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Preface

The term stringology is a popular nickname for string algorithms as well as
for text algorithms. Usually text and string have the same meaning. More
formally, a text is a sequence of symbols. Text is one of the basic data types to
carry information. This book is a collection of the most beautiful and at the
same time very classical algorithms on strings. The selection has been done by
the authors, and is rather personal, among so many famous algorithms that
were natural candidates to be included and that belong to a field that has
become now fairly popular.

One can partition algorithmic problems discussed in this book into practical
and theoretical problems. Certainly string matching and data compression are
in the first class, while most problems related to symmetries and repetitions
are in the second. However, we believe that all the problems are interesting
from an algorithmic point of view and enable the reader to appreciate the
importance of combinatorics on words.

In most textbooks on algorithms and data structures the presentation of ef-
ficient algorithms on words is quite short as compared to issues in graph theory,
sorting, searching, and some other areas. At the same time, there are many
presentations of interesting algorithms on words accessible only in journals and
in a form directed mainly at specialists. There are still not many books on
text algorithms, especially the books which are oriented toward undergraduate
and graduate students. In the book the difficult parts are indicated by a star,
so the basic text becomes painless for undergraduate students. We hope that
this book will cover a gap on algorithms on words in book literature for the
broader audience, and bring together the many results presently dispersed in
the masses of journal articles.

March 2002
M. Crochemore, W. Rytter
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Chapter 1

Stringology

One of the simplest and natural types of information representation is by means
of written texts. This type of data is characterized by the fact that it can
be written down as a long sequence of characters. Such linear a sequence
is called a text. The texts are central in “word processing” systems, which
provide facilities for the manipulation of texts. Such systems usually process
objects that are quite large. For example, this book probably contains more
than a million characters. Text algorithms occur in many areas of science and
information processing. Many text editors and programming languages have
facilities for processing texts. In biology, text algorithms arise in the study
of molecular sequences. The complexity of text algorithms is also one of the
central and most studied problems in theoretical computer science. It could
be said that it is the domain in which practice and theory are very close to
each other.

The basic textual problem in stringology is called pattern matching. It is
used to access information and, no doubt, at this moment many computers
are solving this problem as a frequently used operation in some application
system. Pattern matching is comparable in this sense to sorting, or to basic
arithmetic operations.

Consider the problem of a reader of the French dictionary “Grand Larousse,”

who wants all entries related to the name “Marie-Curie-Sklodowska.” This is
an example of a pattern matching problem, or string matching. In this case,
the name “Marie-Curie-Sklodowska” is the pattern. Generally we may want to
find a string called a pattern of length m inside a text of length n, where n is
greater than m. The pattern can be described in a more complex way to denote
a set, of strings and not just a single word. In many cases n is very large. In
genetics the pattern can correspond to a gene that can be very long; in image
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processing, digitized images sent serially contain millions of characters each.
The string-matching problem is the basic question considered in this book,
together with its variations. String matching is also the basic subproblem in
other algorithmic problems on texts. Following is a (not exclusive) list of basic
groups of problems discussed in this book:

e variations on the string-matching problem

e problem related to the structures of the segments of a text
e data compression

e approximation problems

e finding regularities

e extensions to two-dimensional images

e extensions to trees

e optimal time-space implementations

e optimal parallel implementations.

The formal definition of string matching and many other problems is given
in the next chapter. We now introduce some of them informally in the context
of applications.

1.1 Text file facilities

The UNIX system uses text files for exchanging information as a main fea-
ture. The user can get information from the files and transform them through
different existing commands. The tools often behave as filters that read their
input once and produce the output simultaneously. These tools can easily be
connected with each other, particularly through the pipelining facility. This
often reduces the creation of new commands to a few lines of already existing
commands.

One of these useful commands is grep, acronym of “general regular expres-
sion print.” An example of the format of grep is

grep Marie-Curie-Sklodowska Grand-Larousse

provided “Grand-Larousse” is a file on your computer. The output of this
command is the list of lines from the file that contains an occurrence of the
name “Marie-Curie-Sklodowska.” This is an instance of the string-matching
problem. Another example with a more complex pattern can be
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grep ’“Chapter [0-9]’ Book

to list the titles of a book assuming titles begin with “Chapter” followed by a
number. In this case the pattern denotes a set of strings (even potentially infi-
nite), and not simply one string. The notation to specify patterns is known as
reqular expressions. This is an instance of the regular-expression-matching
problem.

The indispensable complement of grep is sed (stream editor). It is designed
to transform its input. It can replace patterns of the input with specific strings.
Regular expressions are also available with sed. But the editor contains an
even more powerful notation. This allows, for example, the action on a line
of the input text containing the same word twice. It can be applied to delete
two consecutive occurrences of a same word in a text. This is simultaneously
an example of the repetition-finding problem, pattern-matching problem
and, more generally, the problem of finding regularities in strings.

The very helpful matching device based on regular expressions is om-
nipresent in the UNIX system. It can be used inside text editors such as
ed and vi, and generally in almost all UNIX commands. The above tools, grep
and sed, are based on this mechanism. There is even a programming language
based on pattern-matching actions. It is the awk language, where the name
awk comes from the initials of the authors, Aho, Weinberger, and Kernighan.
A simple awk program is a sequence of pattern-action statements:

patternl {action 1}
pattern2 {action 2}
pattern3 {action 3}

The basic components of this program are patterns to be found inside the
lines of the current file. When a pattern is found, the corresponding action is
applied to the line. Therefore, several actions may be applied sequentially to
a same line. This is an example of the multi-pattern matching problem.
The language awk is meant for converting data from one form to another
form, counting things, adding up numbers, and extracting information for
reports. It contains an implicit input loop, and the pattern-action paradigm
often eliminates control flow. This also frequently reduces the size of a program
to a few statements. For instance, the following awk program prints the number
of lines of the input that contain the word “abracadabra”:

abracadabra {count++}
END {print count}

The pattern “END” matches the end of input file, so that the result is printed
after the input has been entirely processed. The language contains attractive
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features that strengthen the simplicity of the pattern-matching mechanism,
such as default initialization for variables, implicit declarations, and associa-
tive arrays providing arbitrary kinds of subscripts. All this makes awk a con-
venient tool for rapid prototyping. The awk language can be considered as a
generalization of another UNIX tool, lex, aimed at producing lexical analyzers.
The input of a lex program is the specification of a lexical analyzer by means of
regular expressions (and a few other possibilities). The output is the source of
the specified lexical analyzer in the C programming language. A specification
in ler is mainly a sequence of pattern-action statement as in awk. Actions
are pieces of C code to be inserted in the lexical analyzer. At run time, these
pieces of code execute the action corresponding to the associated pattern, when
found. The following line is a typical statement of a lex program:

[A-Za-z]+([A-Za-z0-9])* { yyval = Install(); return(ID);}

The pattern specifies identifiers, that is, strings of characters starting with one
letter and containing only letters and digits. This action leads the generated
lexical analyzer to store the identifier and to return the string type “ID” to
the calling parser. It is another instance of the regular expression-matching
problem. The question of constructing pattern-matching automata is an
important component having a practical application in the lex software.

Texts such as books or programs are likely to be changed during elabora-
tion. Even after their completion they often support periodic upgrades. These
questions are related to text comparisons. Sometimes we also wish to find
a string, and do not completely remember it. The search has to be performed
with an entirely non-specified pattern. This is an instance of the approxi-
mate pattern matching. Keeping track of all consecutive versions of a text
may not be helpful because the text can be very long and changes may be hard
to find. The reasonable way to control the process is to have an easy access
to differences between the various versions. There is no universal notion as to
what the differences are, or conversely, what the similarities are, between two
texts. However, it can be agreed that the intersection of the two texts is the
longest common subtext of both. In our book this is called the longest com-
mon subsequence problem, so that the differences between the two texts are
the respective complements of the common part. The UNIX command diff
builds on this notion. An option of the command diff produces a sequence of
ed instructions to transform one text into the other. The similarity of texts
can be measured as the minimal number of edit operations to transform one
text into the other. The computation of such a measure is an instance of the
edit distance problem.
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1.2 Dictionaries

The search of words or patterns in static texts is quite a different question
than the previous pattern-matching mechanism. Dictionaries, for example,
are organized in order to speed up the access to entries. Another example
of the same question is given by indexes. Technical books often contain an
index of chosen terms that gives pointers to parts of the text related to words
in the index. The algorithms involved in the creation of an index form a
specific group. The use of dictionaries or lexicons is often related to natural
language processing. Lexicons of programming languages are small, and their
representation is not a difficult problem during the development of a compiler.
To the contrary, English contains approximately 100,000 words, and even twice
that if inflected forms are considered. In French, inflected forms produce more
than 700,000 words. The representation of lexicons of this size makes the
problem a bit more challenging.

A simple use of dictionaries is illustrated by spelling checkers. The UNIX
command, spell, reports the words in its input that are not stored in the lexi-
con. This rough approach does not yield a pertinent checker, but, practically,
it helps to find typing errors. The lexicon used by spell contains approxi-
mately 70,000 entries stored within less than 60 kilobytes of random-access
memory. Quick access to lexicons is a necessary condition for producing good
parsers. The data structure useful for such access is called an index. In our
book indexes correspond to data structures representing all factors of a given
(presumably long) text. We consider problems related to the construction of
such structures: suffix trees, directed acyclic word graphs, factor au-
tomata, suffix arrays. The PAT tool developed at the NOED Center
(Waterloo, Canada) is an implementation of one of these structures tailored
to work on large texts. There are several applications that effectively require
some understanding of phrases in natural languages, such as data retrieval
systems, interactive software, and character recognition.

An image scanner is a kind of photocopier. It is used to give a digitized
version of an image. When the image is a page of text, the natural output of the
scanner must be in a digital form available to a text editor. The transformation
of a digitized image of a text into a usual computer representation of the text
is realized by an Optical Character Recognition (OCR). Scanning a text with
an OCR can be 50 times faster than retyping the text on a keyboard. Thus,
OCR softwares are likely to become more common. But they still suffer from
a high degree of imprecision. The average rate of error in the recognition of
characters is approximately one percent. Even if this may happen to be rather
small, this means that scanning a book produces approximately one error per
line. This is compared with the usually very high quality of texts checked
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by specialists. Technical improvements on the hardware can help eliminate
certain kinds of errors occurring on scanned texts in printed forms. But this
cannot alleviate the problem associated with recognizing texts in printed forms.
Reduction of the number of errors can thus only be achieved by considering the
context of the characters, which assumes some understanding of the structure
of the text. Image processing is related to the problem of two-dimensional
pattern matching. Another related problem is the data structure for all
subimages, which is discussed in this book in the context of the dictionary
of basic factors.

The theoretical approach to the representation of lexicons is either by means
of trees or finite state automata. It appears that both approaches are equally
efficient. This shows the practical importance of the automata theoretic
approach to text problems. At LITP (Paris) and IGM (Marne-la-Vallée)
we have shown that the use of automata to represent lexicons is particularly
efficient. Experiments have been done on a 700,000 word lexicon of LADL
(Paris). The representation supports direct access to any word of the lexicon
and takes only 300 kilobytes of random-access memory.

1.3 Data compression

One of the basic problems in storing a large amount of textual information
is the text compression problem. Text compression means reducing the
representation of a text. It is assumed that the original text can be recovered
from its compressed from. No loss of information is allowed. Text compression
is related to the Huffman coding problem and the factorization problem.
This kind of compression contrast with other kinds of compression techniques
applied to sounds or images, in which approximation is acceptable. Availability
of large mass storage does not decrease the interest for compressing data.
Indeed, users always take advantage of extra available space to store more
data or new kinds of data. Moreover, the question remains important for
storing data on secondary storage devices. Examples of implementations of
dictionaries reported above show that data compression is important in
several domains related to natural language analysis. Text compression is
also useful for telecommunications. It actually reduces the time to transmit
documents via telephone network, for example. The success of Facsimile is
perhaps to be credited to compression techniques.

General compression methods often adapt themselves to the data. This
phenomenon is central in achieving high compression ratios. However, it ap-
pears, in practice, that methods tailored for specific data lead to the best
results. We have experimented with this fact on data sent by geostationary
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satellites. The data have been compressed to seven percent of their original
size without any loss of information.

The compression is very successful if there are redundancies and regularities
in the information message. The analysis of data is related to the problem of
detecting regularities in texts. Efficient algorithms are particularly useful
to expertise the data.

1.4 Applications of text algorithms in genetics

Molecules of nucleic acids carry a large segment of information about the fun-
damental determinants of life, and, in particular, about the reproduction of
cells. There are two types of nucleic acids known as desoxyribonucleic acid
(DNA) and ribonucleic acid (RNA). DNA is usually found as double-stranded
molecules. In vivo, the molecule is folded up like a ball of string. The skeleton
of a DNA molecule is a sequence on the four-letter alphabet of nucleotides:
adenine (A), guanine (G), cytosine (C), and thymine (T). RNA molecules are
usually single-stranded molecules composed of ribonucleotides: A, G, C, and
uracil (U).

Processus of “transcription” and “translation” lead to the production of
proteins, which also have a string composed of 20 amino acids as a primary
structure. In a first approach all these molecules can be viewed as texts. The
discovery twenty years ago of powerful sequencing techniques has led to a rapid
accumulation of sequence data. From the collection of sequences up to their
analysis many algorithms on texts are implied. Moreover, only fast algorithms
are often feasible because of the huge amount of data involved.

Collecting sequences can be accomplished through audioradiography gels.
The automatic transcription of these gels into sequences is a typical two di-
mensional pattern-matching problem in two dimensions. The reconstruc-
tion of a whole sequence from small segments, used for instance in the shotgun
sequencing method, is another example of a problem that occurs during this
step. This problem is called the shortest common superstring problem:
construction of the shortest text containing several given smaller texts.

Once a new sequence is obtained, the first important question to ask is
whether it resembles any other sequence already stored in data banks. Before
adding a new molecular sequence into an existing data base one needs to know
whether or not the sequence is already present. The comparison of several
sequences is usually realized by writing one over another. The result is know
as an alignment of the set of nucleotides. Alignment of two sequences is the
edit distance problem: compute the minimal number of edit operations to
transform one string into another. It is realized by algorithms based on dy-
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namic programming techniques similar to the one used by the UNIX command
diff.

The problem of the longest common subsequence is a variation of the
alignment of sequences. A tool, called agrep, developed at the University
of Arizona, is devoted to these questions, related to approximate string
matching.

Further questions about molecular sequences are related to their analysis.
The aim is to discover the functions of all parts of the sequence. For example,
DNA sequences contain important regions (coding sequences) for the produc-
tion of proteins inside the cell. However, no good answer is presently known
for finding all coding sequences of a DNA sequence. Another question about
sequences is the reconstruction of their three-dimensional structure. It seems
that a part of the information resides in the sequence itself. This is because,
during the folding process of DNA, for example, nucleotides match pairwise
(A with T, and C with G). This produces approximate palindromic symme-
tries (as TTAGCGGCTAA). Involved in all these questions are approximate
searches for specific patterns, for repetitions, for palindromes, or other
regularities.

1.5 Efficiency of algorithms

Efficient algorithms can be classified according to what is meant by efficiency.
There exist different notions of efficiency depending on the complexity measure
involved. Several such measures are discussed in this book: sequential time,
memory space, parallel time, and number of processors.

This book deals with “feasible” problems. We can define them as problems
having efficient algorithms, or as solvable in time bounded by a small-degree
polynomial. In the case of sequential computations we are interested in lower-
ing the degree of the polynomial corresponding to time complexity. The most
efficient algorithms usually solve a problem in linear-time complexity. We are
also interested in space complexity. Optimal space complexity often means a
constant number of (small integer) registers in addition to input data. There-
fore, we say that an algorithm is time-space optimal if it works simultaneously
in linear time and in constant extra space. These are the most advanced se-
quential algorithms, and also the most interesting, both from a practical and
theoretical point of view.

In the case of parallel computations we are generally interested in the par-
allel time T'(n) as well as in the number of processors P(n) required for the
executions of the parallel algorithm on data of size n. The total number of
elementary operations performed by the parallel algorithm is not greater than
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the product T'(n)P(n).

Efficient parallel algorithms are those that operate in no more than poly-
logarithmic (a polynomial of logs of input size) time with a polynomial number
of processors. The class of problems solvable by such algorithms is denoted by
NC and hence we call the related algorithms NC-algorithms. An NC-algorithm
is optimal if the total number of operations T'(n)P(n) is linear. Another possi-
ble definition is that this number is essentially the same as the time complexity
of the best known sequential algorithm solving the given problem. However,
we adopt the first option here because algorithms on strings usually have a
time complexity which is at least linear.

Precisely evaluating the complexity of an algorithm according to some mea-
sure is often difficult, and, moreover, it is unlikely to be of much use. The “big
O” notation clarifies what the important terms of a complexity expression are.
It estimates the asymptotic order of the complexity of an algorithm and helps
compare algorithms between each others. Recall that if f and g are two func-
tions from and to integers, then we say that f = O(g) if f(n) < C.g(n) when
n > N, for some constants C' and N. We write f = ©(g) when the functions
f and g are of the same order, which means that both equalities f = O(g) and
g = O(f) hold.

Comparing functions through their asymptotic orders leads to these kinds of
inequalities: O(n%7) < O(n) < O(nlogn), or O(n'°8™) < O(logn™) < O(n!).

Within sequential models of machines one can distinguish further types
of computations: off-line, on-line and real-time. These computations are also
related to efficiency. It is understood that real-time computations are more
efficient than general on-line, and that on-line computations are more efficient
than off-line. Each algorithm is an off-line algorithm: “off-line” conceptually
means that the whole input data can be put into the memory before the actual
computation starts. We are not interested then in the intermediate results
computed by the algorithm, but only in the final result (though this final result
can be a sequence or a vector). The time complexity is measured by the total
time from the moment the computation starts (with all input data previously
memorized) up to the final termination. In contrast, an on-line algorithm is
like a sequential transducer. The portions of the input data are “swallowed”
by the algorithm step after step, and after each step an intermediate result is
expected (related to the input data read so far). It then reads the next portion
of the input, and so on. In on-line algorithms the input can be treated as
an infinite stream of data, consequently we are not interested mainly in the
termination of the algorithm for all such data. The main interest for us is
the total time T'(n) for which we have to wait to get the n-th first outputs.
The time T'(n) is measured starting at the beginning of the whole computation
(activation of the transducer). Suppose that the input data is a sequence and
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that after reading the n-th symbol we want to print “1” if the text read to this
moment contains a given pattern as a suffix, otherwise we print “0”. Hence
we have two streams of data: the stream of input symbols and an output
stream of answers “1” or “0”. The main feature of the on-line algorithm is
that it has to give an output value before reading the next input symbol. The
real-time computations are those on-line algorithms that are in a certain sense
optimal; the elapsing time between reading two consecutive input symbols (the
time spent for computing only the last output value) should be bounded by a
constant. Most linear on-line algorithms are in fact real-time algorithms.

We are primarily interested in off-line computations in which the worst-
case running time is linear, but on-line and real-time computations, as well as
average complexities are also discussed in this book.

1.6 Some notation and formal definitions

Let A be an input alphabet—a finite set of symbols. Elements of A are called
the letters, the characters, or the symbols. Typical examples of alphabets
are: the set of all ordinary letters, the set of binary digits, or the set of 256
8-bit ASCII symbols. Texts (also called words or strings) over A are finite
sequences of elements of A. The length (size) of a text is the number of its
elements (with repetitions). Therefore, the length of aba is 3. The length of a
word z is denoted by |z|. The input data for our problems will be words, and
the size n of the input problem will usually be the length of the input word.
In some situations, n will denote the maximum length or the total length of
several words if the input of the problem consists of several words.

The i-th element of the word  is denoted by z[i] and i is its position on x.
We denote by z[i..j] the factor z[i]z[i + 1]...z[j] of x. If i > j, by convention,
the word z[i..j] is the empty word (the sequence of length zero), which is
denoted by ¢.

We say that the word z of length m is a factor (also called a subword) of
the word y if = y[i + 1. .7 + n] for some integer i. We also say that z occurs
in y at position ¢, or that the position ¢ is a match for z in y.

We define the notion of subsequence (sometimes called a subword). The
word z is a subsequence of y if z can be obtained from y by removing zero or
more (not necessarily adjacent) letters from it. Likewise, x is a subsequence
of y if © = y[i1]y[i2] . - . y[im], where i1,is,... 4, is an increasing sequence of
indices on y.

Next we define formally the basic problem covered in this book. We often
consider two texts pat (the pattern) and text of respective lengths m and n.
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X border of x

X border of x
-
period of x

Figure 1.1: Duality between periods and borders of texts.

String matching (the basic problem). Given texts pat and text, verify if
pat occurs in text. This is a decision problem: the output is a Boolean value.
It is usually assumed that m < n. Therefore, the size of the problem is n. A
slightly advanced version entails searching for all occurrences of pat in text,
that is, computing the set of positions of pat in text. Let us denote this set by
MATCH (pat, teat). In most cases an algorithm computing MATCH (pat, text)
is a trivial modification of a decision algorithm, this is the reason why we
sometimes present only decision algorithms for string matching.

Instead of just one pattern, one can consider a finite set of patterns and
ask if a given text contains a pattern from the set. The size of the problem is
now the total length of all patterns plus the length of the text.

1.7 Some simple combinatorics of strings

The main theoretical tools in string-matching algorithms are related to math-
ematical properties of periodicities in strings. We define the notion of period
of a word, which is central in almost all strings matching algorithms. A period
of a word z is an integer p, 0 < p < |z|, such that

ali] = «li + p

for all i € {1,...,|z| — p}. When there is no ambiguity, we also say that the
word z[L..p] is a period of z. This is the usual definition of a period for a
function defined on integers, as x can be viewed. Note that the length of a
word is always a period of it, so that any word has at least one period. We
denote by period(x) the smallest period of z. We additionally say that z is
periodic if period(z) < |z|/2.

The notion of border of a text is a dual notion to that of period, see Fig-
ure 1.1. A border of z is any word that is simultaneously a prefix and a suffix
of x. Observe that = and the empty string e are borders of z.

Let us denote by Border(xz) the longest nontrivial border (not the whole
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< P >
-< : >
X (2] [b] B
i i +(p-q) i+p
. P9 .

Figure 1.2: Quantity p — ¢ is also a period because letters a and b are both
equal to letter c.

word) of z. Note that
(|z| — |Border(z)|, |z| — |Border®(z)|,...,|z| — |Border® (z)|)

is the sequence of all periods of z in increasing order (k is the smallest integer
for which Border® (z) is the empty word).

Example. The periods of aabaaabaa (of length 9) are 4, 7, 8 and 9. Its
corresponding proper borders are aabaa, aa, a, €.

Periodicity Lemma

Let  be a non-empty word and p be an integer such that 0 < p < |z|. Then
each of the following conditions equally defines p as a period of z:

1. x is a factor of some word y* with |y| = p and k > 0,
2. z may be written (uv)* with |uv| = p, v a non-empty word, and k > 0,

3. for some words y, z and w, * = yw = wz and |y| = |z| = p.

Lemma 1.1 [Periodicity Lemma] Let p and q be two periods of the word . If
p+q < |z|, then ged(p, q) is also a period of x.

Proof. The conclusion trivially holds if p = ¢. Assume now that p > q.
First we show that the condition p+ ¢ < |z| implies that p — ¢ is a period of z.
Let ¢ = z[1]z[2]...z[n] (z[i]’s are letters). Given z[i] the i-th letter of z, the
condition implies that either it — ¢ > 1 or ¢ + p < n. In the first case, ¢ and p
being periods of z, z[i] = x[i —¢] = z[i —¢+p]. In the second case, for the same
reason, z[i] = z[i +p] = z[i + p—¢q]. Thus p— ¢ is a period of z. This situation
is shown in Figure 1.2. The rest of the proof, left to the reader, is by induction
on the integer max(p, q), after noting that ged(p, ¢) equals ged(p — ¢,¢). O
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Figure 1.3: After cutting off its last two letters, Fibg is a symmetric word, a
palindrome. This is not accidental.

There is a stronger version of the periodicity lemma for which we omit the
proof.

Lemma 1.2 [Strong Periodicity Lemma] If p and q are two periods of a word
x such that p + q — ged(p, q) < |z|, then ged(p, q) is also a period of x.

An interesting family: Fibonacci words

Fibonacci words form an interesting family of words (from the point of view of
periodicities). In sone sense, the inequality that appears in Strong Periodicity
Lemma is optimal. The example supporting this claim is given by the Fibonacci
words with the last two letters deleted.

Let Fib,, be the n-th Fibonacci word (n > 0). It is defined by
Fibg = ¢, Fiby = b, Fibs = a, and Fib, = Fib,,_1Fib,, o, for n > 2.

Fibonacci words satisfy a large number of interesting properties related to
periods and repetitions. Note that Fibonacci words (except the first two words
of the sequence) are prefixes of their successors. Indeed, there is an even
stronger property: the square of any Fibonacci word of high enough rank is a
prefix of its succeeding Fibonacci words. Among other properties of Fibonacci
words, it must be noted that they have no factor in the form u* (u non empty
word) and they are almost symmetric, see Figure 1.3. Therefore, Fibonacci
words contain a large number of periodicities, but none with an exponent
higher than 3.

The lengths of Fibonacci words are the well-known Fibonacci numbers,
fo=0,fi=1, fo =1, f3 =2, fy =3, .... The first Fibonacci words of the
sequence (Fib,,n > 2) are
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Fibs = ab, |Fibs| = 2,
Fiby = aba, |Fibs| = 3,
Fibs = abaab, |Fibs| = 5,
Fibg = abaababa, | Fibg| = 8,
Fib; = abaababaabaab, |Fib7| = 13,
Fibs = abaababaabaababaababa, |Fibs| = 21,

Fiby = abaababaabaababaababaabaababaabaab, |Fibg| = 34.

1.8 Some other interesting strings

Fibonacci words of rank greater than 1 can be treated as prefixes of a single
infinite Fibonacci string Fib.. Similarly we can define the words of Thue-
Morse T'(n) as prefixes of a single infinite word Ts,. Assume we count positions
on this word starting from 0. Denote by g(k) the number of “1” in the binary
representation of the number k. Then

a if g(k) is even,
Too(k) =
(k) {b otherwise.

The Thue-Morse words T}, are the prefixes of T, of length 2. We list several
of them below.

T = ab,
T> = abba,
T5 = abbabaab,

Ty = abbabaabbaababba,
Ty = abbabaabbaababbabaababbaabbabaab.

These words have the remarkable property of being overlap-free, which means
that there is no nonempty word z that occurs in them at two positions which
distance is smaller than |z|. However these words are mostly known for the
following square-free property: they contain no nonempty word in the form zz
(nor, indeed, in the form azaza, a € A).

Let us define the following invertible encoding;:
B(a) = a, B(b) = ab, and S(c) = abb.
Lemma 1.3 For each integer n the word f~(T,) is square free.

The lemma says in particular that there are infinitely many “square-free”
words. Let T/ be the word over the alphabet {0, 1,2} which symbols are the
number of occurrences of letter “b” between two consecutive occurrences of
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letter “a” in Ti,. Then such an infinite word is also “square-free”. We have

T:.=2102012 ...

Other interesting words are sequences of moves in the Hanoi towers game.
There are six possible moves depending from which stack to which other stack
an disk is moved. If we have n disks then the optimal sequence consists of
2™ — 1 moves and forms a word H,,. The interesting property of these words
is that all of them are “square-free”.

Yet another family of words that has a strange relation to numbers g(k) is
given by the binary words P,,, where P, is the n-th row of the Pascal triangle
modulo 2. In other words:

Po(i) = < ’ZL > mod 2.

We list below some of these words.

P = 1

P = 1 1

P = 1 0 1

Ps = 1 1 1 1

P, = 1 0 0 0 1

P, = 1 1 0 0 1 1

The word P,, has the following remarkable property: the number of “1” in P,
equals 29(")

Let us consider the infinite string W which symbols are digits and which
results from concatenating all consecutive natural numbers written in decimal.
Hence,

W = 01234567891011121314151617181920212223242526272829303132. ..

Denote by W, the prefix of W of size n. For a word z, let us denote by occ,, ()
the number of occurrences of z in W,,. The words W,, have the following
interesting property: for every two nonempty words x and y of a same length
lim occn ()

n—oo occy, (y)

= 1.

This means, in a certain sense, that the sequence W is quite random.

An interesting property of strings is how many factors of a given length
k they contain. Assume the alphabet is {a, b} . For a given k we have 2*
different words of length k. A natural question is:

what is the minimal length (k) of a word containing each subword of
length k.
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Obviously (k) > 2% +k — 1, since any shorter word has less than 2* factors. It
happens that v(k) = 2% + k — 1. The corresponding words are called de Bruijn
words. In these strings each word of length k occurs exactly once. For a given
k there are exponentially many de Bruijn words. For example for £ = 1 we
can take ab, for k = 2 we take aabba or abaab and for k = 3 we can take de
Bruijn word aaababbbaa.

There is an interesting relation of de Bruijn words to Euler cycles in special
graphs G. The nodes of Gy, are all words of length k£ — 1 and for any word
T = aias...ar—1 of length k — 1 we have two directed edges

a b
a1as...ap_1 —> as...Gp_1 -a, alas...ap—1 — Q...ak—1-b

The graph has a directed Euler cycle (containing each edge exactly once). Let
aias...ay be the sequence of labels of edges in a Euler cycle. Observe that
N = 2% As de Bruijn word we can take the word:

a1as ...ana1a ...ap—1-

1.9 Cyeclic shifts and primitive words

A cyclic shift of = is any word vu, when z can be written in the form uv. Let
us consider how many different cyclic shifts a word can have.

Example. Consider the cyclic shifts of the word abaaaba of length 7. There
are exactly 7 different cyclic shifts of abaaaba, the 8-th shift goes back to the
initial word.

a b a a a b a
b a a a b a a
a a a b a a b
a a b a a b a
a b a a b a a
b a a b a a a
a a b a a a b
a b a a a b a

A word w is a said to be primitive if it is not of the form w = v*, for a
natural number k& > 2. As a consequence of the periodicity lemma we show
the following fact.

Lemma 1.4 Assume the word x is primitive. Then x has exactly |z| different
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cyclic shifts. In other words:

{vu : u and v words such that x = uv and u # ¢}| = |x|.

Proof. Assume z of length p has two cyclic shifts that are equal. Hence
z =uv =u'v', and vu = v'u’, where u # u'.

Assume without loss of generality that |u/| < |u|. Then u =v'a, v/ =a-v
and vu'a = avu’. Hence the text a - v - u' - a has borders a - v - u' and
a. Consequently, the text « - v -u' - «a has two periods of size r = |a| and
p = |vu'a|. At the same time r +p=|a-v-u' -al.

The periodicity lemma implies that the text has period ged(r,p). Since
r < p this shows that p is divisible by the length of the smaller period. This
implies that = is a power of a smaller word, which contradicts the assumption.
Consequently = cannot have two identical cyclic shifts. |

We show a simple number-theoretic application of primitive words and
cyclic shifts. In 1640 the great French number theorist Pierre de Fermat stated
the following theorem.

Theorem 1.1 [Fermat’s Simple Theorem] If p is a prime number and n is
any natural number then p divides n? —n.

Proof. Define the equivalence relation = on words by z = y if = is a cyclic
shift of y. A word is said to be unary if it is in a form a?, for a letter a. Take
the set S of all non-unary words of length p over the alphabet {1,2,...,n}.
All these words are primitive since their length is a prime number and they
are non-unary. According to Lemma 1.4 each equivalence class has exactly p
elements. The cardinality of S is n? —n and S can be partitioned into disjoint
subsets of the same cardinality p. Hence the cardinality of S is divisible by p,
consequently n? — n also is. This completes the proof. |
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