
J E W E L S O FS T R I N G O L O G YMaxime Cro
hemore, Woj
ie
h Rytter

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

1

0

1

0

0

0 0

1

1

1

1

0

1

0

0

0

1

1

World S
ienti�

Prefa
eThe term stringology is a popular ni
kname for string algorithms as well asfor text algorithms. Usually text and string have the same meaning. Moreformally, a text is a sequen
e of symbols. Text is one of the basi
 data types to
arry information. This book is a
olle
tion of the most beautiful and at thesame time very
lassi
al algorithms on strings. The sele
tion has been done bythe authors, and is rather personal, among so many famous algorithms thatwere natural
andidates to be in
luded and that belong to a �eld that hasbe
ome now fairly popular.One
an partition algorithmi
 problems dis
ussed in this book into pra
ti
aland theoreti
al problems. Certainly string mat
hing and data
ompression arein the �rst
lass, while most problems related to symmetries and repetitionsare in the se
ond. However, we believe that all the problems are interestingfrom an algorithmi
 point of view and enable the reader to appre
iate theimportan
e of
ombinatori
s on words.In most textbooks on algorithms and data stru
tures the presentation of ef-�
ient algorithms on words is quite short as
ompared to issues in graph theory,sorting, sear
hing, and some other areas. At the same time, there are manypresentations of interesting algorithms on words a

essible only in journals andin a form dire
ted mainly at spe
ialists. There are still not many books ontext algorithms, espe
ially the books whi
h are oriented toward undergraduateand graduate students. In the book the diÆ
ult parts are indi
ated by a star,so the basi
 text be
omes painless for undergraduate students. We hope thatthis book will
over a gap on algorithms on words in book literature for thebroader audien
e, and bring together the many results presently dispersed inthe masses of journal arti
les.Mar
h 2002M. Cro
hemore, W. Rytter v

Contents
Prefa
e v1 Stringology 11.1 Text �le fa
ilities . 21.2 Di
tionaries . 51.3 Data
ompression . 61.4 Appli
ations of text algorithms in geneti
s 71.5 EÆ
ien
y of algorithms . 81.6 Some notation and formal de�nitions 101.7 Some simple
ombinatori
s of strings 111.8 Some other interesting strings 141.9 Cy
li
 shifts and primitive words 16Bibliographi
 notes . 172 Basi
 string sear
hing algorithms 192.1 Knuth-Morris-Pratt algorithm 202.2 Boyer-Moore algorithm and its variations 26Bibliographi
 notes . 313 Prepro
essing for basi
 sear
hings 333.1 Prepro
essing patterns for MP and KMP algorithms 333.2 Table of pre�xes . 363.3 Prepro
essing for Boyer-Moore algorithm 393.4 � Analysis of Boyer-Moore algorithm 41Bibliographi
 notes . 44vii

viii CONTENTS4 On-line
onstru
tion of suÆx trees 454.1 Tries and their
ompa
t versions 454.2 Prelude to Ukkonen algorithm 494.3 Ukkonen algorithm . 51Bibliographi
 notes . 535 More on suÆx trees 595.1 Several appli
ations of suÆx trees 595.2 M
Creight algorithm . 63Bibliographi
 notes . 686 Subword graphs 696.1 Dire
ted a
y
li
 graph . 696.2 On-line
onstru
tion of subword graphs 736.3 The reverse perspe
tive . 796.4 Compa
t subword graphs . 82Bibliographi
 notes . 847 Text algorithms related to sorting 857.1 The naming te
hnique: KMR algorithm 857.2 Two-dimensional KMR algorithm 907.3 SuÆx arrays . 917.4 Constru
ting suÆx trees by sorting 967.5 The Lowest-Common-An
estor di
tionary 1017.6 SuÆx-Merge-Sort . 104Bibliographi
 notes . 1078 Symmetries and repetitions in texts 1118.1 Sear
hing for symmetri
 words 1118.2 Compositions of symmetri
 words 1148.3 Sear
hing for square fa
tors . 119Bibliographi
 notes . 1239 Constant-spa
e sear
hings 1259.1 Constant-spa
e mat
hing for easy patterns 1259.2 MaxSuÆx-Mat
hing . 127

CONTENTS ix9.3 Computation of maximal suÆxes 1299.4 Mat
hing patterns with short maximal suÆxes 1319.5 Two-way mat
hing and magi
 de
omposition 1339.6 Sequential sampling for unordered alphabets 1369.7 Galil-Seiferas algorithm . 1389.8 Cy
li
 equality of words . 139Bibliographi
 notes . 14010 Text
ompression te
hniques 14110.1 Substitutions . 14210.2 Stati
 Hu�man
oding . 14510.3 Dynami
 Hu�man
oding . 15110.4 Fa
tor en
oding . 154Bibliographi
 notes . 16111 Automata-theoreti
 approa
h 16311.1 Aho-Corasi
k automaton . 16411.2 Determinizing automata . 17311.3 Two-way pushdown automata 176Bibliographi
 notes . 18112 Approximate pattern mat
hing 18312.1 Edit distan
e . 18312.2 Longest
ommon subsequen
e problem 18612.3 String mat
hing with errors . 19112.4 String mat
hing with don't
are symbols 193Bibliographi
 notes . 19613 Mat
hing by dueling and sampling 19913.1 String mat
hing by duels . 19913.2 String mat
hing by sampling 204Bibliographi
 notes . 20714 Two-dimensional pattern mat
hing 20914.1 Multi-pattern approa
h . 21114.2 Don't
ares and non-re
tangular patterns 212

x CONTENTS14.3 2D-Pattern mat
hing with mismat
hes 21414.4 Multi-pattern mat
hing . 21514.5 Mat
hing by sampling . 21814.6 An algorithm fast on the average 221Bibliographi
 notes . 22215 Two-dimensional periodi
ities 22515.1 Amir-Benson-Fara
h algorithm 22515.2 Geometry of two-dimensional periodi
ities 23515.3 � Patterns with large mono
hromati

enters 24215.4 � A version of the Galil-Park algorithm 244Bibliographi
 notes . 24716 Parallel text algorithms 24916.1 The abstra
t model of parallel
omputing 24916.2 Parallel string-mat
hing algorithms 25216.3 � Splitting te
hnique . 25516.4 Parallel KMR algorithm and appli
ation 25816.5 Parallel Hu�man
oding . 26316.6 Edit distan
e|eÆ
ient parallel
omputation 268Bibliographi
 notes . 26917 Mis
ellaneous 27117.1 Karp-Rabin string mat
hing by hashing 27117.2 Shortest
ommon superstrings 27417.3 Unique-de
ipherability problem 27617.4 Parameterized pattern mat
hing 27817.5 Breaking paragraphs into lines 281Bibliographi
 notes . 284Bibliography 285Index 305

Chapter 1StringologyOne of the simplest and natural types of information representation is by meansof written texts. This type of data is
hara
terized by the fa
t that it
anbe written down as a long sequen
e of
hara
ters. Su
h linear a sequen
eis
alled a text. The texts are
entral in \word pro
essing" systems, whi
hprovide fa
ilities for the manipulation of texts. Su
h systems usually pro
essobje
ts that are quite large. For example, this book probably
ontains morethan a million
hara
ters. Text algorithms o

ur in many areas of s
ien
e andinformation pro
essing. Many text editors and programming languages havefa
ilities for pro
essing texts. In biology, text algorithms arise in the studyof mole
ular sequen
es. The
omplexity of text algorithms is also one of the
entral and most studied problems in theoreti
al
omputer s
ien
e. It
ouldbe said that it is the domain in whi
h pra
ti
e and theory are very
lose toea
h other.The basi
 textual problem in stringology is
alled pattern mat
hing. It isused to a

ess information and, no doubt, at this moment many
omputersare solving this problem as a frequently used operation in some appli
ationsystem. Pattern mat
hing is
omparable in this sense to sorting, or to basi
arithmeti
 operations.Consider the problem of a reader of the Fren
h di
tionary \Grand Larousse,"who wants all entries related to the name \Marie-Curie-Sklodowska." This isan example of a pattern mat
hing problem, or string mat
hing. In this
ase,the name \Marie-Curie-Sklodowska" is the pattern. Generally we may want to�nd a string
alled a pattern of length m inside a text of length n, where n isgreater thanm. The pattern
an be des
ribed in a more
omplex way to denotea set of strings and not just a single word. In many
ases n is very large. Ingeneti
s the pattern
an
orrespond to a gene that
an be very long; in image1

2 CHAPTER 1. STRINGOLOGYpro
essing, digitized images sent serially
ontain millions of
hara
ters ea
h.The string-mat
hing problem is the basi
 question
onsidered in this book,together with its variations. String mat
hing is also the basi
 subproblem inother algorithmi
 problems on texts. Following is a (not ex
lusive) list of basi
groups of problems dis
ussed in this book:� variations on the string-mat
hing problem� problem related to the stru
tures of the segments of a text� data
ompression� approximation problems� �nding regularities� extensions to two-dimensional images� extensions to trees� optimal time-spa
e implementations� optimal parallel implementations.The formal de�nition of string mat
hing and many other problems is givenin the next
hapter. We now introdu
e some of them informally in the
ontextof appli
ations.1.1 Text �le fa
ilitiesThe UNIX system uses text �les for ex
hanging information as a main fea-ture. The user
an get information from the �les and transform them throughdi�erent existing
ommands. The tools often behave as �lters that read theirinput on
e and produ
e the output simultaneously. These tools
an easily be
onne
ted with ea
h other, parti
ularly through the pipelining fa
ility. Thisoften redu
es the
reation of new
ommands to a few lines of already existing
ommands.One of these useful
ommands is grep, a
ronym of \general regular expres-sion print." An example of the format of grep isgrep Marie-Curie-Sklodowska Grand-Larousseprovided \Grand-Larousse" is a �le on your
omputer. The output of this
ommand is the list of lines from the �le that
ontains an o

urren
e of thename \Marie-Curie-Sklodowska." This is an instan
e of the string-mat
hingproblem. Another example with a more
omplex pattern
an be

1.1. TEXT FILE FACILITIES 3grep '^Chapter [0-9℄' Bookto list the titles of a book assuming titles begin with \Chapter" followed by anumber. In this
ase the pattern denotes a set of strings (even potentially in�-nite), and not simply one string. The notation to spe
ify patterns is known asregular expressions. This is an instan
e of the regular-expression-mat
hingproblem.The indispensable
omplement of grep is sed (stream editor). It is designedto transform its input. It
an repla
e patterns of the input with spe
i�
 strings.Regular expressions are also available with sed. But the editor
ontains aneven more powerful notation. This allows, for example, the a
tion on a lineof the input text
ontaining the same word twi
e. It
an be applied to deletetwo
onse
utive o

urren
es of a same word in a text. This is simultaneouslyan example of the repetition-�nding problem, pattern-mat
hing problemand, more generally, the problem of �nding regularities in strings.The very helpful mat
hing devi
e based on regular expressions is om-nipresent in the UNIX system. It
an be used inside text editors su
h ased and vi, and generally in almost all UNIX
ommands. The above tools, grepand sed, are based on this me
hanism. There is even a programming languagebased on pattern-mat
hing a
tions. It is the awk language, where the nameawk
omes from the initials of the authors, Aho, Weinberger, and Kernighan.A simple awk program is a sequen
e of pattern-a
tion statements:pattern1 {a
tion 1}pattern2 {a
tion 2}pattern3 {a
tion 3}The basi

omponents of this program are patterns to be found inside thelines of the
urrent �le. When a pattern is found, the
orresponding a
tion isapplied to the line. Therefore, several a
tions may be applied sequentially toa same line. This is an example of the multi-pattern mat
hing problem.The language awk is meant for
onverting data from one form to anotherform,
ounting things, adding up numbers, and extra
ting information forreports. It
ontains an impli
it input loop, and the pattern-a
tion paradigmoften eliminates
ontrol
ow. This also frequently redu
es the size of a programto a few statements. For instan
e, the following awk program prints the numberof lines of the input that
ontain the word \abra
adabra":abra
adabra {
ount++}END {print
ount}The pattern \END" mat
hes the end of input �le, so that the result is printedafter the input has been entirely pro
essed. The language
ontains attra
tive

4 CHAPTER 1. STRINGOLOGYfeatures that strengthen the simpli
ity of the pattern-mat
hing me
hanism,su
h as default initialization for variables, impli
it de
larations, and asso
ia-tive arrays providing arbitrary kinds of subs
ripts. All this makes awk a
on-venient tool for rapid prototyping. The awk language
an be
onsidered as ageneralization of another UNIX tool, lex, aimed at produ
ing lexi
al analyzers.The input of a lex program is the spe
i�
ation of a lexi
al analyzer by means ofregular expressions (and a few other possibilities). The output is the sour
e ofthe spe
i�ed lexi
al analyzer in the C programming language. A spe
i�
ationin lex is mainly a sequen
e of pattern-a
tion statement as in awk. A
tionsare pie
es of C
ode to be inserted in the lexi
al analyzer. At run time, thesepie
es of
ode exe
ute the a
tion
orresponding to the asso
iated pattern, whenfound. The following line is a typi
al statement of a lex program:[A-Za-z℄+([A-Za-z0-9℄)* { yyval = Install(); return(ID);}The pattern spe
i�es identi�ers, that is, strings of
hara
ters starting with oneletter and
ontaining only letters and digits. This a
tion leads the generatedlexi
al analyzer to store the identi�er and to return the string type \ID" tothe
alling parser. It is another instan
e of the regular expression-mat
hingproblem. The question of
onstru
ting pattern-mat
hing automata is animportant
omponent having a pra
ti
al appli
ation in the lex software.Texts su
h as books or programs are likely to be
hanged during elabora-tion. Even after their
ompletion they often support periodi
 upgrades. Thesequestions are related to text
omparisons. Sometimes we also wish to �nda string, and do not
ompletely remember it. The sear
h has to be performedwith an entirely non-spe
i�ed pattern. This is an instan
e of the approxi-mate pattern mat
hing. Keeping tra
k of all
onse
utive versions of a textmay not be helpful be
ause the text
an be very long and
hanges may be hardto �nd. The reasonable way to
ontrol the pro
ess is to have an easy a

essto di�eren
es between the various versions. There is no universal notion as towhat the di�eren
es are, or
onversely, what the similarities are, between twotexts. However, it
an be agreed that the interse
tion of the two texts is thelongest
ommon subtext of both. In our book this is
alled the longest
om-mon subsequen
e problem, so that the di�eren
es between the two texts arethe respe
tive
omplements of the
ommon part. The UNIX
ommand di�builds on this notion. An option of the
ommand di� produ
es a sequen
e ofed instru
tions to transform one text into the other. The similarity of texts
an be measured as the minimal number of edit operations to transform onetext into the other. The
omputation of su
h a measure is an instan
e of theedit distan
e problem.

1.2. DICTIONARIES 51.2 Di
tionariesThe sear
h of words or patterns in stati
 texts is quite a di�erent questionthan the previous pattern-mat
hing me
hanism. Di
tionaries, for example,are organized in order to speed up the a

ess to entries. Another exampleof the same question is given by indexes. Te
hni
al books often
ontain anindex of
hosen terms that gives pointers to parts of the text related to wordsin the index. The algorithms involved in the
reation of an index form aspe
i�
 group. The use of di
tionaries or lexi
ons is often related to naturallanguage pro
essing. Lexi
ons of programming languages are small, and theirrepresentation is not a diÆ
ult problem during the development of a
ompiler.To the
ontrary, English
ontains approximately 100,000 words, and even twi
ethat if in
e
ted forms are
onsidered. In Fren
h, in
e
ted forms produ
e morethan 700,000 words. The representation of lexi
ons of this size makes theproblem a bit more
hallenging.A simple use of di
tionaries is illustrated by spelling
he
kers. The UNIX
ommand, spell, reports the words in its input that are not stored in the lexi-
on. This rough approa
h does not yield a pertinent
he
ker, but, pra
ti
ally,it helps to �nd typing errors. The lexi
on used by spell
ontains approxi-mately 70,000 entries stored within less than 60 kilobytes of random-a

essmemory. Qui
k a

ess to lexi
ons is a ne
essary
ondition for produ
ing goodparsers. The data stru
ture useful for su
h a

ess is
alled an index. In ourbook indexes
orrespond to data stru
tures representing all fa
tors of a given(presumably long) text. We
onsider problems related to the
onstru
tion ofsu
h stru
tures: suÆx trees, dire
ted a
y
li
 word graphs, fa
tor au-tomata, suÆx arrays. The PAT tool developed at the NOED Center(Waterloo, Canada) is an implementation of one of these stru
tures tailoredto work on large texts. There are several appli
ations that e�e
tively requiresome understanding of phrases in natural languages, su
h as data retrievalsystems, intera
tive software, and
hara
ter re
ognition.An image s
anner is a kind of photo
opier. It is used to give a digitizedversion of an image. When the image is a page of text, the natural output of thes
anner must be in a digital form available to a text editor. The transformationof a digitized image of a text into a usual
omputer representation of the textis realized by an Opti
al Chara
ter Re
ognition (OCR). S
anning a text withan OCR
an be 50 times faster than retyping the text on a keyboard. Thus,OCR softwares are likely to be
ome more
ommon. But they still su�er froma high degree of impre
ision. The average rate of error in the re
ognition of
hara
ters is approximately one per
ent. Even if this may happen to be rathersmall, this means that s
anning a book produ
es approximately one error perline. This is
ompared with the usually very high quality of texts
he
ked

6 CHAPTER 1. STRINGOLOGYby spe
ialists. Te
hni
al improvements on the hardware
an help eliminate
ertain kinds of errors o

urring on s
anned texts in printed forms. But this
annot alleviate the problem asso
iated with re
ognizing texts in printed forms.Redu
tion of the number of errors
an thus only be a
hieved by
onsidering the
ontext of the
hara
ters, whi
h assumes some understanding of the stru
tureof the text. Image pro
essing is related to the problem of two-dimensionalpattern mat
hing. Another related problem is the data stru
ture for allsubimages, whi
h is dis
ussed in this book in the
ontext of the di
tionaryof basi
 fa
tors.The theoreti
al approa
h to the representation of lexi
ons is either by meansof trees or �nite state automata. It appears that both approa
hes are equallyeÆ
ient. This shows the pra
ti
al importan
e of the automata theoreti
approa
h to text problems. At LITP (Paris) and IGM (Marne-la-Vall�ee)we have shown that the use of automata to represent lexi
ons is parti
ularlyeÆ
ient. Experiments have been done on a 700,000 word lexi
on of LADL(Paris). The representation supports dire
t a

ess to any word of the lexi
onand takes only 300 kilobytes of random-a

ess memory.1.3 Data
ompressionOne of the basi
 problems in storing a large amount of textual informationis the text
ompression problem. Text
ompression means redu
ing therepresentation of a text. It is assumed that the original text
an be re
overedfrom its
ompressed from. No loss of information is allowed. Text
ompressionis related to theHu�man
oding problem and the fa
torization problem.This kind of
ompression
ontrast with other kinds of
ompression te
hniquesapplied to sounds or images, in whi
h approximation is a

eptable. Availabilityof large mass storage does not de
rease the interest for
ompressing data.Indeed, users always take advantage of extra available spa
e to store moredata or new kinds of data. Moreover, the question remains important forstoring data on se
ondary storage devi
es. Examples of implementations ofdi
tionaries reported above show that data
ompression is important inseveral domains related to natural language analysis. Text
ompression isalso useful for tele
ommuni
ations. It a
tually redu
es the time to transmitdo
uments via telephone network, for example. The su

ess of Fa
simile isperhaps to be
redited to
ompression te
hniques.General
ompression methods often adapt themselves to the data. Thisphenomenon is
entral in a
hieving high
ompression ratios. However, it ap-pears, in pra
ti
e, that methods tailored for spe
i�
 data lead to the bestresults. We have experimented with this fa
t on data sent by geostationary

1.4. APPLICATIONS OF TEXT ALGORITHMS IN GENETICS 7satellites. The data have been
ompressed to seven per
ent of their originalsize without any loss of information.The
ompression is very su

essful if there are redundan
ies and regularitiesin the information message. The analysis of data is related to the problem ofdete
ting regularities in texts. EÆ
ient algorithms are parti
ularly usefulto expertise the data.1.4 Appli
ations of text algorithms in geneti
sMole
ules of nu
lei
 a
ids
arry a large segment of information about the fun-damental determinants of life, and, in parti
ular, about the reprodu
tion of
ells. There are two types of nu
lei
 a
ids known as desoxyribonu
lei
 a
id(DNA) and ribonu
lei
 a
id (RNA). DNA is usually found as double-strandedmole
ules. In vivo, the mole
ule is folded up like a ball of string. The skeletonof a DNA mole
ule is a sequen
e on the four-letter alphabet of nu
leotides:adenine (A), guanine (G),
ytosine (C), and thymine (T). RNA mole
ules areusually single-stranded mole
ules
omposed of ribonu
leotides: A, G, C, andura
il (U).Pro
essus of \trans
ription" and \translation" lead to the produ
tion ofproteins, whi
h also have a string
omposed of 20 amino a
ids as a primarystru
ture. In a �rst approa
h all these mole
ules
an be viewed as texts. Thedis
overy twenty years ago of powerful sequen
ing te
hniques has led to a rapida

umulation of sequen
e data. From the
olle
tion of sequen
es up to theiranalysis many algorithms on texts are implied. Moreover, only fast algorithmsare often feasible be
ause of the huge amount of data involved.Colle
ting sequen
es
an be a

omplished through audioradiography gels.The automati
 trans
ription of these gels into sequen
es is a typi
al two di-mensional pattern-mat
hing problem in two dimensions. The re
onstru
-tion of a whole sequen
e from small segments, used for instan
e in the shotgunsequen
ing method, is another example of a problem that o

urs during thisstep. This problem is
alled the shortest
ommon superstring problem:
onstru
tion of the shortest text
ontaining several given smaller texts.On
e a new sequen
e is obtained, the �rst important question to ask iswhether it resembles any other sequen
e already stored in data banks. Beforeadding a new mole
ular sequen
e into an existing data base one needs to knowwhether or not the sequen
e is already present. The
omparison of severalsequen
es is usually realized by writing one over another. The result is knowas an alignment of the set of nu
leotides. Alignment of two sequen
es is theedit distan
e problem:
ompute the minimal number of edit operations totransform one string into another. It is realized by algorithms based on dy-

8 CHAPTER 1. STRINGOLOGYnami
 programming te
hniques similar to the one used by the UNIX
ommanddi�.The problem of the longest
ommon subsequen
e is a variation of thealignment of sequen
es. A tool,
alled agrep, developed at the Universityof Arizona, is devoted to these questions, related to approximate stringmat
hing.Further questions about mole
ular sequen
es are related to their analysis.The aim is to dis
over the fun
tions of all parts of the sequen
e. For example,DNA sequen
es
ontain important regions (
oding sequen
es) for the produ
-tion of proteins inside the
ell. However, no good answer is presently knownfor �nding all
oding sequen
es of a DNA sequen
e. Another question aboutsequen
es is the re
onstru
tion of their three-dimensional stru
ture. It seemsthat a part of the information resides in the sequen
e itself. This is be
ause,during the folding pro
ess of DNA, for example, nu
leotides mat
h pairwise(A with T, and C with G). This produ
es approximate palindromi
 symme-tries (as TTAGCGGCTAA). Involved in all these questions are approximatesear
hes for spe
i�
 patterns, for repetitions, for palindromes, or otherregularities.1.5 EÆ
ien
y of algorithmsEÆ
ient algorithms
an be
lassi�ed a

ording to what is meant by eÆ
ien
y.There exist di�erent notions of eÆ
ien
y depending on the
omplexity measureinvolved. Several su
h measures are dis
ussed in this book: sequential time,memory spa
e, parallel time, and number of pro
essors.This book deals with \feasible" problems. We
an de�ne them as problemshaving eÆ
ient algorithms, or as solvable in time bounded by a small-degreepolynomial. In the
ase of sequential
omputations we are interested in lower-ing the degree of the polynomial
orresponding to time
omplexity. The mosteÆ
ient algorithms usually solve a problem in linear-time
omplexity. We arealso interested in spa
e
omplexity. Optimal spa
e
omplexity often means a
onstant number of (small integer) registers in addition to input data. There-fore, we say that an algorithm is time-spa
e optimal if it works simultaneouslyin linear time and in
onstant extra spa
e. These are the most advan
ed se-quential algorithms, and also the most interesting, both from a pra
ti
al andtheoreti
al point of view.In the
ase of parallel
omputations we are generally interested in the par-allel time T (n) as well as in the number of pro
essors P (n) required for theexe
utions of the parallel algorithm on data of size n. The total number ofelementary operations performed by the parallel algorithm is not greater than

1.5. EFFICIENCY OF ALGORITHMS 9the produ
t T (n)P (n).EÆ
ient parallel algorithms are those that operate in no more than poly-logarithmi
 (a polynomial of logs of input size) time with a polynomial numberof pro
essors. The
lass of problems solvable by su
h algorithms is denoted byNC and hen
e we
all the related algorithms NC-algorithms. An NC-algorithmis optimal if the total number of operations T (n)P (n) is linear. Another possi-ble de�nition is that this number is essentially the same as the time
omplexityof the best known sequential algorithm solving the given problem. However,we adopt the �rst option here be
ause algorithms on strings usually have atime
omplexity whi
h is at least linear.Pre
isely evaluating the
omplexity of an algorithm a

ording to some mea-sure is often diÆ
ult, and, moreover, it is unlikely to be of mu
h use. The \bigO" notation
lari�es what the important terms of a
omplexity expression are.It estimates the asymptoti
 order of the
omplexity of an algorithm and helps
ompare algorithms between ea
h others. Re
all that if f and g are two fun
-tions from and to integers, then we say that f = O(g) if f(n) < C:g(n) whenn > N , for some
onstants C and N . We write f = �(g) when the fun
tionsf and g are of the same order, whi
h means that both equalities f = O(g) andg = O(f) hold.Comparing fun
tions through their asymptoti
 orders leads to these kinds ofinequalities: O(n0:7) < O(n) < O(n logn), or O(nlog n) < O(lognn) < O(n!).Within sequential models of ma
hines one
an distinguish further typesof
omputations: o�-line, on-line and real-time. These
omputations are alsorelated to eÆ
ien
y. It is understood that real-time
omputations are moreeÆ
ient than general on-line, and that on-line
omputations are more eÆ
ientthan o�-line. Ea
h algorithm is an o�-line algorithm: \o�-line"
on
eptuallymeans that the whole input data
an be put into the memory before the a
tual
omputation starts. We are not interested then in the intermediate results
omputed by the algorithm, but only in the �nal result (though this �nal result
an be a sequen
e or a ve
tor). The time
omplexity is measured by the totaltime from the moment the
omputation starts (with all input data previouslymemorized) up to the �nal termination. In
ontrast, an on-line algorithm islike a sequential transdu
er. The portions of the input data are \swallowed"by the algorithm step after step, and after ea
h step an intermediate result isexpe
ted (related to the input data read so far). It then reads the next portionof the input, and so on. In on-line algorithms the input
an be treated asan in�nite stream of data,
onsequently we are not interested mainly in thetermination of the algorithm for all su
h data. The main interest for us isthe total time T (n) for whi
h we have to wait to get the n-th �rst outputs.The time T (n) is measured starting at the beginning of the whole
omputation(a
tivation of the transdu
er). Suppose that the input data is a sequen
e and

10 CHAPTER 1. STRINGOLOGYthat after reading the n-th symbol we want to print \1" if the text read to thismoment
ontains a given pattern as a suÆx, otherwise we print \0". Hen
ewe have two streams of data: the stream of input symbols and an outputstream of answers \1" or \0". The main feature of the on-line algorithm isthat it has to give an output value before reading the next input symbol. Thereal-time
omputations are those on-line algorithms that are in a
ertain senseoptimal; the elapsing time between reading two
onse
utive input symbols (thetime spent for
omputing only the last output value) should be bounded by a
onstant. Most linear on-line algorithms are in fa
t real-time algorithms.We are primarily interested in o�-line
omputations in whi
h the worst-
ase running time is linear, but on-line and real-time
omputations, as well asaverage
omplexities are also dis
ussed in this book.1.6 Some notation and formal de�nitionsLet A be an input alphabet{a �nite set of symbols. Elements of A are
alledthe letters, the
hara
ters, or the symbols. Typi
al examples of alphabetsare: the set of all ordinary letters, the set of binary digits, or the set of 2568-bit ASCII symbols. Texts (also
alled words or strings) over A are �nitesequen
es of elements of A. The length (size) of a text is the number of itselements (with repetitions). Therefore, the length of aba is 3. The length of aword x is denoted by jxj. The input data for our problems will be words, andthe size n of the input problem will usually be the length of the input word.In some situations, n will denote the maximum length or the total length ofseveral words if the input of the problem
onsists of several words.The i-th element of the word x is denoted by x[i℄ and i is its position on x.We denote by x[i: :j℄ the fa
tor x[i℄x[i+1℄ : : : x[j℄ of x. If i > j, by
onvention,the word x[i: :j℄ is the empty word (the sequen
e of length zero), whi
h isdenoted by ".We say that the word x of length m is a fa
tor (also
alled a subword) ofthe word y if x = y[i+ 1: :i+ n℄ for some integer i. We also say that x o

ursin y at position i, or that the position i is a mat
h for x in y.We de�ne the notion of subsequen
e (sometimes
alled a subword). Theword x is a subsequen
e of y if x
an be obtained from y by removing zero ormore (not ne
essarily adja
ent) letters from it. Likewise, x is a subsequen
eof y if x = y[i1℄y[i2℄ : : : y[im℄, where i1; i2; : : : ; im is an in
reasing sequen
e ofindi
es on y.Next we de�ne formally the basi
 problem
overed in this book. We often
onsider two texts pat (the pattern) and text of respe
tive lengths m and n.

1.7. SOME SIMPLE COMBINATORICS OF STRINGS 11
period of x

border of x

x

x

border of x Figure 1.1: Duality between periods and borders of texts.String mat
hing (the basi
 problem). Given texts pat and text , verify ifpat o

urs in text . This is a de
ision problem: the output is a Boolean value.It is usually assumed that m � n. Therefore, the size of the problem is n. Aslightly advan
ed version entails sear
hing for all o

urren
es of pat in text ,that is,
omputing the set of positions of pat in text. Let us denote this set byMATCH (pat ; text). In most
ases an algorithm
omputing MATCH (pat ; text)is a trivial modi�
ation of a de
ision algorithm, this is the reason why wesometimes present only de
ision algorithms for string mat
hing.Instead of just one pattern, one
an
onsider a �nite set of patterns andask if a given text
ontains a pattern from the set. The size of the problem isnow the total length of all patterns plus the length of the text.1.7 Some simple
ombinatori
s of stringsThe main theoreti
al tools in string-mat
hing algorithms are related to math-emati
al properties of periodi
ities in strings. We de�ne the notion of periodof a word, whi
h is
entral in almost all strings mat
hing algorithms. A periodof a word x is an integer p, 0 < p � jxj, su
h thatx[i℄ = x[i+ p℄for all i 2 f1; : : : ; jxj � pg. When there is no ambiguity, we also say that theword x[1: :p℄ is a period of x. This is the usual de�nition of a period for afun
tion de�ned on integers, as x
an be viewed. Note that the length of aword is always a period of it, so that any word has at least one period. Wedenote by period (x) the smallest period of x. We additionally say that x isperiodi
 if period (x) � jxj=2.The notion of border of a text is a dual notion to that of period, see Fig-ure 1.1. A border of x is any word that is simultaneously a pre�x and a suÆxof x. Observe that x and the empty string " are borders of x.Let us denote by Border (x) the longest nontrivial border (not the whole

12 CHAPTER 1. STRINGOLOGY
x

p

q

a b c

p-q

i +(p-q) i +p i Figure 1.2: Quantity p � q is also a period be
ause letters a and b are bothequal to letter
.word) of x. Note that(jxj � jBorder (x)j; jxj � jBorder 2(x)j; : : : ; jxj � jBorderk(x)j)is the sequen
e of all periods of x in in
reasing order (k is the smallest integerfor whi
h Borderk(x) is the empty word).Example. The periods of aabaaabaa (of length 9) are 4, 7, 8 and 9. Its
orresponding proper borders are aabaa, aa, a, ".Periodi
ity LemmaLet x be a non-empty word and p be an integer su
h that 0 < p � jxj. Thenea
h of the following
onditions equally de�nes p as a period of x:1. x is a fa
tor of some word yk with jyj = p and k > 0,2. x may be written (uv)k with juvj = p, v a non-empty word, and k > 0,3. for some words y, z and w, x = yw = wz and jyj = jzj = p.Lemma 1.1 [Periodi
ity Lemma℄ Let p and q be two periods of the word x. Ifp+ q < jxj, then g
d(p; q) is also a period of x.Proof. The
on
lusion trivially holds if p = q. Assume now that p > q.First we show that the
ondition p+ q < jxj implies that p� q is a period of x.Let x = x[1℄x[2℄ : : : x[n℄ (x[i℄'s are letters). Given x[i℄ the i-th letter of x, the
ondition implies that either i� q � 1 or i+ p � n. In the �rst
ase, q and pbeing periods of x, x[i℄ = x[i�q℄ = x[i�q+p℄. In the se
ond
ase, for the samereason, x[i℄ = x[i+p℄ = x[i+p� q℄. Thus p� q is a period of x. This situationis shown in Figure 1.2. The rest of the proof, left to the reader, is by indu
tionon the integer max(p; q), after noting that g
d(p; q) equals g
d(p� q; q). 2

1.7. SOME SIMPLE COMBINATORICS OF STRINGS 13a ab ba aa ab ba ab ba aa abFigure 1.3: After
utting o� its last two letters, Fib8 is a symmetri
 word, apalindrome. This is not a

idental.There is a stronger version of the periodi
ity lemma for whi
h we omit theproof.Lemma 1.2 [Strong Periodi
ity Lemma℄ If p and q are two periods of a wordx su
h that p+ q � g
d(p; q) � jxj, then g
d(p; q) is also a period of x.An interesting family: Fibona

i wordsFibona

i words form an interesting family of words (from the point of view ofperiodi
ities). In sone sense, the inequality that appears in Strong Periodi
ityLemma is optimal. The example supporting this
laim is given by the Fibona

iwords with the last two letters deleted.Let Fibn be the n-th Fibona

i word (n � 0). It is de�ned byFib0 = ", Fib1 = b, Fib2 = a, and Fibn = Fibn�1Fibn�2, for n > 2.Fibona

i words satisfy a large number of interesting properties related toperiods and repetitions. Note that Fibona

i words (ex
ept the �rst two wordsof the sequen
e) are pre�xes of their su

essors. Indeed, there is an evenstronger property: the square of any Fibona

i word of high enough rank is apre�x of its su

eeding Fibona

i words. Among other properties of Fibona

iwords, it must be noted that they have no fa
tor in the form u4 (u non emptyword) and they are almost symmetri
, see Figure 1.3. Therefore, Fibona

iwords
ontain a large number of periodi
ities, but none with an exponenthigher than 3.The lengths of Fibona

i words are the well-known Fibona

i numbers,f0 = 0, f1 = 1, f2 = 1, f3 = 2, f4 = 3, The �rst Fibona

i words of thesequen
e (Fibn; n > 2) are

14 CHAPTER 1. STRINGOLOGYFib3 = ab; jFib3j = 2;Fib4 = aba; jFib4j = 3;Fib5 = abaab; jFib5j = 5;Fib6 = abaababa; jFib6j = 8;Fib7 = abaababaabaab; jFib7j = 13;Fib8 = abaababaabaababaababa; jFib8j = 21;Fib9 = abaababaabaababaababaabaababaabaab; jFib9j = 34.1.8 Some other interesting stringsFibona

i words of rank greater than 1
an be treated as pre�xes of a singlein�nite Fibona

i string Fib1. Similarly we
an de�ne the words of Thue-Morse T (n) as pre�xes of a single in�nite word T1. Assume we
ount positionson this word starting from 0. Denote by g(k) the number of \1" in the binaryrepresentation of the number k. ThenT1(k) = (a if g(k) is even,b otherwise.The Thue-Morse words Tn are the pre�xes of T1 of length 2n. We list severalof them below.T1 = ab,T2 = abba,T3 = abbabaab,T4 = abbabaabbaababba,T9 = abbabaabbaababbabaababbaabbabaab.These words have the remarkable property of being overlap-free, whi
h meansthat there is no nonempty word x that o

urs in them at two positions whi
hdistan
e is smaller than jxj. However these words are mostly known for thefollowing square-free property: they
ontain no nonempty word in the form xx(nor, indeed, in the form axaxa, a 2 A).Let us de�ne the following invertible en
oding:�(a) = a; �(b) = ab; and �(
) = abb:Lemma 1.3 For ea
h integer n the word ��1(Tn) is square free.The lemma says in parti
ular that there are in�nitely many \square-free"words. Let T 01 be the word over the alphabet f0; 1; 2g whi
h symbols are thenumber of o

urren
es of letter \b" between two
onse
utive o

urren
es of

1.8. SOME OTHER INTERESTING STRINGS 15letter \a" in T1. Then su
h an in�nite word is also \square-free". We haveT 01 = 2 1 0 2 0 1 2 : : :Other interesting words are sequen
es of moves in the Hanoi towers game.There are six possible moves depending from whi
h sta
k to whi
h other sta
kan disk is moved. If we have n disks then the optimal sequen
e
onsists of2n � 1 moves and forms a word Hn. The interesting property of these wordsis that all of them are \square-free".Yet another family of words that has a strange relation to numbers g(k) isgiven by the binary words Pn, where Pn is the n-th row of the Pas
al trianglemodulo 2. In other words:Pn(i) = � ni � mod 2:We list below some of these words.P0 = 1P1 = 1 1P2 = 1 0 1P3 = 1 1 1 1P4 = 1 0 0 0 1P5 = 1 1 0 0 1 1The word Pn has the following remarkable property: the number of \1" in Pnequals 2g(n).Let us
onsider the in�nite string W whi
h symbols are digits and whi
hresults from
on
atenating all
onse
utive natural numbers written in de
imal.Hen
e,W = 01234567891011121314151617181920212223242526272829303132 : : :Denote byWn the pre�x ofW of size n. For a word x, let us denote by o

n(x)the number of o

urren
es of x in Wn. The words Wn have the followinginteresting property: for every two nonempty words x and y of a same lengthlimn!1 o

n(x)o

n(y) = 1:This means, in a
ertain sense, that the sequen
e W is quite random.An interesting property of strings is how many fa
tors of a given lengthk they
ontain. Assume the alphabet is fa; bg . For a given k we have 2kdi�erent words of length k. A natural question is:what is the minimal length
(k) of a word
ontaining ea
h subword oflength k.

16 CHAPTER 1. STRINGOLOGYObviously
(k) � 2k+k�1, sin
e any shorter word has less than 2k fa
tors. Ithappens that
(k) = 2k+ k� 1. The
orresponding words are
alled de Bruijnwords. In these strings ea
h word of length k o

urs exa
tly on
e. For a givenk there are exponentially many de Bruijn words. For example for k = 1 we
an take ab, for k = 2 we take aabba or abaab and for k = 3 we
an take deBruijn word aaababbbaa.There is an interesting relation of de Bruijn words to Euler
y
les in spe
ialgraphs Gk. The nodes of Gk are all words of length k � 1 and for any wordx = a1a2 : : : ak�1 of length k � 1 we have two dire
ted edgesa1a2 : : : ak�1 a�! a2 : : : ak�1 � a, a1a2 : : : ak�1 b�! a2 : : : ak�1 � bThe graph has a dire
ted Euler
y
le (
ontaining ea
h edge exa
tly on
e). Leta1a2 : : : aN be the sequen
e of labels of edges in a Euler
y
le. Observe thatN = 2k. As de Bruijn word we
an take the word:a1a2 : : : aNa1a2 : : : ak�1:1.9 Cy
li
 shifts and primitive wordsA
y
li
 shift of x is any word vu, when x
an be written in the form uv. Letus
onsider how many di�erent
y
li
 shifts a word
an have.Example. Consider the
y
li
 shifts of the word abaaaba of length 7. Thereare exa
tly 7 di�erent
y
li
 shifts of abaaaba, the 8-th shift goes ba
k to theinitial word.a b a a a b ab a a a b a aa a a b a a ba a b a a b aa b a a b a ab a a b a a aa a b a a a ba b a a a b aA word w is a said to be primitive if it is not of the form w = vk, for anatural number k � 2. As a
onsequen
e of the periodi
ity lemma we showthe following fa
t.Lemma 1.4 Assume the word x is primitive. Then x has exa
tly jxj di�erent

1.9. CYCLIC SHIFTS AND PRIMITIVE WORDS 17
y
li
 shifts. In other words:jfvu : u and v words su
h that x = uv and u 6= "gj = jxj:Proof. Assume x of length p has two
y
li
 shifts that are equal. Hen
ex = uv = u0v0, and vu = v0u0, where u 6= u0.Assume without loss of generality that ju0j < juj. Then u = u0�; v0 = � � vand vu0� = �vu0. Hen
e the text � � v � u0 � � has borders � � v � u0 and�. Consequently, the text � � v � u0 � � has two periods of size r = j�j andp = jvu0�j. At the same time r + p = j� � v � u0 � �j.The periodi
ity lemma implies that the text has period g
d(r; p). Sin
er < p this shows that p is divisible by the length of the smaller period. Thisimplies that x is a power of a smaller word, whi
h
ontradi
ts the assumption.Consequently x
annot have two identi
al
y
li
 shifts. 2We show a simple number-theoreti
 appli
ation of primitive words and
y
li
 shifts. In 1640 the great Fren
h number theorist Pierre de Fermat statedthe following theorem.Theorem 1.1 [Fermat's Simple Theorem℄ If p is a prime number and n isany natural number then p divides np � n.Proof. De�ne the equivalen
e relation � on words by x � y if x is a
y
li
shift of y. A word is said to be unary if it is in a form ap, for a letter a. Takethe set S of all non-unary words of length p over the alphabet f1; 2; : : : ; ng.All these words are primitive sin
e their length is a prime number and theyare non-unary. A

ording to Lemma 1.4 ea
h equivalen
e
lass has exa
tly pelements. The
ardinality of S is np � n and S
an be partitioned into disjointsubsets of the same
ardinality p. Hen
e the
ardinality of S is divisible by p,
onsequently np � n also is. This
ompletes the proof. 2Bibliographi
 notesComplementary notions, problems and algorithms in stringology may be foundin the books by Cro
hemore and Rytter [CR 94℄, by Stephen [St 94℄, by Gus�eld[Gu 97℄, by Cro
hemore, Han
art and Le
roq [CHL 01℄, and in the
olle
tivebook edited by Apostoli
o and Galil [AG 97℄.

