn = vxn−1u = (vu)n. Finally, since |y| = |x|, we have y = vu, which
shows that x and y are conjugate.

1.3 Algorithms and complexity

In this section, we present the algorithmic elements used in the rest of
the book. They include the writing conventions, the evaluation of the
algorithm complexity and some standard objects.

Writing conventions of algorithms

The style of the algorithmic language used here is relatively close to real
programming languages but at a higher abstraction level. We adopt the
following conventions:

• Indentation means the structure of blocks inherent to compound in-
structions.

• Lines of code are numbered in order to be referenced in the text.

• The symbol ⊲ introduces a comment.

• The access to a specific attribute of an object is signified by the name

18 Tools

of the attribute followed by the identifier associated with the object
between brackets.

• A variable that represents a given object (table, queue, tree, string,
automaton) is a pointer to this object.

• The arguments given to procedures or to functions are managed by
the “call by value” rule.

• Variables of procedures and of functions are local to them unless
otherwise mentioned.

• The evaluation of boolean expressions is performed from left to right
in a lazy way.

We consider, following the example of a language like the C language,
the iterative instruction do-while – used instead of the traditional in-
struction repeat-until – and the instruction break which produces the
termination of the most internal loop in which it is located.

Well adapted to the sequential processing of strings, we use the for-
mulation:

1 for each letter a of u, sequentially do

2 processing of a

for every string u. It means that the letters u[i], i = 0, 1, . . . , |u| − 1,
composing u are processed one after the other in the body of the loop:
first u[0], then u[1], and so on. It means that the length of the string u
is not necessarily known in advance, the end of the loop can be detected
by a marker that ends the string. In the case where the length of the
string u is known, this formulation is equivalent to a formulation of the
type:

1 for i← 0 to |u| − 1 do

2 a← u[i]
3 processing of a

where the integer variable i is free (its use does not produce any conflict
with the environment).

Pattern matching algorithms

A pattern represents a non-empty language not containing the empty
string. It can be described by a string, by a finite set of strings, or by
other means. The pattern matching problem is to search for occur-
rences of strings of the language in other strings – or in texts to be less
formal. The notions of occurrence, of appearance and of position on the
strings are extended to patterns.

According to the specified problem, the input of a pattern matching
algorithm is a string x or a language X and a text y, together or not
with their lengths.

1.3 Algorithms and complexity 19

The output can take several forms. Here are some of them:

• Booleans values: to implement an algorithm that tests whether the
pattern occurs in the text or not, without specifying the positions
of the possible occurrences, the output is simply the boolean value
true in the first situation and false in the second.

• A string: during a sequential search, it is appropriate to produce
a string ȳ on the alphabet {0, 1} that encodes the existence of the
right positions of occurrences. The string ȳ is such that |ȳ| = |y| and
ȳ[i] = 1 if and only if i is the right position of an occurrence of the
pattern on y.

• A set of positions: the output can also take the form of a set P of
left – or right – positions of occurrences of the pattern on y.

Let e be a predicate having value true if and only if an occurrence
has just been detected. A function corresponding to the first form and
ending as soon as an occurrence is detected should integrate in its code
an instruction:

1 if e then

2 return true

in the heart of its searching process, and return the value false at the
termination of this process. The second form needs to initialize the
variable ȳ with ε, the empty string, then to modify its value by an
instruction:

1 if e then

2 ȳ ← ȳ · 1
3 else ȳ ← ȳ · 0

then to return it at the termination. It is identical for the third form,
where the set P is initially emptied, then augmented by an instruction:

1 if e then

2 P ← P ∪ {the current position on y}

and finally returned.
In order to present only one variant of the code for an algorithm, we

consider the following special instruction:

Output-if(e) means, at the location where it appears, an occurrence
of the pattern at the current position on the text is detected when the
predicate e has value true.

Expression of complexity

The model of computation for the evaluation of the algorithms complex-
ity is the standard random access machine model.

20 Tools

In a general way, the algorithm complexity is an expression including
the input size. This includes the length of the language represented by
the pattern, the length of the string in which the search is performed,
and the size of the alphabet. We assume that the letters of the alphabet
are of size comparable to the machine word size, and, consequently,
the comparison between two letters is an elementary operation that is
performed in constant time.

We assume that every instruction Output-if(e) is executed in con-
stant time5 once the predicate e has been evaluated.

We use the notation recommended by Knuth [72] to express the or-
ders of magnitude. Let f and g be two functions from N to N. We write
“f(n) is O(g(n))” to mean that there exists a constant K and a natural
number n0 such that f(n) ≤ Kg(n) for every n ≥ n0. In a dual way,
we write “f(n) is Ω(g(n))” if there exists a constant K and a natural
number n0 such that f(n) ≥ Kg(n) for every n ≥ n0. We finally write
“f(n) is Θ(g(n))” to mean that f and g are of the same order, that is to
say that f(n) is both O(g(n)) and Ω(g(n)).

The function f :N → N is linear if f(n) is Θ(n), quadratic if
f(n) is Θ(n2), cubic if f(n) is Θ(n3), logarithmic if f(n) is Θ(log n),
exponential if there exists a > 0 for which f(n) is Θ(an).

We say that a function with two parameters f :N×N→ N is linear
when f(m,n) is Θ(m + n) and quadratic when f(m,n) is Θ(m× n).

Some standard objects

Queues, states and automata are objects often used in the rest of the
book. Without telling what their true implementations are – they can
actually differ from one algorithm to the other – we indicate the minimal
attributes and operations defined on these objects.

For queues, we only describe the basic operations.

Empty-Queue() creates then returns an empty queue.

Queue-is-empty(F) returns true if the file F is empty, and false

otherwise.

Enqueue(F, x) adds the element x to the tail of the queue F .

Head(F) returns the element located at the head of the queue F .

Dequeue(F) deletes the element located at the head of the queue F .

Dequeued(F) deletes the element located at the head of the queue F
then returns it;

Length(F) returns the length of the queue F .

5 Actually we can always come down to it even though the language represented
by the pattern is not reduced to a single string. For that, it is sufficient to only
produce one descriptor – previously computed – of the set of strings that occur at
the current position (instead for instance, of producing explicitly the set of strings).
It then remains to use a tool that develops the information if necessary.

1.4 Implementation of automata 21

States are objects that possess at least the two attributes terminal
and Succ. The first attribute indicates if the state is terminal or not
and the second is an implementation of the set of labeled successors
of the state. The attribute corresponding to an output of a state is
denoted by output. The two standard operations on the states are the
functions New-state and Target. While the first creates then returns
a non-terminal state with an empty set of labeled successors, the second
returns the target of an arc given the source and the label of the arc, or
the value special nil if such an arc does not exist. The code for these
two functions can be written in a few lines:

New-state()

1 allocate an object p of type state
2 terminal[p]← false

3 Succ[p]← ∅
4 return p

Target(p, a)

1 if there exists a state q such that (a, q) ∈ Succ[p] then

2 return q
3 else return nil

The objects of the type automaton possess at least the attribute
initial that specifies the initial state of the automaton. The function
New-automaton creates then returns an automaton with a single state.
It constitues its initial state and has an empty set of labeled successors.
The corresponding code is the following:

New-automaton()

1 allocate an object M of type automaton
2 q0 ← New-state()
3 initial[M]← q0

4 return M

1.4 Implementation of automata

Some pattern matching algorithms rely on specific implementations of
the deterministic automata they consider. This section details several
methods, including the data structures and the algorithms, that can be
used to implement these objects in memory.

Implementing a deterministic automaton (Q, q0, T, F) consists of set-
ting in memory, either the set F of its arcs, or the sets of the labeled
successors of its states, or its transition function δ. Those are equivalent
problems that fit in the general framework of representing partial func-
tions (Exercise 1.15). We distinguish two families of implementations:

22 Tools

a b c

0 1 0 0
1 2 3 0
2 2 3 0
3 4 0 0
4 2 3 0

Figure 1.7 The transition matrix of the automaton of Figure 1.2.

• the family of full implementations in which all the transitions are
represented,

• the family of reduced implementations that use more or less elabo-
rate techniques of compression in order to reduce the memory space
of the representation.

The choice of the implementation influences the time necessary to
compute a transition, i.e. to execute Target(p, a), for a state p ∈ Q
and a letter a ∈ A. This computation time is called the delay since it
measures also the time necessary for going from the current letter of the
input to the next letter. Typically, two models can be opposed:

• The branching model in which δ is implemented with a Q × A
matrix and where the delay is constant (in the random access model).

• The comparisons model in which the elementary operation is the
comparison of letters and where the delay is typically O(log cardA)
when any two letters can be compared in one unit of time (general
assumption formulated in Section 1.3).

We also consider in the next section an elementary technique known
as the “bit-vector model” whose application scope is restricted: it is
especially interesting when the size of the automaton is very small.

For each of the implementation families, we specify the orders of
magnitude of the necessary memory space and of the delay. There is
always a trade-off to be found between these two quantities.

Full implementations

The most simple method for implementing the function δ is to store its
values in a Q×A matrix, known as the transition matrix (an illustra-
tion is given Figure 1.7) of the automaton. It is a method of choice for
a deterministic complete automaton on an alphabet of relatively small
size and when the letters can be identified with indices on a table. Com-
puting a transition reduces to a mere table look-up.

Proposition 1.15
In an implementation by transition matrix, the necessary memory space
is O(card Q× cardA) and the delay O(1).

In the case where the automaton is not complete, the representation

1.4 Implementation of automata 23

remains correct except that the execution of the automaton on the text
given as an input can now stop on an undefined transition. The matrix
can be initialized in time O(card F) only if we implement partial func-
tions as proposed in Exercise 1.15. The above stated complexities for
the memory space as well as for the delay remain valid.

An automaton can be implemented by means of an adjacency matrix
as it is classical to do for graphs. We associate then to each letter of
the alphabet a boolean Q×Q matrix. This representation is in general
not adapted for the applications developed in this book. It is however
related to the method that follows.

The method by list of transitions consists in implementing a list
of triplets (p, a, q) that are arcs of the automaton. The required space
is only O(card F). Having done this, we assume that this list is stored
in a hash table in order to allow a fast computation of the transitions.
The corresponding hash function is defined on the pairs (p, a) ∈ Q×A.
Given a pair (p, a), the access to the transition (p, a, q), if it is defined,
is done in average constant time with the usual assumptions specific to
this type of technique.

These first types of representations implicitly assume that the alpha-
bet is fixed and known in advance, which opposes them to the repre-
sentations in the comparison model considered by the method described
below.

The method by sets of labeled successors consists in using a table
t indexed on Q for which each element t[p] gives access to an implemen-
tation of the set of the labeled successors of the state p. The required
space is O(card Q + cardF). This method is valuable even when the
only authorized operation on the letters is the comparison. Denoting by
s the maximum outgoing degree of the states, the delay is O(log s) if we
use an efficient implementation of the sets of labeled successors.

Proposition 1.16
In an implementation by sets of labeled successors, the space require-

ment is O(card Q + cardF) and the delay O(log s) where s is the maxi-
mum outgoing degree of states.

Note that the delay is also O(log cardA) in this case: indeed, since
the automaton is assumed to be deterministic, the outgoing degree of
each of the states is less than card A, thus s ≤ cardA with the notation
used above.

Reduced implementations

When the automaton is complete, the space complexity can however be
reduced by considering a successor by default for the computation of
the transitions from any given state – the state occurring the most often
in a set of labeled successors is the best possible candidate for being

24 Tools

0 1

2

3 4
a

a

b
a

b

b

a

a

Figure 1.8 Reduced implementation by adjonction of successors by default.
We consider the automaton of Figure 1.2 and we chose the initial state as
unique successor by default (this choice parfectly suits for pattern matching
problems). States that admit the initial state as successor by default (actually
all here) are indicated by a short gray arrow. For example, the target of the
transition from state 3 by the letter a is state 4, and by every other letter,
here b or c, it is the initial state 0.

the successor by default. The delay can also be reduced since the size
of the sets of labeled successors becomes smaller. For pattern matching
problems, the choice of the initial state as successor by default perfectly
suits. Figure 1.8 shows an example where short gray arrows mean that
the state possesses the initial state as successor by default.

Another method to reduce the implementation space consists in us-
ing a failure function. The idea is here to reduce the necessary space for
implementing the automaton, by redirecting, in most cases, the compu-
tation of the transition from the current state to the one from another
state but by the same letter. This technique serves to implement de-
terministic automata in the model comparison. Its principal advantage
is – generally – to provide linear size representations and to simultane-
ously get a linear time computation of series of transitions even when
the computation of a single transition cannot be done in constant time.

Formally, let

γ:Q×A→ Q

and

f :Q→ Q

be two functions. We say that the pair (γ, f) represents the transition
function δ of a complete automaton having δ as transition function if
and only if γ is a sub-function of δ, f defines an order on elements of Q,
and for every pair (p, a) ∈ Q×A

δ(p, a) =

{

γ(p, a) if γ(p, a) is defined ,
δ(f(p), a) otherwise .

When it is defined, we say of the state f(p) that it is the failure state
of the state p. We say of the functions γ and f that they are respectively,
and jointly, a sub-transition and a failure function of δ.

1.4 Implementation of automata 25

0 1

2

3 4 0 1

2

3 4
a

a

b a

b,c

(a) (b)

Figure 1.9 Reduced implementation by adjonction of a failure function.
We take again the example of the automaton of Figure 1.2. (a) A failure
function given under the form of an directed graph. As this graph does not
possess any cycle, the function defines an order on the set of states. (b) The
corresponding reduced automaton. Each link state-failure state is indicated
by a dashed arrow. The computation of the transition from state 4 by the
letter c is refered to state 1, then to state 0. State 0 is indeed the first among
states 4, 1 et 0, in this order, to possess a transition defined by c. Finally, the
target of the transition from state 4 by c is state 0.

We indicate the link state-failure state by a directed dash arrow in
figures (see the example in Figure 1.9).

The space needed to represent the function δ by the functions γ and
f is O(card Q + card F ′) in the case of an implementation by sets of
labeled successors where

F ′ = {(p, a, q) ∈ F : γ(p, a) is defined} .

Note that γ is the transition function of the automaton (Q, q0, T, F ′).

A complete example

The method presented here is a combination of the previous ones to-
gether with a fast computation of transitions and a compact representa-
tion of transitions due to the joint use of tables and of a failure function.
It is known as “compression of transition table”.

Two extra attributes, fail and base, are added to states, the first has
values in Q and the second in N. We consider also two tables indexed by
N and with values in Q: target and control. For each pair (p, a) ∈ Q×A,
base[p] + rank[a] is an index on both target and control, denoting by
rank the function that associates with every letter of A its rank in a
fixed ordered sequence of letters of A.

The computation of the successor of a state p ∈ Q by a letter a ∈ A
proceeds as follows:

1. If control[base[p]+rank[a]] = p, target[base[p]+rank[a]] is the target
of the arc of source p and labeled by a.

2. Otherwise the process is repeated recursively on the state fail[p] and
the letter a (assuming that fail is a failure function).

26 Tools

y a a b a a b a b a a b a b b b a a a b b

x a a b b a a a

Figure 1.10 An attempt to locate string x = aabbaaa in text y =
aabaababaababbbaaabb. The attempt takes place at position 5 on y. The
content of the window and the string matches in four positions.

The (non-recursive) code of the corresponding function follows.

Target-by-compression(p, a)

1 while control[base[p] + rank[a]] 6= p do

2 p← fail[p]
3 return target[base[p] + rank[a]]

In the worst case, the space required by the implementation is O(card Q×
cardA) and the delay is O(card Q). This method allows us to reduce the
space in O(card Q + cardA) with a constant delay in the best case.

1.5 Basic pattern matching techniques

We present in this section elementary approaches for the pattern match-
ing problem. It includes the notion of sliding window common to many
searching algorithms, the utilization of heuristics in order to reduce the
computation time, the general method based on automata when the
texts are to be processed in a sequential order, and the use of techniques
that rely on the binary encoding of letters realized by machine words.

Notion of sliding window

When the pattern is a non-empty string x of length m, it is convenient to
consider that the text y of length n in which the search is performed, is
examined through a sliding window . The window delimits a factor of
the text – called the content of the window – which has, in most cases,
the length of the string x. It slides along the text from the beginning to
the end – from left to right.

The window being at a given position j on the text, the algorithm
tests whether the string x occurs or not at this position, by comparing
some letters of the content of the window with aligned letters of the
string. We speak of an attempt at the position j (see an example in
Figure 1.10). If the comparison is successful, an occurrence is signalled.
During this phase of test, the algorithm acquires some information on
the text which can be exploited in two ways:

• to set up the length of the next shift of the window according to
rules that are specific to the algorithm,

1.5 Basic pattern matching techniques 27

• to avoid comparisons during next attempts by memorizing a part of
the collected information.

When the shift slides the window from the position j to the position
j + d (d ≥ 1), we say that the shift is of length d. To answer to the
given problem, a shift of length d for an attempt at the position j must
be valid, i.e. it must ensure that, when d ≥ 2, there is no occurrence of
the searched string x from positions j + 1 to j + d− 1 on the text y.

The naive algorithm

The simplest implementation of the sliding window mechanism is the
so-called naive algorithm. The strategy consists here in considering a
window of length m and in sliding it one position to the right after each
attempt. This leads, if the comparison of the content of the window and
of the string is correctly implemented, to an obviously correct algorithm.

We give below the code of the algorithm. The variable j corresponds
to the left position of the window on the text. It is clear that the com-
parison of the strings at Line 2 is supposed to be performed letter by
letter according to a pre-established order.

Naive-search(x,m, y, n)

1 for j ← 0 to n−m do

2 Output-if(y[j . . j + m− 1] = x)

In the worst case, the algorithm Naive-search executes in time
Θ(m×n), as for instance when x and y are powers of the same letter. In
the average case,6 its behavior is rather good, as the following proposition
indicates.

Proposition 1.17
With the double assumption of an alphabet non-reduced to a single

letter and of a uniform and independent distribution of letters of the
alphabet, the average number of comparisons of letters performed by
the operation Naive-search(x,m, y, n) is Θ(n−m).

Proof Let c be the size of the alphabet. The number of comparisons
of letters necessary to determine if two strings u and v of length m are
identical on average

1 + 1/c + · · ·+ 1/cm−1 ,

independently of the permutation of positions considered for comparing
compared between letters of the strings. When c ≥ 2, this quantity is
less than 1/(1− 1/c), which is itself no more than 2.

6Even when the patterns and the texts considered in practice have no reason to be
random, the average cases express what one can expect of a given pattern matching
algorithm.

28 Tools

It follows that the average number of comparisons of letters counted
during the execution of the operation is less than 2(n −m + 1). Thus
the result holds since at least n−m + 1 comparisons are performed.

Heuristics

Some elementary processes sensibly improve the global behavior of pat-
tern matching algorithms. We detail here some of the most significant.
They are described in connection with the naive algorithm. But most
of the other algorithms can include them in their code, the adaptation
being more or less easy. We speak of heuristics since we are not able to
formally measure their contribution to the complexity of the algorithm.

When locating all the occurrences of the string x in the text y by the
naive method, we can start by locating the occurrences of its first letter,
x[0], in the prefix y[0 . . n−m + 1] of y. It then remains to test, for each
occurrence of x[0] at a position j on y, the possible identity between
the two strings x[1 . . m − 1] and y[j + 1 . . j + m − 1]. As the searching
operation for the occurrence of a letter is generally a low level operation
of operating systems, the reduction of the computation time is often
noticeable in practice. This elementary search can still be improved in
two ways:

• by positioning x[0] as a sentinel at the end of the text y, in order to
have to test less frequently the end of the text,

• by searching, non-necessarily x[0], but the letter of x which has the
smallest frequency of appearance in the texts of the family of y.

It should be noted that the first technique assumes that such an alter-
ation of the memory is possible and that it can be performed in constant
time. For the second, besides the necessity of having to know the fre-
quency of letters, the choice of the position of the distinguished letter
requires a precomputation on x.

A different process consists in applying a shift that takes into account
only the value of the rightmost letter of the window. Let j be the right
position of the window. Two antagonist cases can be envisaged whether
or not the letter y[j] occurs in x[0 . . m− 2]:

• in the case where y[j] does not occur in x[0 . . m − 2], the string x
cannot occur at right positions j + 1 to j + m− 1 on y,

• in the other case, if k is the maximal position of an occurrence of the
letter y[j] on x[0 . . m−2], the string x cannot occur at right positions
j + 1 to j + m− 1− k − 1 on y.

Thus the valid shifts to apply in the two cases have lengths: m for the
first, and m − 1 − k for the second. Note that they do not depend on
the letter y[j] and in no way on its position j on y.

To formalize the previous observation, we introduce the table

last-occ:A→ {1, 2, . . . ,m}

1.5 Basic pattern matching techniques 29

a a b c d

last-occ[a] 1 4 3 6

y c b b c a c b a b a c a d a

x b b c a a c

y c b b c a c b a b a c a d a

x b b c a a c

(a) (b)

Figure 1.11 Shift of the sliding window with the table of the last occur-
rence, last-occ, when x = bbcaac. (a) The values of the table last-occ on
the alphabet A = {a, b, c, d}. (b) The window on the text y is at right
position 8. The letter at this position, y[8] = b, occurs at the maximal po-
sition k = 1 on x[0 . . |x| − 2]. A valid shift consists in sliding the window of
|x| − 1 − k = 4 = last-occ[b] positions to the right.

defined for every letter a ∈ A by

last-occ[a] = min({m} ∪ {m− 1− k : 0 ≤ k ≤ m− 2 and x[k] = a}) .

We call last-occ the table of the last occurrence. It expresses a valid
shift, last-occ[y[j]], to apply after the attempt at the right position j on
y. An illustration is proposed Figure 1.11. The code for the computation
of last-occ follows. It executes in time Θ(m + card A).

Last-occurrence(x,m)

1 for each letter a ∈ A do

2 last-occ[a]← m
3 for k ← 0 to m− 2 do

4 last-occ[x[k]]← m− 1− k
5 return last-occ

We give now the complete code of the algorithm Fast-search ob-
tained from the naive algorithm by adding the table last-occ.

Fast-search(x,m, y, n)

1 last-occ ← Last-occurrence(x,m)
2 j ← m− 1
3 while j < n do

4 Output-if(y[j −m + 1 . . j] = x)
5 j ← j + last-occ[y[j]]

If the comparison of the strings at Line 4 starts in position m−1, the
searching phase of the algorithm Fast-search executes in time Θ(n/m)
in the best case. As for instance when no letter at positions congruent
modulo m to m − 1 on y occurs in x; in this case, a single comparison

30 Tools

between letters is performed during each attempt7 and the shift is always
equal to m. The behavior of the algorithm on natural language texts
is very good. One can show however that in the average case (with the
double assumption of Proposition 1.17 and for a set of strings having the
same length), the number of comparisons per text letter is asymptotically
lower bounded by 1/ card A. The bound is independent of the length of
the pattern.

Search engine

Some automata can serve as a search engine for the online processing of
texts. We describe in this part two algorithms based on an automaton
for locating patterns. We assume the automata are given; Chapter 2
presents the construction of some of these automata.

Let us consider a pattern X ⊆ A∗ and a deterministic automaton M
that recognizes the language A∗X (Figure 1.12(a) displays an example).
The automaton M recognizes the strings that have a string of X as
a suffix. For locating the strings of X that occur in a text y, it is
sufficient to run the automaton M on the text y. When the current
state is terminal, this means that the current prefix of y – the part of y
already parsed by the automaton – belongs to A∗X; or, in other words,
that the current position on y is the right position of an occurrence of a
string of X. This remark leads to the algorithm whose code follows. An
illustration of how the algorithm works is presented in Figure 1.12(b).

Det-search(M,y)

1 r ← initial[M]
2 for each letter a of y, sequentially do

3 r ← Target(r, a)
4 Output-if(terminal[r])

Proposition 1.18
When M is a deterministic automaton that recognizes the language A∗X
for a pattern X ⊆ A∗, the operation Det-search(M,y) locates all the
occurrences of strings of X in the text y ∈ A∗.

Proof Let δ be the transition function of the automaton M . As the
automaton is deterministic, it follows immediately that

r = δ(initial[M], u) , (1.3)

where u is the current prefix of y, is satisfied after the execution of each
of the instructions of the algorithm.

7Note that it is the best case possible for an algorithm detecting a string of length
m in a text of length n; at least ⌊n/m⌋ letters of the text must be inspected before
the non-appearance of the searched string can be determined.

1.5 Basic pattern matching techniques 31

(a) 0

1 2

3

4 5 6

7

a

b

a

b

b

b

b b

a

a

a

a

a

a

b

b

(b)

j y[j] state r

0
0 c 0
1 b 3
2 a 4
3 b 5 occurrence of ab
4 b 6 occurrences of babb and bb

5 a 4

Figure 1.12 Search for occurrences of a pattern with a deterministic au-
tomaton (see also Figure 1.13). (a) With alphabet A = {a, b, c} and pattern
X = {ab, babb, bb}, the deterministic automaton represented above recognizes
language A∗X. The grey arrows exiting each state stand for arcs having for
source these same states, for target the initial state 0, and labeled by a letter
that is not already present. To locate occurrences of strings of X in a text y,
it is sufficient to operate the automaton on y and to indicate each time that
a terminal state is reached. (b) Parsing example with y = cbabba. From the
utilization of the automaton, it follows that there is at least one occurrence of
a string of X at positions 3 and 4 on y, and none at other positions.

If an occurrence of a string of X ends at the current position, the
current prefix u belongs to A∗X. And thus, by definition of M and
after Property (1.3), the current state r is terminal. As the initial state
is not terminal (since ε /∈ X), it follows that the operation signals this
occurrence.

Conversely, assume that an occurrence has just been signalled. The
current state r is thus terminal, which, after Property (1.3) and by def-
inition of M , implies that the current prefix u belongs to A∗X. An
occurrence of a string of X ends thus at the current position, which ends
the proof.

The execution time and the extra space needed for running the al-
gorithm Det-search uniquely depend on the implementation of the
automaton M . For example, in an implementation by transition ma-
trix, the time to parse the text is Θ(|y|), since the delay is constant,

32 Tools

(a)

0 1

2 3 4 5

6 7

-1

A a

b

b a b b

b

b

(b)

j y[j] set of states R

{−1}
0 c {−1}
1 b {−1, 2, 6}
2 a {−1, 0, 3}
3 b {−1, 1, 2, 4, 6} occurrence of ab
4 b {−1, 2, 5, 6, 7} occurrences of babb and bb

5 a {−1, 0, 3}

Figure 1.13 Search of occurrences of a pattern with a non determinis-
tic automaton (see also Figure 1.12). (a) The non deterministic automa-
ton recognizes the language A∗X, with alphabet A = {a, b, c} and pattern
X = {ab, babb, bb}. To locate the occurrences of strings of X that occur
in a text y, it is sufficient to operate the automaton on y and to signal an
occurrence each time that a terminal state is reached. (b) Example when
y = cbabba. The computation amounts to simultaneously follow all possible
paths. It results that the pattern occurs at right positions 3 and 4 on y and
nowhere else.

and the extra space, in addition to the matrix, is also constant (see
Proposition 1.15).

The second algorithm of this part applies when we dispose of an au-
tomaton N recognizing the language X itself, and no longer A∗X. By
adding to the automaton an arc from its initial state to itself and labeled
by a, for each letter a ∈ A, we simply get an automaton N ′ that rec-
ognizes the language A∗X. But the automaton N ′ is not deterministic,
and therefore the previous algorithm cannot be applied. Figure 1.13(a)
presents an example of automaton N ′ for the same pattern X as the one
of Figure 1.12(a).

In such a situation, the retained solution usually consists in simu-
lating the automaton obtained by the determinisation of N ′, following
in parallel all the possible paths having a given label. Since only states
that are the ends of paths may perform the occurrence test, we simply
keep the set R of reached states. It is what realizes the algorithm Non-

det-search below. Actually, it is even not necessary to modify the
automaton N since the loops on its initial state can also be simulated.
This is realized in Line 4 of the algorithm by adding systematically the
initial state to the set of states. During the execution of the automaton

1.5 Basic pattern matching techniques 33

on the input y, the automaton is not in a single state, but in a set of
states, R. This subset of the set of states is recomputed after the analysis
of the current letter of y. The algorithm calls the function Targets that
performs a transition on a set of states, which function is an immediate
extension of the function Target.

Non-det-search(N, y)

1 q0 ← initial[N]
2 R← {q0}
3 for each letter a of y, sequentially do

4 R← Targets(R, a) ∪ {q0}
5 t← false

6 for each state p ∈ R do

7 if terminal[p] then

8 t← true

9 Output-if(t)

Targets(R, a)

1 S ← ∅
2 for each state p ∈ R do

3 for each state q such that (a, q) ∈ Succ[p] do

4 S ← S ∪ {q}
5 return S

Lines 5–8 of the algorithm Non-det-search give the value true to the
boolean variable t when the intersection between the set of states R and
the set of terminal states is non-empty. An occurrence is then signalled,
Line 9, if the case arises. Figure 1.13(b) illustrates how the algorithm
works.

Proposition 1.19
When N is an automaton that recognizes the language X for a pattern
X ⊆ A∗, the operation Non-det-search(N, y) locates all the occur-
rences of strings of X in the text y ∈ A∗.

Proof Let us denote by q0 the initial state of the automaton N and,
for every string v ∈ A∗, Rv the set of states defined by

Rv = {q : q end of a path of origin q0 and of label v} .

One can verify, by recurrence on the length of the prefixes of y, that the
assertion

R =
⋃

v�suff u

Rv , (1.4)

where u is the current prefix of y, is satisfied after the execution of each
of the instructions of the algorithm, except at Line 1.

34 Tools

If an occurrence of a string of X ends at the current position, one of
the suffixes v of the current prefix u belongs to X. Therefore, by the def-
inition of N , one of the states q ∈ Rv is terminal, and by Property (1.4),
one of the states of R is terminal. It follows that the operation signals
this occurrence since no string of X is empty.

Conversely, if an occurrence has just been signalled, it means that
one of the states q ∈ R is terminal. Property (1.4) and the definition of
N imply the existence of a suffix v of the current prefix u that belongs
to X. It follows that an occurrence of a string of X ends at the current
position. This ends the proof of the proposition.

The complexity of the algorithm Non-det-search depends both on
the implementation retained for the automaton N and the realization
chosen for manipulating the sets of states. If, for instance, the automaton
is deterministic, its transition function is implemented by a transition
matrix, and the sets of states are implemented by boolean vectors which
indices are states, the function Targets executes in time and space
O(card Q), where Q is the set of states. In this case, the analysis of the
text y runs in time O(|y| × card Q) and utilizes O(card Q) extra space.

In the following paragraphs, we consider an example of realization
of the above simulation adapted to the case of a very small automaton
that possesses a tree structure.

Bit-vector model

The bit-vector model refers to the possibility of using machine words
for encoding the states of the automata. When the length of the language
associated with the pattern is not larger than the size of a machine word
counted in bits, this technique gives algorithms that are efficient and
easy to implement. The technique is also used in Section 8.4.

Here, the principle is applied to the method that simulates a deter-
ministic automaton and described the previous paragraphs. It encodes
the set of reached states into a bit vector, and executes a transition by a
simple shift controlled by a mask associated with the considered letter.

Let us start with specifying the notation used in the rest for bit
vectors. We identify a bit vector with a string on the alphabet {0, 1}.
We denote respectively by ∨ and ∧ the “or” and “and” bitwise operators.
These are binary operations internal to the sets of bit vectors of identical
lengths. The first operation, ∨, puts to 1 the bit of the result if one of
the two bits at the same position of the two operands is equal to 1, and
to 0 otherwise. The second operation, ∧, puts to 1 the bits of the result
if the two bits at the same position of the two operands are equal to
1, and to 0 otherwise. We denote by ⊣ the shift operation defined as
follows: with a natural number k and a bit vector the result is the bit
vector of same length obtained from the first one by shifting the bits
to the right by k positions and by completing it to the left with k 0’s.

1.5 Basic pattern matching techniques 35

Thus, 1001 ∨ 0011 = 1011, 1001 ∧ 0011 = 0001, and 2 ⊣ 1101 = 0011.
Let us consider a finite non-empty set X of non-empty strings. Let

N be the automaton obtained from the card X elementary deterministic
automata that recognizes the strings of X by merging their initial states
into a single one, say q0. Let N ′ be the automaton built on N by adding
the arcs of the form (q0, a, q0), for each letter a ∈ A. The automaton N ′

recognizes the language A∗X. The search for the occurrences of strings
of X in a text y is realized here as in the above paragraphs by simulating
the determinized automaton of N ′ by means of N (see Figure 1.13(a)).

Let us set m = |X| and let us number the states of N from −1 to
m− 1 using a depth-first traversal of the structure from the initial state
q0 – it is the numbering used in the example of Figure 1.13(a). Let us
encode now each set of states R \ {−1} by a vector r of m bits with the
following convention:

p ∈ R \ {−1} if and only if r[p] = 1 .

Let r be the vector of m bits that encodes the current state of the
search, a ∈ A be the current letter of y, and s be the vector of m bits
that encodes the next state. It is clear that the computation of s from r
and a observes the following rule: s[p] = 1 if and only if there exists an
arc of label a, either from the state −1 to the state p, or from the state
p − 1 to the state p with r[p − 1] = 1. Let us consider init the vector
of m bits defined by init[p] = 1 if and only if there exists an arc with
state −1 as its source and state p as its target. Let us consider also the
table masq indexed on A and with values in the set of vectors of m bits,
defined for every letter b ∈ A by masq[b][p] = 1 if and only if there exists
an arc of label b and of target the state p. Then r, a and s satisfy the
identity:

s = (init ∨ (1 ⊣ r)) ∧masq[a] .

This latter expression translates the transition performed in Line 4 of
algorithm Non-det-search in terms of bitwise operations, except for
the initial state. The bit vector init encodes the potential transitions
from the initial state, and one-bit right shift from reached states. The
table masq validates the transitions labeled by the current letter.

It only remains to indicate how to test whether one of the states
represented by a vector r of m bits that encodes the current state of the
search is terminal or not. To this goal, let term be the vector of m bits
defined by term[p] = 1 if and only if the state p is terminal. Then one
of the states represented by r is terminal if and only if:

r ∧ term 6= 0m .

The code of the function Small-automaton that computes the vec-
tors init and term, and the table masq follows, then the code of the
pattern matching algorithm is given.

36 Tools

Small-automaton(X,m)

1 init ← 0m

2 term← 0m

3 for each letter a ∈ A do

4 masq[a]← 0m

5 p← −1
6 for each string x ∈ X do

7 init[p + 1]← 1

8 for each letter a of x, sequentially do

9 p← p + 1
10 masq[a][p]← 1

11 term[p]← 1

12 return (init, term,masq)

Short-strings-search(X,m, y)

1 (init, term,masq)← Small-automaton(X,m)
2 r ← 0m

3 for each letter a of y, sequentially do

4 r ← (init ∨ (1 ⊣ r)) ∧masq[a]
5 Output-if(r ∧ term 6= 0m)

An example of computation is treated in Figure 1.14.

Proposition 1.20
Running the operation Short-strings-search(X,m, y) takes a Θ(m×
cardA+m×|y|) time. The required extra memory space is Θ(m×card A).

Proof The time necessary for initializing the bit vectors init, term and
masq[a], for a ∈ A, is linear in their size, thus Θ(m × card A). The
instructions at Lines 4 and 5 execute in Θ(m) time each. The stated
complexities follow.

Once this is established, when the length m is less than the number
of bits of a machine word, every bit vector of m bits can be implemented
with the help of a machine word whose first m bits only are significant.
This gives the following result.

Corollary 1.21
When m = |X| is less than the length of a machine word, the operation
Short-strings-search(X,m, y) executes in time Θ(|y|+ cardA) with
an extra memory space Θ(card A).

1.6 Borders and prefixes tables

We present in this section two fundamental methods for locating effi-
ciently patterns or for searching for regularities in strings. There are

1.6 Borders and prefixes tables 37

(a)

k 0 1 2 3 4 5 6 7

init[k] 1 0 1 0 0 0 1 0

term[k] 0 1 0 0 0 1 0 1

masq[a][k] 1 0 0 1 0 0 0 0

masq[b][k] 0 1 1 0 1 1 1 1

masq[c][k] 0 0 0 0 0 0 0 0

(b)

j y[j] bit vector r

00000000

0 c 00000000

1 b 00100010

2 a 10010000

3 b 01101010 occurrence of ab
4 b 00100111 occurrences of babb and bb

5 a 10010000

Figure 1.14 Using bit vectors to search for the occurrences of the pattern
X = {ab, babb, bb} (see Figure 1.13). (a) Vectors init and term, and table
of vectors masq on the alphabet A = {a, b, c}. These vectors are of length
8 since |X| = 8. The first vector encodes the potential transitions from the
initial state. The second encodes the terminal states. The vectors of the table
masq encode the occurrences of letters of the alphabet in the strings of X.
(b) Successive values of the vector r that encodes the current state of the
search for strings of X in the text y = cbabba. The gray area that marks some
bits indicates that a terminal state has been reached.

two tables, the table of borders and the table of prefixes, that both store
occurrences of prefixes of a string that occur inside itself. The tables can
be computed in linear time. The computation algorithms also provide
methods for locating strings that are studied in details in Chapters 2
and 3 (a prelude is proposed in Exercise 1.24).

Table of borders

Let x be a string of length m ≥ 1. We define the table

border: {0, 1, . . . ,m− 1} → {0, 1, . . . ,m− 1}
by

border[k] = |Border(x[0 . . k])|
for k = 0, 1, . . . ,m− 1. The table border is called the table of borders
for the string x, meaning that they are borders of the non-empty prefixes
of the string. Here is an example of the table of borders for the string
x = abbabaabbabaaaabbabbaa:

k 0 1 2 3 4 5 6 7 8 9 10 11
x[k] a b b a b a a b b a b a

border[k] 0 0 0 1 2 1 1 2 3 4 5 6

38 Tools

u a

i j

Border(u) Border(u)

i

j

Figure 1.15 Schema showing the correspondence between variables i and j

considered at Line 3 of function Borders and Lemma 1.22.

k 12 13 14 15 16 17 18 19 20 21
x[k] a a a b b a b b a a

border[k] 7 1 1 2 3 4 5 3 4 1

The following lemma provides the recurrence relation used by the
function Borders, given thereafter, for computing the table border.

Lemma 1.22
For every (u, a) ∈ A+ ×A, we have

Border(ua) =

{

Border(u)a if Border(u)a �pref u ,
Border(Border(u)a) otherwise .

Proof We first note that if Border(ua) is a non-empty string, it is of
the form wa where w is a border of u.

If Border(u)a �pref u, the string Border(u)a is then a border of ua,
and the previous remark shows that it is the longest string of this kind.
It follows that Border(ua) = Border(u)a in this case.

Otherwise, Border(ua) is both a prefix of Border(u) and a suffix of
Border(u)a. As it is of maximal length with this property, it is indeed
the string Border(Border(u)a).

Figure 1.15 schematizes the correspondence between the variables i
and j of the function Borders, which code follows, and the statement of
Lemma 1.22.

Borders(x,m)

1 i← 0
2 for j ← 1 to m− 1 do

3 border[j − 1]← i
4 while i ≥ 0 and x[j] 6= x[i] do

5 if i = 0 then

6 i← −1
7 else i← border[i− 1]
8 i← i + 1
9 border[m− 1]← i

10 return border

1.6 Borders and prefixes tables 39

Proposition 1.23
The function Borders applied to a string x and its length m produces
the table of borders for x.

Proof The table border is computed by the function Borders se-
quentially: it runs from the prefix of x of length 1 to x itself. During
the execution of the while loop Lines 4–7 the sequence of borders of
x[0 . . j − 1] is inspected, following Proposition 1.5. When exiting this
loop, we have |Border(x[0 . . j])| = |x[0 . . i]| = i + 1, in accordance with
Lemma 1.22. The correctness of the code follows.

Proposition 1.24
The operation Borders(x,m) executes in time Θ(m). The number of

comparisons between letters of the string x is within m− 1 and 2m− 3
when m ≥ 2. These bounds are tight.

We say, in the rest, that the comparison between two given letters is
positive when these two letters are identical, and is negative otherwise.

Proof Let us note that the execution time is linear in the number of
comparisons performed between the letters of x. It is thus sufficient to
establish the bound on the number of comparisons.

The quantity 2j− i increases by at least one unit after each compari-
son of letters: the variables i and j are both incremented after a positive
comparison; the value of i is decreased by at least one and the value of
j remains unchanged after a negative comparison. When m ≥ 2, this
quantity is equal to 2 for the first comparison (i = 0 and j = 1) and at
most 2m− 2 during the last (i ≥ 0 and j = m− 1). The overall number
of comparisons is thus bounded by 2m− 3 as stated.

The lower bound of m−1 is tight and is reached for x = abm−1. The
upper bound of 2m−3 comparisons is tight: it is reached for every string
x of the form am−1b with a, b ∈ A and a 6= b. This ends the proof.

Another proof of the bound 2m− 3 is proposed in Exercise 1.22.

Table of prefixes

Let x be a string of length m ≥ 1. We define the table

pref : {0, 1, . . . ,m− 1} → {0, 1, . . . ,m− 1}

by

pref [k] = |lcp(x, x[k . . m− 1])|

for k = 0, 1, . . . ,m− 1, where lcp(u,v) is the longest common prefix
of strings u and v.

40 Tools

The table pref is called the table of prefixes for the string x. It
memorizes the prefixes of x that occur inside the string itself. We note
that pref [0] = |x|. The following example shows the table of prefixes for
the string x = abbabaabbabaaaabbabbaa.

k 0 1 2 3 4 5 6 7 8 9 10 11
x[k] a b b a b a a b b a b a

pref [k] 22 0 0 2 0 1 7 0 0 2 0 1

k 12 13 14 15 16 17 18 19 20 21
x[k] a a a b b a b b a a

pref [k] 1 1 5 0 0 4 0 0 1 1

Some string matching algorithms (see Chapter 3) use the table suff which
is nothing but the analogue of the table of prefixes obtained by consid-
ering the reverse of the string x.

The method for computing pref that is presented below proceeds by
determining pref [i] by increasing values of the position i on x. A naive
method would consist in evaluating each value pref [i] independently of
the previous values by direct comparisons; but it would then lead to a
quadratic-time computation, in the case where x is the power of a single
letter, for example. The utilization of already computed values yields a
linear-time algorithm. For that, we introduce, the index i being fixed,
two values g and f that constitute the key elements of the method. They
satisfy the relations

g = max{j + pref [j] : 0 < j < i} (1.5)

and

f ∈ {j : 0 < j < i and j + pref [j] = g} . (1.6)

We note that g and f are defined when i > 1. The string x[f . . g − 1]
is then a prefix of x, thus also a border of x[0 . . g − 1]. It is the empty
string when f = g. We can note, moreover, that if g < i we have then
g = i−1, and that on the contrary, by definition of f , we have f < i ≤ g.

The following lemma provides the justification for the correctness of
the function Prefixes.

Lemma 1.25
If i < g, we have the relation

pref [i] =

pref [i− f] if pref [i− f] < g − i ,
g − i if pref [i− f] > g − i ,
g − i + ℓ otherwise ,

where ℓ = |lcp(x[g − i . . m− 1], x[g . . m− 1])|.

1.6 Borders and prefixes tables 41

a b b a b a a b b a b a a a a b b a b b a a

a b b a a b b a

a b a b a b a b

Figure 1.16 Illustration of the function Prefixes. The framed factors
x[6 . . 12] and x[14 . . 18] and the gray factors x[9 . . 10] and x[17 . . 20] are pre-
fixes of string x = abbabaabbabaaaabbabbaa. For i = 9, we have f = 6 and
g = 13. The situation at this position is the same that at position 3 = 9 − 6.
We have pref [9] = pref [3] = 2 which means that ab, of length 2, is the longest
factor at position 9 that is a prefix of x. For i = 17, we have f = 14 and g = 19.
As pref [17 − 14] = 2 ≥ 19 − 17, we deduce that string ab = x[i . . g − 1] is a
prefix of x. Letters of x and x[i . . m− 1] have to be compared from respective
positions 2 and g for determining pref [i] = 4.

Proof Let us set u = x[f . . g − 1]. The string u is a prefix of x by the
definition of f and g. Let us also set k = pref [i−f]. By the definition of
pref , the string x[i−f . . i−f +k−1] is a prefix of x but x[i−f . . i−f +k]
is not.

In the case where pref [i−f] < g−i, an occurrence of x[i−f . . i−f+k]
starts at the position i − f on u — thus also at the position i on x —
which shows that x[i−f . . i−f +k−1] is the longest prefix of x starting
at position i. Therefore, we get pref [i] = k = pref [i− f].

In the case where pref [i− f] > g − i, x[0 . . g − i− 1] = x[i− f . . g −
f − 1] = x[i . . g − 1] and x[g − i] = x[g − f] 6= x[g]. We have thus
pref [i] = g − i.

In the case where pref [i− f] = g− i, we have x[g− i] 6= x[g− f] and
x[g−f] 6= x[g], therefore we cannot decide on the result of the comparison
between x[g − i] and x[g]. Extra letter comparisons are necessary and
we conclude that pref [i] = g − i + ℓ.

In the computation of pref , we initialize the variable g to 0 to simplify
the writing of the code of the function Prefixes, and we leave f initially
undefined. The first step of the computation consists thus in determining
pref [1] by letter comparisons. The utility of the above statement comes
for computing next values. An illustration of how the function works
is given in Figure 1.16. A schema showing the correspondence between
the variables of the function and the notation used in the statement of
Lemma 1.25 and its proof is given in Figure 1.17.

42 Tools

u a u b

g − f f i g

Figure 1.17 Variables i, f and g of the function Prefixes. The main loop
has for invariants: u = lcp(x, x[f . . m− 1]) and thus a 6= b with a, b ∈ A, then
f < i when f is defined. The schema corresponds to the situation in which
i < g.

Prefixes(x,m)

1 pref [0]← m
2 g ← 0
3 for i← 1 to m− 1 do

4 if i < g and pref [i− f] 6= g − i then

5 pref [i]← min{pref [i− f], g − i}
6 else (g, f)← (max{g, i}, i)
7 while g < m and x[g] = x[g − f] do

8 g ← g + 1
9 pref [i]← g − f

10 return pref

Proposition 1.26
The function Prefixes applied to a string x and to its length m produces
the table of prefixes for x.

Proof We can verify that the variables f and g satisfy the relations (1.5)
and (1.6) at each step of the execution of the loop.

We note then that, for i fixed satisfying the condition i < g, the
function applies the relation stated in Lemma 1.25, which produces
a correct computation. It remains thus to check that the computa-
tion is correct when i ≥ g. But in this situation, Lines 6–8 compute
|lcp(x, x[i . . m− 1])| = |x[f . . g − 1]| = g − f which is, by definition, the
value of pref [i].

Therefore, the function produces the table pref .

Proposition 1.27
The execution of the operation Prefixes(x,m) runs in time Θ(m). Less
than 2m comparisons between letters of the string x are performed.

Proof Comparisons between letters are performed at Line 7. Every
comparison between equal letters increments the variable g. As the value
of g never decreases and that it varies from 0 to at most m, there are
at most m positive comparisons. Each negative comparison leads to the
next step of the loop. Then there are at most m− 1 of them. Thus less
than 2m comparisons on the overall.

The previous argument also shows that the total time of all the exe-
cutions of the loop at Lines 7–8 is Θ(m). The other instructions of the

1.6 Borders and prefixes tables 43

a b b a b a a b b a b a a a a b b a b b a a

Figure 1.18 Relations between borders and prefixes. In string x =
abbabaabbabaaaabbabbaa, pref [9] = 2 and border[9 + 2 − 1] = 5 6= 2. We
also have border[15] = 2 and pref [15 − 2 + 1] = 5 6= 2.

loop 3–9 take a constant time for each value of i giving again a global
time Θ(m) for their execution and that of the function.

The bound of 2m on the number of comparisons performed by the
function Prefixes is relatively tight. For instance, we get 2m− 3 com-
parisons for a string of the form am−1b with m ≥ 2, a, b ∈ A and a 6= b.
Indeed, it takes m − 1 comparisons to compute pref [1], then one com-
parison for each of the m− 2 values pref [i] with 1 < i < m.

Relation between borders and prefixes

The tables border and pref , whose computation is described above, both
memorize occurrences of prefixes of x. We explicit here a relation be-
tween these two tables.

The relation is not immediate for the reason that follows, which is
illustrated in Figure 1.18. When pref [i] = ℓ, the factor u = x[i . . i+ℓ−1]
is a prefix of x but it is not necessarily the border of x[0 . . i+ℓ−1] because
this border can be longer than u. In the same way, when border[j] = ℓ,
the factor v = x[j− ℓ+1 . . j] is a prefix of x but it is not necessarily the
longest prefix of x occurring at position j − ℓ + 1.

The proposition that follows shows how the table border is expressed
using the table pref . One can deduce from the statement an algorithm
for computing the table border knowing the table pref .

Proposition 1.28
Let x ∈ A+ and j be a position on x. Then:

border[j] =

{

0 if I = ∅ ,
j −min I + 1 otherwise ,

where I = {i : 0 < i ≤ j and i + pref [i]− 1 ≥ j}.

Proof We first note that, for 0 < i ≤ j, i ∈ I if and only if x[i . . j] �pref

x. Indeed, if i ∈ I, we have x[i . . j] �pref x[i . . i+pref [i]−1] �pref x, thus
x[i . . j] �pref x. Conversely, if x[i . . j] �pref x, we deduce, by definition
of pref [i], pref [i] ≥ j− i + 1. And thus i + pref [i]− 1 ≥ j. Which shows
that i ∈ I. We also note that border[j] = 0 if and only if I = ∅.

It follows that if border[j] 6= 0 (thus border[j] > 0) and k = j −
border[j] + 1, we have k ≤ j and x[k . . j] �pref x. No factor x[i . . j],
i < k, satisfies the relation x[i . . j] �pref x by definition of border[j].
Thus k = min I by the first remark, and border[j] = j− k + 1 as stated.

44 Tools

The computation of the table pref from the table border can lead to
an iteration, and does not seem to give a simple expression, comparable
to the one of the previous statement (see Exercise 1.23).

Notes

The chapter contains the basic elements for a precise study of algorithms
on strings. Most of the notions that are introduced here are dispersed in
different books. We cite here those that are often considered as references
in their domains.

The combinatorial aspects on strings are dealt with in the collective
books of Lothaire [73, 74, 75]. One can refer to the book of Aho, Hopcroft
and Ullman [63] for algorithmic questions: expression of algorithms, data
structures and complexity evaluation. We were inspired by the book of
Cormen, Leiserson and Rivest [69] for the general presentation and the
style of algorithms. Concerning automata and languages, one can refer
to the book of Berstel [67] or the one of Pin [76]. The books of Berstel
and Perrin [68] and of Béal [65] contain elements on the theory of codes
(Exercises 1.10 and 1.11). Finally, the book of Aho, Sethi and Ullman
[64] describes methods for the implementation of automata.

Section 1.5 on basic techniques contains elements frequently selected
for the final development of software using algorithms that process strings.
They are, more specifically, heuristics and utilization of machine words.
This last technique is also tackled in Chapter 8 for approximate pattern
matching. This type of technique has been initiated by Baeza-Yates and
Gonnet [89] and by Wu and Manber [185]. The algorithm Fast-search

is from Horspool [130]. The search for a string by means of a hash
function is analyzed by Karp and Rabin [137].

The treatment of notions in Section 1.6 is original. The computa-
tion of the table of borders is classical. It is inspired by an algorithm
of Morris and Pratt of 1970 (see [9]) that is at the origin of the first
string matching algorithm running in linear time. The table of prefixes
synthesizes differently the same information on a string as the previous
table. The dual notion of table of suffixes is used in Chapter 3. Gusfield
[5] makes it a fundamental element of string matching methods. (His Z
algorithm corresponds to the algorithm Suffixes of Chapter 3).

Exercises

1.1 (Computation)
What is the number of prefixes, suffixes, factors and subsequences of a
given string ? Discuss if necessary.

1.2 (Fibonacci morphism)

Exercises 45

A morphism f on A∗ is an application from A∗ into itself that satisfies
the rules:

f(ε) = ε ,

f(x · y) = f(x) · f(y) for x, y ∈ A∗ .

For every natural number n and every string x ∈ A∗, we denote by
fn(x) the string defined by f0(x) = x and fk(x) = fk−1(f(x)) for
k = 1, 2, . . . , n.

Let us consider the alphabet A = {a, b}. Let ϕ be the morphism on
A∗ defined by ϕ(a) = ab and ϕ(b) = a. Show that the string ϕn(a) is
identical to fn+2, the Fibonacci string of index n + 2.

1.3 (Permutation)
We call a permutation on the alphabet A a string u that satisfies the
condition card alph(u) = |u| = cardA. This is thus a string in which all
the letters of the alphabet occur exactly once.

For k = card A, show that there exists a string of length less than k2−
2k + 4 that contains as subsequences all the permutations on A. Design
a construction algorithm for such a string. [Hint: see Mohanty [157].]

1.4 (Period)
Show that the condition 3 of Proposition 1.4 can be replaced by the

following condition: there exists a string t and an integer k > 0 such
that x �fact tk and |t| = p.

1.5 (Limit case)
Show that the string (ab)ka(ab)ka with k ≥ 1 is the limit case for the

periodicity lemma.

1.6 (Three periods)
On the triplets of sorted positive integers (p1, p2, p3), p1 ≤ p2 ≤ p3,
we define the derivation by: the derivative of (p1, p2, p3) is the triplet
made of the integers p1, p2 − p1 and p3 − p1. Let (q1, q2, q3) be the first
triplet obtained by iterating the derivation from (p1, p2, p3) and such
that q1 = 0.

Show that if the string x ∈ A∗ has p1, p2 and p3 as periods and that

|x| ≥ 1

2
(p1 + p2 + p3 − 2 gcd(p1, p2, p3) + q2 + q3) ,

then it has also gcd(p1, p2, p3) as period. [Hint: see Mignosi and Restivo
[74].]

1.7 (Three squares)
Let u, v and w be three non-empty strings. Show that we have 2|u| < |w|
if we assume that u is primitive and that u2 ≺pref v2 ≺pref w2 (see
Proposition 9.17 for a more precise consequence).

46 Tools

1.8 (Conjugates)
Show that two non-empty conjugate strings have the same exponent and
conjugate roots.

Show that the conjugacy class of every non-empty string x contains
|x|/k elements where k is the exponent of x.

1.9 (Periods)
Let p be a period of x that is not a multiple of per(x). Show that
p > |x| − per(x).

Let p and q be two periods of x such that p < q. Show that:

• q − p is a period of first|x|−p(x) and of (firstp(x))−1x,

• p and q + p are periods of firstq(x)x.

(The definition of firstk is given in Section 4.4.)
Show that if x = uvw, uv and vw have period p and |v| ≥ p, then x

has period p.
Let us assume that x has period p and contains a factor v of period

r with r divisor of q. Show that r is also a period of x.

1.10 (Code)
A language X ⊆ A∗ is a code if every string of X+ has a unique

decomposition in strings of X.
Show that the ASCII codes of characters on the alphabet {0, 1} form

a code according to this definition.
Show that the languages {a, b}∗, ab∗, {aa, ba, b}, {aa, baa, ba} and

{a, ba, bb} are codes. Show that this is not the case of the languages
{a, ab, ba} and {a, abbba, babab, bb}.

A language X ⊆ A∗ is prefix if the condition

u �pref v implies u = v

is satisfied for every strings u, v ∈ X. The notion of a suffix language is
defined in a dual way.

Show that every prefix language is a code. Do the same for suffix
languages.

1.11 (Default theorem)
Let X ⊆ A∗ be a finite set that is not a code. Let Y ⊆ A∗ be a code

for which Y ∗ is the smallest set of this form that contains X∗. Show
that cardY < cardX. [Hint: every string x ∈ X can be written in the
form y1y2 . . . yk with yi ∈ Y for i = 1, 2, . . . , k; show that the function
α:X → Y defined by α(x) = y1 is surjective but is not injective; see
[73].]

1.12 (Commutation)
Show by the default theorem (see Exercise 1.11), then by the Periodicity
lemma that, if uv = vu, for two strings u, v ∈ A∗, u and v are powers of
a same string.

Exercises 47

1.13 (nlogn)
Let f :N→ N be a function defined by:

f(1) = a ,

f(n) = f(⌊n/2⌋) + f(⌈n/2⌉) + bn for n ≥ 2 ,

with a ∈ N and b ∈ N \ {0}. Show that f(n) is Θ(n log n).

1.14 (Filter)
We consider a code for which characters are encoded on 8 bits. We want
to develop a pattern matching algorithm using an automaton for strings
written on the alphabet {A, C, G, T}.

Describe data structures to realize the automaton with the help of
a transition matrix of size 4 × m (and not 256 × m), where m is the
number of states of the automaton, possibly using an amount of extra
space which is independent of m.

1.15 (Implementation of partial functions)
Let f :E → F be a partial function where E is a finite set. Describe an
implementation of f able to perform each of the four following operations
in constant time:

• initialize f , such that f(x) is undefined for x ∈ E,

• set the value of f(x) to y ∈ F , for x ∈ E,

• test whether f(x) is defined or not, for x ∈ E,

• produce the value of f(x), for x ∈ E.

One can use O(card E) space. [Hint: simultaneously use a table indexed
by E and a list of elements x for which f(x) is defined, with cross-
references between the table and the list.]

Deduce that the implementation of such a function can be done in
linear time in the number of elements of E whose images by f are defined.

1.16 (Not so naive)
We consider here a slightly more elaborate implementation for the slid-
ing window mechanism that the one described for the naive algorithm.
Among the strings x of length m ≥ 2, it distinguishes two classes: one
for which the first two letters are identical (thus x[0] = x[1]), and the
antagonist class (thus x[0] 6= x[1]). This elementary distinction allows
us to shift the window by two positions to the right in the following
cases: string x belongs to the first class and y[j + 1] 6= x[1]; string x
belongs to the second class and y[j + 1] = x[1]. On the other hand, if
the comparison of the string x with the content of the window is always
performed letter by letter, it considers positions on x in the following
order 1, 2, . . . ,m− 1, 0.

Give the code of an algorithm that applies this method.
Show that the number of comparisons between text letters is on the

average strictly less than 1 when the average is evaluated on the set

48 Tools

of strings of same length, that this length is more than 2 and that the
alphabet contains at least four letters. [Hint: see Hancart [122].]

1.17 (End of window)
Let us consider the method that, as the algorithm Fast-search using

the rightmost letter in the window for performing a shift, uses the two
rightmost letters in the window (assuming that the string is of length
greater than 2).

Give the code of an algorithm that applies this method.
In which cases does it seem efficient? [Hint: see Zhu and Takaoka [186]

or Baeza-Yates [88].]

1.18 (After the window)
Same statement than the one of Exercise 1.17, but with using the letter
located immediately to the right of the window (beware of the overflow
at the right extremity of the text). [Hint: see Sunday [178].]

1.19 (Sentinel)
We come back again to the string matching problem: locating occur-
rences of a string x of length m in a text y of length n.

The sentinel technique can be used for searching the letter x[m− 1]
by performing the shifts with the help of the table last-occ. Since the
shifts can be of length m, we set y[n . . n + m− 1] to x[m− 1]m. Give a
code for this sentinel method.

In order to speed up the process and decrease the number of tests
on letters, it is possible to chain several shifts without testing the letters
of the text. For that, we back up the value of last-occ[x[m − 1]] in a
variable, let say d, then we fix the value of last-occ[x[m − 1]] to 0. We
can then chain shifts until one of them is of length 0. We then test the
other letters of the window, signalling an occurrence when it arises, and
we apply a shift of length d. Give a code for this method. [Hint: see
Hume and Sunday [131].]

1.20 (In C)
Give an implementation in C language of the algorithm Short-strings-

search. The operators ∨, ∧ and ⊣ are encoded by |, & and <<. Extend
the implementation so that it accepts any parameter m (possibly strictly
greater than the number of bits of a machine word).

Compare the obtained code to the source of the Unix command
agrep.

1.21 (Short strings)
Describe a pattern matching algorithm for short strings in a similar
way to the algorithm Short-strings-search, but in which the binary
values 0 and 1 are swapped.

Exercises 49

1.22 (Bound)
Show that the number of positive comparisons and the number of neg-

ative comparisons performed during the operation Borders(x,m) are
at most m− 1. Prove again the bound 2m− 3 of Proposition 1.24.

1.23 (Table of prefixes)
Describe a linear time algorithm for the computation of the table pref ,
given the table border for the string x.

1.24 (Localisation by the borders or the prefixes)
Show that the table of borders for the string x$y can be directly used in
order to locate all the occurrences of the string x in the string y, where
$ /∈ alph(xy).

Same question with the table of prefixes for the string xy.

1.25 (Cover)
A string u is a cover of a string x if for every position i on x, there
exists a position j on x for which 0 ≤ j ≤ i < j + |u| ≤ |x| and
u = x[j . . j + |u| − 1].

Design an algorithm for the computation of the shortest cover of a
string. State its complexity.

1.26 (Long border)
Let u be a non-empty border of the string x ∈ A∗.

Let v ∈ A∗ be such that |v| < |u|. Show that v is a border of u if
and only if it is a border of x.

Show that x has another non-empty border if u satisfies the inequal-
ity |x| < 2|u|. Show that x has no other border satisfying the same
inequality if per(x) > |x|/4.

1.27 (Border free)
We say that a non-empty string u is border free if Border(u) = ε, or,
equivalently, if per(u) = |u|.

Let x ∈ A∗. Show that C = {u : u �pref x and u is border free} is a
suffix code (see Exercise 1.10).

Show that x uniquely factorizes into xkxk−1 . . . x1 according to the
strings of C (xi ∈ C for i = 1, 2, . . . , k). Show that x1 is the shortest
string of C that is a suffix of x and that xk is the longest string of C
that is a prefix of x.

Design a linear time algorithm for computing the factorization.

1.28 (Maximal suffix)
We denote by SM(≤, u) the maximal suffix of u ∈ A+ for the lex-

icographic order where, in this notation, ≤ denotes the order on the
alphabet. Let x ∈ A+.

Show that |x| − |SM(≤, x)| < per(x).

50 Tools

We assume that SM(≤, x) = x and we denote by w1, w2, . . . , wk the
borders of x in decreasing order of length (we have k > 0 and wk = ε).
Let a1, a2, . . . , ak ∈ A and z1, z2, . . . , zk ∈ A∗ be such that

x = w1a1z1 = w2a2z2 = · · · = wkakzk .

Show that a1 ≤ a2 ≤ · · · ≤ ak.
Design a linear-time algorithm that computes the maximal suffix (for

the lexicographic order) of a string x ∈ A+. [Hint: use the algorithm
that computes the borders of Section 1.6 or see Booth [93]; see also [3].]

1.29 (Critical factorisation)
Let x ∈ A+. For each position i on x, we denote by

rep(i) = min{|u| : u ∈ A+, A∗u ∪A∗x[0 . . i− 1] 6= ∅ and

uA∗ ∪ x[i . . |x| − 1]A∗ 6= ∅}

the local period of x at position i.
Let w = SM(≤, x) (SM is defined in Exercise 1.28) and assume that

|w| ≤ |SM(≤−1, x)|; show that repx(|x|−|w|) = per(x). [Hint: note that
the intersection of the two orderings on strings induced by ≤ and ≤−1 is
the prefix ordering, and use Proposition 1.4; see Crochemore and Perrin
[108, 3].]

