
J E W E L S O FS T R I N G O L O G YMaxime Crohemore, Wojieh Rytter

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

1

0

1

0

0

0 0

1

1

1

1

0

1

0

0

0

1

1

World Sienti�

PrefaeThe term stringology is a popular nikname for string algorithms as well asfor text algorithms. Usually text and string have the same meaning. Moreformally, a text is a sequene of symbols. Text is one of the basi data types toarry information. This book is a olletion of the most beautiful and at thesame time very lassial algorithms on strings. The seletion has been done bythe authors, and is rather personal, among so many famous algorithms thatwere natural andidates to be inluded and that belong to a �eld that hasbeome now fairly popular.One an partition algorithmi problems disussed in this book into pratialand theoretial problems. Certainly string mathing and data ompression arein the �rst lass, while most problems related to symmetries and repetitionsare in the seond. However, we believe that all the problems are interestingfrom an algorithmi point of view and enable the reader to appreiate theimportane of ombinatoris on words.In most textbooks on algorithms and data strutures the presentation of ef-�ient algorithms on words is quite short as ompared to issues in graph theory,sorting, searhing, and some other areas. At the same time, there are manypresentations of interesting algorithms on words aessible only in journals andin a form direted mainly at speialists. There are still not many books ontext algorithms, espeially the books whih are oriented toward undergraduateand graduate students. In the book the diÆult parts are indiated by a star,so the basi text beomes painless for undergraduate students. We hope thatthis book will over a gap on algorithms on words in book literature for thebroader audiene, and bring together the many results presently dispersed inthe masses of journal artiles.Marh 2002M. Crohemore, W. Rytter v

Contents
Prefae v1 Stringology 11.1 Text �le failities . 21.2 Ditionaries . 51.3 Data ompression . 61.4 Appliations of text algorithms in genetis 71.5 EÆieny of algorithms . 81.6 Some notation and formal de�nitions 101.7 Some simple ombinatoris of strings 111.8 Some other interesting strings 141.9 Cyli shifts and primitive words 16Bibliographi notes . 172 Basi string searhing algorithms 192.1 Knuth-Morris-Pratt algorithm 202.2 Boyer-Moore algorithm and its variations 26Bibliographi notes . 313 Preproessing for basi searhings 333.1 Preproessing patterns for MP and KMP algorithms 333.2 Table of pre�xes . 363.3 Preproessing for Boyer-Moore algorithm 393.4 � Analysis of Boyer-Moore algorithm 41Bibliographi notes . 44vii

viii CONTENTS4 On-line onstrution of suÆx trees 454.1 Tries and their ompat versions 454.2 Prelude to Ukkonen algorithm 494.3 Ukkonen algorithm . 51Bibliographi notes . 535 More on suÆx trees 595.1 Several appliations of suÆx trees 595.2 MCreight algorithm . 63Bibliographi notes . 686 Subword graphs 696.1 Direted ayli graph . 696.2 On-line onstrution of subword graphs 736.3 The reverse perspetive . 796.4 Compat subword graphs . 82Bibliographi notes . 847 Text algorithms related to sorting 857.1 The naming tehnique: KMR algorithm 857.2 Two-dimensional KMR algorithm 907.3 SuÆx arrays . 917.4 Construting suÆx trees by sorting 967.5 The Lowest-Common-Anestor ditionary 1017.6 SuÆx-Merge-Sort . 104Bibliographi notes . 1078 Symmetries and repetitions in texts 1118.1 Searhing for symmetri words 1118.2 Compositions of symmetri words 1148.3 Searhing for square fators . 119Bibliographi notes . 1239 Constant-spae searhings 1259.1 Constant-spae mathing for easy patterns 1259.2 MaxSuÆx-Mathing . 127

CONTENTS ix9.3 Computation of maximal suÆxes 1299.4 Mathing patterns with short maximal suÆxes 1319.5 Two-way mathing and magi deomposition 1339.6 Sequential sampling for unordered alphabets 1369.7 Galil-Seiferas algorithm . 1389.8 Cyli equality of words . 139Bibliographi notes . 14010 Text ompression tehniques 14110.1 Substitutions . 14210.2 Stati Hu�man oding . 14510.3 Dynami Hu�man oding . 15110.4 Fator enoding . 154Bibliographi notes . 16111 Automata-theoreti approah 16311.1 Aho-Corasik automaton . 16411.2 Determinizing automata . 17311.3 Two-way pushdown automata 176Bibliographi notes . 18112 Approximate pattern mathing 18312.1 Edit distane . 18312.2 Longest ommon subsequene problem 18612.3 String mathing with errors . 19112.4 String mathing with don't are symbols 193Bibliographi notes . 19613 Mathing by dueling and sampling 19913.1 String mathing by duels . 19913.2 String mathing by sampling 204Bibliographi notes . 20714 Two-dimensional pattern mathing 20914.1 Multi-pattern approah . 21114.2 Don't ares and non-retangular patterns 212

x CONTENTS14.3 2D-Pattern mathing with mismathes 21414.4 Multi-pattern mathing . 21514.5 Mathing by sampling . 21814.6 An algorithm fast on the average 221Bibliographi notes . 22215 Two-dimensional periodiities 22515.1 Amir-Benson-Farah algorithm 22515.2 Geometry of two-dimensional periodiities 23515.3 � Patterns with large monohromati enters 24215.4 � A version of the Galil-Park algorithm 244Bibliographi notes . 24716 Parallel text algorithms 24916.1 The abstrat model of parallel omputing 24916.2 Parallel string-mathing algorithms 25216.3 � Splitting tehnique . 25516.4 Parallel KMR algorithm and appliation 25816.5 Parallel Hu�man oding . 26316.6 Edit distane|eÆient parallel omputation 268Bibliographi notes . 26917 Misellaneous 27117.1 Karp-Rabin string mathing by hashing 27117.2 Shortest ommon superstrings 27417.3 Unique-deipherability problem 27617.4 Parameterized pattern mathing 27817.5 Breaking paragraphs into lines 281Bibliographi notes . 284Bibliography 285Index 305

Chapter 1StringologyOne of the simplest and natural types of information representation is by meansof written texts. This type of data is haraterized by the fat that it anbe written down as a long sequene of haraters. Suh linear a sequeneis alled a text. The texts are entral in \word proessing" systems, whihprovide failities for the manipulation of texts. Suh systems usually proessobjets that are quite large. For example, this book probably ontains morethan a million haraters. Text algorithms our in many areas of siene andinformation proessing. Many text editors and programming languages havefailities for proessing texts. In biology, text algorithms arise in the studyof moleular sequenes. The omplexity of text algorithms is also one of theentral and most studied problems in theoretial omputer siene. It ouldbe said that it is the domain in whih pratie and theory are very lose toeah other.The basi textual problem in stringology is alled pattern mathing. It isused to aess information and, no doubt, at this moment many omputersare solving this problem as a frequently used operation in some appliationsystem. Pattern mathing is omparable in this sense to sorting, or to basiarithmeti operations.Consider the problem of a reader of the Frenh ditionary \Grand Larousse,"who wants all entries related to the name \Marie-Curie-Sklodowska." This isan example of a pattern mathing problem, or string mathing. In this ase,the name \Marie-Curie-Sklodowska" is the pattern. Generally we may want to�nd a string alled a pattern of length m inside a text of length n, where n isgreater thanm. The pattern an be desribed in a more omplex way to denotea set of strings and not just a single word. In many ases n is very large. Ingenetis the pattern an orrespond to a gene that an be very long; in image1

2 CHAPTER 1. STRINGOLOGYproessing, digitized images sent serially ontain millions of haraters eah.The string-mathing problem is the basi question onsidered in this book,together with its variations. String mathing is also the basi subproblem inother algorithmi problems on texts. Following is a (not exlusive) list of basigroups of problems disussed in this book:� variations on the string-mathing problem� problem related to the strutures of the segments of a text� data ompression� approximation problems� �nding regularities� extensions to two-dimensional images� extensions to trees� optimal time-spae implementations� optimal parallel implementations.The formal de�nition of string mathing and many other problems is givenin the next hapter. We now introdue some of them informally in the ontextof appliations.1.1 Text �le failitiesThe UNIX system uses text �les for exhanging information as a main fea-ture. The user an get information from the �les and transform them throughdi�erent existing ommands. The tools often behave as �lters that read theirinput one and produe the output simultaneously. These tools an easily beonneted with eah other, partiularly through the pipelining faility. Thisoften redues the reation of new ommands to a few lines of already existingommands.One of these useful ommands is grep, aronym of \general regular expres-sion print." An example of the format of grep isgrep Marie-Curie-Sklodowska Grand-Larousseprovided \Grand-Larousse" is a �le on your omputer. The output of thisommand is the list of lines from the �le that ontains an ourrene of thename \Marie-Curie-Sklodowska." This is an instane of the string-mathingproblem. Another example with a more omplex pattern an be

1.1. TEXT FILE FACILITIES 3grep '^Chapter [0-9℄' Bookto list the titles of a book assuming titles begin with \Chapter" followed by anumber. In this ase the pattern denotes a set of strings (even potentially in�-nite), and not simply one string. The notation to speify patterns is known asregular expressions. This is an instane of the regular-expression-mathingproblem.The indispensable omplement of grep is sed (stream editor). It is designedto transform its input. It an replae patterns of the input with spei� strings.Regular expressions are also available with sed. But the editor ontains aneven more powerful notation. This allows, for example, the ation on a lineof the input text ontaining the same word twie. It an be applied to deletetwo onseutive ourrenes of a same word in a text. This is simultaneouslyan example of the repetition-�nding problem, pattern-mathing problemand, more generally, the problem of �nding regularities in strings.The very helpful mathing devie based on regular expressions is om-nipresent in the UNIX system. It an be used inside text editors suh ased and vi, and generally in almost all UNIX ommands. The above tools, grepand sed, are based on this mehanism. There is even a programming languagebased on pattern-mathing ations. It is the awk language, where the nameawk omes from the initials of the authors, Aho, Weinberger, and Kernighan.A simple awk program is a sequene of pattern-ation statements:pattern1 {ation 1}pattern2 {ation 2}pattern3 {ation 3}The basi omponents of this program are patterns to be found inside thelines of the urrent �le. When a pattern is found, the orresponding ation isapplied to the line. Therefore, several ations may be applied sequentially toa same line. This is an example of the multi-pattern mathing problem.The language awk is meant for onverting data from one form to anotherform, ounting things, adding up numbers, and extrating information forreports. It ontains an impliit input loop, and the pattern-ation paradigmoften eliminates ontrol ow. This also frequently redues the size of a programto a few statements. For instane, the following awk program prints the numberof lines of the input that ontain the word \abraadabra":abraadabra {ount++}END {print ount}The pattern \END" mathes the end of input �le, so that the result is printedafter the input has been entirely proessed. The language ontains attrative

4 CHAPTER 1. STRINGOLOGYfeatures that strengthen the simpliity of the pattern-mathing mehanism,suh as default initialization for variables, impliit delarations, and assoia-tive arrays providing arbitrary kinds of subsripts. All this makes awk a on-venient tool for rapid prototyping. The awk language an be onsidered as ageneralization of another UNIX tool, lex, aimed at produing lexial analyzers.The input of a lex program is the spei�ation of a lexial analyzer by means ofregular expressions (and a few other possibilities). The output is the soure ofthe spei�ed lexial analyzer in the C programming language. A spei�ationin lex is mainly a sequene of pattern-ation statement as in awk. Ationsare piees of C ode to be inserted in the lexial analyzer. At run time, thesepiees of ode exeute the ation orresponding to the assoiated pattern, whenfound. The following line is a typial statement of a lex program:[A-Za-z℄+([A-Za-z0-9℄)* { yyval = Install(); return(ID);}The pattern spei�es identi�ers, that is, strings of haraters starting with oneletter and ontaining only letters and digits. This ation leads the generatedlexial analyzer to store the identi�er and to return the string type \ID" tothe alling parser. It is another instane of the regular expression-mathingproblem. The question of onstruting pattern-mathing automata is animportant omponent having a pratial appliation in the lex software.Texts suh as books or programs are likely to be hanged during elabora-tion. Even after their ompletion they often support periodi upgrades. Thesequestions are related to text omparisons. Sometimes we also wish to �nda string, and do not ompletely remember it. The searh has to be performedwith an entirely non-spei�ed pattern. This is an instane of the approxi-mate pattern mathing. Keeping trak of all onseutive versions of a textmay not be helpful beause the text an be very long and hanges may be hardto �nd. The reasonable way to ontrol the proess is to have an easy aessto di�erenes between the various versions. There is no universal notion as towhat the di�erenes are, or onversely, what the similarities are, between twotexts. However, it an be agreed that the intersetion of the two texts is thelongest ommon subtext of both. In our book this is alled the longest om-mon subsequene problem, so that the di�erenes between the two texts arethe respetive omplements of the ommon part. The UNIX ommand di�builds on this notion. An option of the ommand di� produes a sequene ofed instrutions to transform one text into the other. The similarity of textsan be measured as the minimal number of edit operations to transform onetext into the other. The omputation of suh a measure is an instane of theedit distane problem.

1.2. DICTIONARIES 51.2 DitionariesThe searh of words or patterns in stati texts is quite a di�erent questionthan the previous pattern-mathing mehanism. Ditionaries, for example,are organized in order to speed up the aess to entries. Another exampleof the same question is given by indexes. Tehnial books often ontain anindex of hosen terms that gives pointers to parts of the text related to wordsin the index. The algorithms involved in the reation of an index form aspei� group. The use of ditionaries or lexions is often related to naturallanguage proessing. Lexions of programming languages are small, and theirrepresentation is not a diÆult problem during the development of a ompiler.To the ontrary, English ontains approximately 100,000 words, and even twiethat if ineted forms are onsidered. In Frenh, ineted forms produe morethan 700,000 words. The representation of lexions of this size makes theproblem a bit more hallenging.A simple use of ditionaries is illustrated by spelling hekers. The UNIXommand, spell, reports the words in its input that are not stored in the lexi-on. This rough approah does not yield a pertinent heker, but, pratially,it helps to �nd typing errors. The lexion used by spell ontains approxi-mately 70,000 entries stored within less than 60 kilobytes of random-aessmemory. Quik aess to lexions is a neessary ondition for produing goodparsers. The data struture useful for suh aess is alled an index. In ourbook indexes orrespond to data strutures representing all fators of a given(presumably long) text. We onsider problems related to the onstrution ofsuh strutures: suÆx trees, direted ayli word graphs, fator au-tomata, suÆx arrays. The PAT tool developed at the NOED Center(Waterloo, Canada) is an implementation of one of these strutures tailoredto work on large texts. There are several appliations that e�etively requiresome understanding of phrases in natural languages, suh as data retrievalsystems, interative software, and harater reognition.An image sanner is a kind of photoopier. It is used to give a digitizedversion of an image. When the image is a page of text, the natural output of thesanner must be in a digital form available to a text editor. The transformationof a digitized image of a text into a usual omputer representation of the textis realized by an Optial Charater Reognition (OCR). Sanning a text withan OCR an be 50 times faster than retyping the text on a keyboard. Thus,OCR softwares are likely to beome more ommon. But they still su�er froma high degree of impreision. The average rate of error in the reognition ofharaters is approximately one perent. Even if this may happen to be rathersmall, this means that sanning a book produes approximately one error perline. This is ompared with the usually very high quality of texts heked

6 CHAPTER 1. STRINGOLOGYby speialists. Tehnial improvements on the hardware an help eliminateertain kinds of errors ourring on sanned texts in printed forms. But thisannot alleviate the problem assoiated with reognizing texts in printed forms.Redution of the number of errors an thus only be ahieved by onsidering theontext of the haraters, whih assumes some understanding of the strutureof the text. Image proessing is related to the problem of two-dimensionalpattern mathing. Another related problem is the data struture for allsubimages, whih is disussed in this book in the ontext of the ditionaryof basi fators.The theoretial approah to the representation of lexions is either by meansof trees or �nite state automata. It appears that both approahes are equallyeÆient. This shows the pratial importane of the automata theoretiapproah to text problems. At LITP (Paris) and IGM (Marne-la-Vall�ee)we have shown that the use of automata to represent lexions is partiularlyeÆient. Experiments have been done on a 700,000 word lexion of LADL(Paris). The representation supports diret aess to any word of the lexionand takes only 300 kilobytes of random-aess memory.1.3 Data ompressionOne of the basi problems in storing a large amount of textual informationis the text ompression problem. Text ompression means reduing therepresentation of a text. It is assumed that the original text an be reoveredfrom its ompressed from. No loss of information is allowed. Text ompressionis related to theHu�man oding problem and the fatorization problem.This kind of ompression ontrast with other kinds of ompression tehniquesapplied to sounds or images, in whih approximation is aeptable. Availabilityof large mass storage does not derease the interest for ompressing data.Indeed, users always take advantage of extra available spae to store moredata or new kinds of data. Moreover, the question remains important forstoring data on seondary storage devies. Examples of implementations ofditionaries reported above show that data ompression is important inseveral domains related to natural language analysis. Text ompression isalso useful for teleommuniations. It atually redues the time to transmitdouments via telephone network, for example. The suess of Fasimile isperhaps to be redited to ompression tehniques.General ompression methods often adapt themselves to the data. Thisphenomenon is entral in ahieving high ompression ratios. However, it ap-pears, in pratie, that methods tailored for spei� data lead to the bestresults. We have experimented with this fat on data sent by geostationary

1.4. APPLICATIONS OF TEXT ALGORITHMS IN GENETICS 7satellites. The data have been ompressed to seven perent of their originalsize without any loss of information.The ompression is very suessful if there are redundanies and regularitiesin the information message. The analysis of data is related to the problem ofdeteting regularities in texts. EÆient algorithms are partiularly usefulto expertise the data.1.4 Appliations of text algorithms in genetisMoleules of nulei aids arry a large segment of information about the fun-damental determinants of life, and, in partiular, about the reprodution ofells. There are two types of nulei aids known as desoxyribonulei aid(DNA) and ribonulei aid (RNA). DNA is usually found as double-strandedmoleules. In vivo, the moleule is folded up like a ball of string. The skeletonof a DNA moleule is a sequene on the four-letter alphabet of nuleotides:adenine (A), guanine (G), ytosine (C), and thymine (T). RNA moleules areusually single-stranded moleules omposed of ribonuleotides: A, G, C, andurail (U).Proessus of \transription" and \translation" lead to the prodution ofproteins, whih also have a string omposed of 20 amino aids as a primarystruture. In a �rst approah all these moleules an be viewed as texts. Thedisovery twenty years ago of powerful sequening tehniques has led to a rapidaumulation of sequene data. From the olletion of sequenes up to theiranalysis many algorithms on texts are implied. Moreover, only fast algorithmsare often feasible beause of the huge amount of data involved.Colleting sequenes an be aomplished through audioradiography gels.The automati transription of these gels into sequenes is a typial two di-mensional pattern-mathing problem in two dimensions. The reonstru-tion of a whole sequene from small segments, used for instane in the shotgunsequening method, is another example of a problem that ours during thisstep. This problem is alled the shortest ommon superstring problem:onstrution of the shortest text ontaining several given smaller texts.One a new sequene is obtained, the �rst important question to ask iswhether it resembles any other sequene already stored in data banks. Beforeadding a new moleular sequene into an existing data base one needs to knowwhether or not the sequene is already present. The omparison of severalsequenes is usually realized by writing one over another. The result is knowas an alignment of the set of nuleotides. Alignment of two sequenes is theedit distane problem: ompute the minimal number of edit operations totransform one string into another. It is realized by algorithms based on dy-

8 CHAPTER 1. STRINGOLOGYnami programming tehniques similar to the one used by the UNIX ommanddi�.The problem of the longest ommon subsequene is a variation of thealignment of sequenes. A tool, alled agrep, developed at the Universityof Arizona, is devoted to these questions, related to approximate stringmathing.Further questions about moleular sequenes are related to their analysis.The aim is to disover the funtions of all parts of the sequene. For example,DNA sequenes ontain important regions (oding sequenes) for the produ-tion of proteins inside the ell. However, no good answer is presently knownfor �nding all oding sequenes of a DNA sequene. Another question aboutsequenes is the reonstrution of their three-dimensional struture. It seemsthat a part of the information resides in the sequene itself. This is beause,during the folding proess of DNA, for example, nuleotides math pairwise(A with T, and C with G). This produes approximate palindromi symme-tries (as TTAGCGGCTAA). Involved in all these questions are approximatesearhes for spei� patterns, for repetitions, for palindromes, or otherregularities.1.5 EÆieny of algorithmsEÆient algorithms an be lassi�ed aording to what is meant by eÆieny.There exist di�erent notions of eÆieny depending on the omplexity measureinvolved. Several suh measures are disussed in this book: sequential time,memory spae, parallel time, and number of proessors.This book deals with \feasible" problems. We an de�ne them as problemshaving eÆient algorithms, or as solvable in time bounded by a small-degreepolynomial. In the ase of sequential omputations we are interested in lower-ing the degree of the polynomial orresponding to time omplexity. The mosteÆient algorithms usually solve a problem in linear-time omplexity. We arealso interested in spae omplexity. Optimal spae omplexity often means aonstant number of (small integer) registers in addition to input data. There-fore, we say that an algorithm is time-spae optimal if it works simultaneouslyin linear time and in onstant extra spae. These are the most advaned se-quential algorithms, and also the most interesting, both from a pratial andtheoretial point of view.In the ase of parallel omputations we are generally interested in the par-allel time T (n) as well as in the number of proessors P (n) required for theexeutions of the parallel algorithm on data of size n. The total number ofelementary operations performed by the parallel algorithm is not greater than

1.5. EFFICIENCY OF ALGORITHMS 9the produt T (n)P (n).EÆient parallel algorithms are those that operate in no more than poly-logarithmi (a polynomial of logs of input size) time with a polynomial numberof proessors. The lass of problems solvable by suh algorithms is denoted byNC and hene we all the related algorithms NC-algorithms. An NC-algorithmis optimal if the total number of operations T (n)P (n) is linear. Another possi-ble de�nition is that this number is essentially the same as the time omplexityof the best known sequential algorithm solving the given problem. However,we adopt the �rst option here beause algorithms on strings usually have atime omplexity whih is at least linear.Preisely evaluating the omplexity of an algorithm aording to some mea-sure is often diÆult, and, moreover, it is unlikely to be of muh use. The \bigO" notation lari�es what the important terms of a omplexity expression are.It estimates the asymptoti order of the omplexity of an algorithm and helpsompare algorithms between eah others. Reall that if f and g are two fun-tions from and to integers, then we say that f = O(g) if f(n) < C:g(n) whenn > N , for some onstants C and N . We write f = �(g) when the funtionsf and g are of the same order, whih means that both equalities f = O(g) andg = O(f) hold.Comparing funtions through their asymptoti orders leads to these kinds ofinequalities: O(n0:7) < O(n) < O(n logn), or O(nlog n) < O(lognn) < O(n!).Within sequential models of mahines one an distinguish further typesof omputations: o�-line, on-line and real-time. These omputations are alsorelated to eÆieny. It is understood that real-time omputations are moreeÆient than general on-line, and that on-line omputations are more eÆientthan o�-line. Eah algorithm is an o�-line algorithm: \o�-line" oneptuallymeans that the whole input data an be put into the memory before the atualomputation starts. We are not interested then in the intermediate resultsomputed by the algorithm, but only in the �nal result (though this �nal resultan be a sequene or a vetor). The time omplexity is measured by the totaltime from the moment the omputation starts (with all input data previouslymemorized) up to the �nal termination. In ontrast, an on-line algorithm islike a sequential transduer. The portions of the input data are \swallowed"by the algorithm step after step, and after eah step an intermediate result isexpeted (related to the input data read so far). It then reads the next portionof the input, and so on. In on-line algorithms the input an be treated asan in�nite stream of data, onsequently we are not interested mainly in thetermination of the algorithm for all suh data. The main interest for us isthe total time T (n) for whih we have to wait to get the n-th �rst outputs.The time T (n) is measured starting at the beginning of the whole omputation(ativation of the transduer). Suppose that the input data is a sequene and

10 CHAPTER 1. STRINGOLOGYthat after reading the n-th symbol we want to print \1" if the text read to thismoment ontains a given pattern as a suÆx, otherwise we print \0". Henewe have two streams of data: the stream of input symbols and an outputstream of answers \1" or \0". The main feature of the on-line algorithm isthat it has to give an output value before reading the next input symbol. Thereal-time omputations are those on-line algorithms that are in a ertain senseoptimal; the elapsing time between reading two onseutive input symbols (thetime spent for omputing only the last output value) should be bounded by aonstant. Most linear on-line algorithms are in fat real-time algorithms.We are primarily interested in o�-line omputations in whih the worst-ase running time is linear, but on-line and real-time omputations, as well asaverage omplexities are also disussed in this book.1.6 Some notation and formal de�nitionsLet A be an input alphabet{a �nite set of symbols. Elements of A are alledthe letters, the haraters, or the symbols. Typial examples of alphabetsare: the set of all ordinary letters, the set of binary digits, or the set of 2568-bit ASCII symbols. Texts (also alled words or strings) over A are �nitesequenes of elements of A. The length (size) of a text is the number of itselements (with repetitions). Therefore, the length of aba is 3. The length of aword x is denoted by jxj. The input data for our problems will be words, andthe size n of the input problem will usually be the length of the input word.In some situations, n will denote the maximum length or the total length ofseveral words if the input of the problem onsists of several words.The i-th element of the word x is denoted by x[i℄ and i is its position on x.We denote by x[i: :j℄ the fator x[i℄x[i+1℄ : : : x[j℄ of x. If i > j, by onvention,the word x[i: :j℄ is the empty word (the sequene of length zero), whih isdenoted by ".We say that the word x of length m is a fator (also alled a subword) ofthe word y if x = y[i+ 1: :i+ n℄ for some integer i. We also say that x oursin y at position i, or that the position i is a math for x in y.We de�ne the notion of subsequene (sometimes alled a subword). Theword x is a subsequene of y if x an be obtained from y by removing zero ormore (not neessarily adjaent) letters from it. Likewise, x is a subsequeneof y if x = y[i1℄y[i2℄ : : : y[im℄, where i1; i2; : : : ; im is an inreasing sequene ofindies on y.Next we de�ne formally the basi problem overed in this book. We oftenonsider two texts pat (the pattern) and text of respetive lengths m and n.

1.7. SOME SIMPLE COMBINATORICS OF STRINGS 11
period of x

border of x

x

x

border of x Figure 1.1: Duality between periods and borders of texts.String mathing (the basi problem). Given texts pat and text , verify ifpat ours in text . This is a deision problem: the output is a Boolean value.It is usually assumed that m � n. Therefore, the size of the problem is n. Aslightly advaned version entails searhing for all ourrenes of pat in text ,that is, omputing the set of positions of pat in text. Let us denote this set byMATCH (pat ; text). In most ases an algorithm omputing MATCH (pat ; text)is a trivial modi�ation of a deision algorithm, this is the reason why wesometimes present only deision algorithms for string mathing.Instead of just one pattern, one an onsider a �nite set of patterns andask if a given text ontains a pattern from the set. The size of the problem isnow the total length of all patterns plus the length of the text.1.7 Some simple ombinatoris of stringsThe main theoretial tools in string-mathing algorithms are related to math-ematial properties of periodiities in strings. We de�ne the notion of periodof a word, whih is entral in almost all strings mathing algorithms. A periodof a word x is an integer p, 0 < p � jxj, suh thatx[i℄ = x[i+ p℄for all i 2 f1; : : : ; jxj � pg. When there is no ambiguity, we also say that theword x[1: :p℄ is a period of x. This is the usual de�nition of a period for afuntion de�ned on integers, as x an be viewed. Note that the length of aword is always a period of it, so that any word has at least one period. Wedenote by period (x) the smallest period of x. We additionally say that x isperiodi if period (x) � jxj=2.The notion of border of a text is a dual notion to that of period, see Fig-ure 1.1. A border of x is any word that is simultaneously a pre�x and a suÆxof x. Observe that x and the empty string " are borders of x.Let us denote by Border (x) the longest nontrivial border (not the whole

12 CHAPTER 1. STRINGOLOGY
x

p

q

a b c

p-q

i +(p-q) i +p i Figure 1.2: Quantity p � q is also a period beause letters a and b are bothequal to letter .word) of x. Note that(jxj � jBorder (x)j; jxj � jBorder 2(x)j; : : : ; jxj � jBorderk(x)j)is the sequene of all periods of x in inreasing order (k is the smallest integerfor whih Borderk(x) is the empty word).Example. The periods of aabaaabaa (of length 9) are 4, 7, 8 and 9. Itsorresponding proper borders are aabaa, aa, a, ".Periodiity LemmaLet x be a non-empty word and p be an integer suh that 0 < p � jxj. Theneah of the following onditions equally de�nes p as a period of x:1. x is a fator of some word yk with jyj = p and k > 0,2. x may be written (uv)k with juvj = p, v a non-empty word, and k > 0,3. for some words y, z and w, x = yw = wz and jyj = jzj = p.Lemma 1.1 [Periodiity Lemma℄ Let p and q be two periods of the word x. Ifp+ q < jxj, then gd(p; q) is also a period of x.Proof. The onlusion trivially holds if p = q. Assume now that p > q.First we show that the ondition p+ q < jxj implies that p� q is a period of x.Let x = x[1℄x[2℄ : : : x[n℄ (x[i℄'s are letters). Given x[i℄ the i-th letter of x, theondition implies that either i� q � 1 or i+ p � n. In the �rst ase, q and pbeing periods of x, x[i℄ = x[i�q℄ = x[i�q+p℄. In the seond ase, for the samereason, x[i℄ = x[i+p℄ = x[i+p� q℄. Thus p� q is a period of x. This situationis shown in Figure 1.2. The rest of the proof, left to the reader, is by indutionon the integer max(p; q), after noting that gd(p; q) equals gd(p� q; q). 2

1.7. SOME SIMPLE COMBINATORICS OF STRINGS 13a ab ba aa ab ba ab ba aa abFigure 1.3: After utting o� its last two letters, Fib8 is a symmetri word, apalindrome. This is not aidental.There is a stronger version of the periodiity lemma for whih we omit theproof.Lemma 1.2 [Strong Periodiity Lemma℄ If p and q are two periods of a wordx suh that p+ q � gd(p; q) � jxj, then gd(p; q) is also a period of x.An interesting family: Fibonai wordsFibonai words form an interesting family of words (from the point of view ofperiodiities). In sone sense, the inequality that appears in Strong PeriodiityLemma is optimal. The example supporting this laim is given by the Fibonaiwords with the last two letters deleted.Let Fibn be the n-th Fibonai word (n � 0). It is de�ned byFib0 = ", Fib1 = b, Fib2 = a, and Fibn = Fibn�1Fibn�2, for n > 2.Fibonai words satisfy a large number of interesting properties related toperiods and repetitions. Note that Fibonai words (exept the �rst two wordsof the sequene) are pre�xes of their suessors. Indeed, there is an evenstronger property: the square of any Fibonai word of high enough rank is apre�x of its sueeding Fibonai words. Among other properties of Fibonaiwords, it must be noted that they have no fator in the form u4 (u non emptyword) and they are almost symmetri, see Figure 1.3. Therefore, Fibonaiwords ontain a large number of periodiities, but none with an exponenthigher than 3.The lengths of Fibonai words are the well-known Fibonai numbers,f0 = 0, f1 = 1, f2 = 1, f3 = 2, f4 = 3, The �rst Fibonai words of thesequene (Fibn; n > 2) are

14 CHAPTER 1. STRINGOLOGYFib3 = ab; jFib3j = 2;Fib4 = aba; jFib4j = 3;Fib5 = abaab; jFib5j = 5;Fib6 = abaababa; jFib6j = 8;Fib7 = abaababaabaab; jFib7j = 13;Fib8 = abaababaabaababaababa; jFib8j = 21;Fib9 = abaababaabaababaababaabaababaabaab; jFib9j = 34.1.8 Some other interesting stringsFibonai words of rank greater than 1 an be treated as pre�xes of a singlein�nite Fibonai string Fib1. Similarly we an de�ne the words of Thue-Morse T (n) as pre�xes of a single in�nite word T1. Assume we ount positionson this word starting from 0. Denote by g(k) the number of \1" in the binaryrepresentation of the number k. ThenT1(k) = (a if g(k) is even,b otherwise.The Thue-Morse words Tn are the pre�xes of T1 of length 2n. We list severalof them below.T1 = ab,T2 = abba,T3 = abbabaab,T4 = abbabaabbaababba,T9 = abbabaabbaababbabaababbaabbabaab.These words have the remarkable property of being overlap-free, whih meansthat there is no nonempty word x that ours in them at two positions whihdistane is smaller than jxj. However these words are mostly known for thefollowing square-free property: they ontain no nonempty word in the form xx(nor, indeed, in the form axaxa, a 2 A).Let us de�ne the following invertible enoding:�(a) = a; �(b) = ab; and �() = abb:Lemma 1.3 For eah integer n the word ��1(Tn) is square free.The lemma says in partiular that there are in�nitely many \square-free"words. Let T 01 be the word over the alphabet f0; 1; 2g whih symbols are thenumber of ourrenes of letter \b" between two onseutive ourrenes of

1.8. SOME OTHER INTERESTING STRINGS 15letter \a" in T1. Then suh an in�nite word is also \square-free". We haveT 01 = 2 1 0 2 0 1 2 : : :Other interesting words are sequenes of moves in the Hanoi towers game.There are six possible moves depending from whih stak to whih other stakan disk is moved. If we have n disks then the optimal sequene onsists of2n � 1 moves and forms a word Hn. The interesting property of these wordsis that all of them are \square-free".Yet another family of words that has a strange relation to numbers g(k) isgiven by the binary words Pn, where Pn is the n-th row of the Pasal trianglemodulo 2. In other words:Pn(i) = � ni � mod 2:We list below some of these words.P0 = 1P1 = 1 1P2 = 1 0 1P3 = 1 1 1 1P4 = 1 0 0 0 1P5 = 1 1 0 0 1 1The word Pn has the following remarkable property: the number of \1" in Pnequals 2g(n).Let us onsider the in�nite string W whih symbols are digits and whihresults from onatenating all onseutive natural numbers written in deimal.Hene,W = 01234567891011121314151617181920212223242526272829303132 : : :Denote byWn the pre�x ofW of size n. For a word x, let us denote by on(x)the number of ourrenes of x in Wn. The words Wn have the followinginteresting property: for every two nonempty words x and y of a same lengthlimn!1 on(x)on(y) = 1:This means, in a ertain sense, that the sequene W is quite random.An interesting property of strings is how many fators of a given lengthk they ontain. Assume the alphabet is fa; bg . For a given k we have 2kdi�erent words of length k. A natural question is:what is the minimal length (k) of a word ontaining eah subword oflength k.

16 CHAPTER 1. STRINGOLOGYObviously (k) � 2k+k�1, sine any shorter word has less than 2k fators. Ithappens that (k) = 2k+ k� 1. The orresponding words are alled de Bruijnwords. In these strings eah word of length k ours exatly one. For a givenk there are exponentially many de Bruijn words. For example for k = 1 wean take ab, for k = 2 we take aabba or abaab and for k = 3 we an take deBruijn word aaababbbaa.There is an interesting relation of de Bruijn words to Euler yles in speialgraphs Gk. The nodes of Gk are all words of length k � 1 and for any wordx = a1a2 : : : ak�1 of length k � 1 we have two direted edgesa1a2 : : : ak�1 a�! a2 : : : ak�1 � a, a1a2 : : : ak�1 b�! a2 : : : ak�1 � bThe graph has a direted Euler yle (ontaining eah edge exatly one). Leta1a2 : : : aN be the sequene of labels of edges in a Euler yle. Observe thatN = 2k. As de Bruijn word we an take the word:a1a2 : : : aNa1a2 : : : ak�1:1.9 Cyli shifts and primitive wordsA yli shift of x is any word vu, when x an be written in the form uv. Letus onsider how many di�erent yli shifts a word an have.Example. Consider the yli shifts of the word abaaaba of length 7. Thereare exatly 7 di�erent yli shifts of abaaaba, the 8-th shift goes bak to theinitial word.a b a a a b ab a a a b a aa a a b a a ba a b a a b aa b a a b a ab a a b a a aa a b a a a ba b a a a b aA word w is a said to be primitive if it is not of the form w = vk, for anatural number k � 2. As a onsequene of the periodiity lemma we showthe following fat.Lemma 1.4 Assume the word x is primitive. Then x has exatly jxj di�erent

1.9. CYCLIC SHIFTS AND PRIMITIVE WORDS 17yli shifts. In other words:jfvu : u and v words suh that x = uv and u 6= "gj = jxj:Proof. Assume x of length p has two yli shifts that are equal. Henex = uv = u0v0, and vu = v0u0, where u 6= u0.Assume without loss of generality that ju0j < juj. Then u = u0�; v0 = � � vand vu0� = �vu0. Hene the text � � v � u0 � � has borders � � v � u0 and�. Consequently, the text � � v � u0 � � has two periods of size r = j�j andp = jvu0�j. At the same time r + p = j� � v � u0 � �j.The periodiity lemma implies that the text has period gd(r; p). Siner < p this shows that p is divisible by the length of the smaller period. Thisimplies that x is a power of a smaller word, whih ontradits the assumption.Consequently x annot have two idential yli shifts. 2We show a simple number-theoreti appliation of primitive words andyli shifts. In 1640 the great Frenh number theorist Pierre de Fermat statedthe following theorem.Theorem 1.1 [Fermat's Simple Theorem℄ If p is a prime number and n isany natural number then p divides np � n.Proof. De�ne the equivalene relation � on words by x � y if x is a ylishift of y. A word is said to be unary if it is in a form ap, for a letter a. Takethe set S of all non-unary words of length p over the alphabet f1; 2; : : : ; ng.All these words are primitive sine their length is a prime number and theyare non-unary. Aording to Lemma 1.4 eah equivalene lass has exatly pelements. The ardinality of S is np � n and S an be partitioned into disjointsubsets of the same ardinality p. Hene the ardinality of S is divisible by p,onsequently np � n also is. This ompletes the proof. 2Bibliographi notesComplementary notions, problems and algorithms in stringology may be foundin the books by Crohemore and Rytter [CR 94℄, by Stephen [St 94℄, by Gus�eld[Gu 97℄, by Crohemore, Hanart and Leroq [CHL 01℄, and in the olletivebook edited by Apostolio and Galil [AG 97℄.

