
 paumier@univ-mlv.fr 1

An overview of Unitex/IDELing Java code

Sébastien Paumier

LIGM, Université Paris-Est

Tux taken from http://tux.crystalxp.net/

 paumier@univ-mlv.fr 2

Technical details

● use Java 1.6 and Swing
● both Unitex and IDELing have been

developed with Eclipse
● you must set Unitex as a required project for

IDELing:

 paumier@univ-mlv.fr 3

Unitex logic

● user vs system directories
● a directory per language

– you can't have different settings for two
tasks on the same language

● language-specific hard-coded constraints
(semitic mode, char-by-char mode, etc)

● you can work with one language at a time

 paumier@univ-mlv.fr 4

IDELing logic

● a workspace containing projects
● you can have several projects opened at the

same time
● similar projects can use common things

with the dependency system
● you can configure everything
● main goal: fixing all tiny annoying details

from Unitex

 paumier@univ-mlv.fr 5

The challenge

● how to reuse as much code as possible from
Unitex without breaking the previous
logics ?

● Gramlab.jar uses Unitex.jar as a library

● introduction of an abstraction layer in
Unitex code so that IDELing can override
some configuration things

 paumier@univ-mlv.fr 6

ConfigModel

● this interface lists methods needed for
obtaining configuration information like:

● language has the following meaning:
– Unitex: name of the current language

directory
– IDELing: name of the concerned project;

null means the current project

public File getAlphabet(String language);

 paumier@univ-mlv.fr 7

ConfigManager

● to access to the actual information, you have
to ask to the ConfigManager:

● in Unitex, an instance of ConfigManager is
used

● in IDELing, an instance of
ProjectPreferences is used

ConfigManager.getManager().getAlphabet("biniou");

 paumier@univ-mlv.fr 8

Configuration storage

● in Unitex:
– a file named Config in the language

directory
– produced by the an instance of

Preferences

– some things are hard-coded

 paumier@univ-mlv.fr 9

Configuration storage
● in IDELing, there are 4 files:

– pom.xml: maven configuration file

● Pom.java

– project.local_config: user's private preferences (text
editor, last graphs used…)

● ProjectLocalConfig.java

– project.preferences: Unitex preferences (font, …)

● Preferences.java

– project.versionable_config: project settings to be shared
on SVN (preprocessing config, …)

● ProjectVersionableConfig.java

● top-level object: Project.java that
delegates to the previous classes

 paumier@univ-mlv.fr 10

Configuration storage

● in IDELing, the rule is to save configuration
files on every modification:

public void validateAndSave() {
if (validateConfiguration(project,false)) {

try {
project.saveConfigurationFiles(false);

} catch (IOException e) {
JOptionPane.showMessageDialog(null,

 "Error while saving your project configuration:\n\n"
+e.getCause(), "Error", JOptionPane.ERROR_MESSAGE);

}
}

}

 paumier@univ-mlv.fr 11

Frames

● InternalFrameManager: allows each
project to have its own JDesktopPane in
IDELing

● FrameFactory objects to manage frames

● TabbableInternalFrame: used to provide
a tab access to frames in IDELing

● KeyedInternalFrame: identify frames with
a special value (often a File)

 paumier@univ-mlv.fr 12

Launching commands

● Launcher: launches command sets, with or
without console logging

● MultiCommands=list of
AbstractMethodCommand objects that can
be:

– Unitex programs: DicoCommand, etc

– other external programs: MvnCommand,
SvnCommand, etc

– method calls: CpCommand, MkdirCommand, etc

 paumier@univ-mlv.fr 13

Launching commands

● ProcessInfoFrame: runs commands and
displays their outputs into a frame

● you can run commands without this frame:
– ExecParameters: allows you to control what

to do with process output and error streams
– you can use it invoking directly

Executor.start()

 paumier@univ-mlv.fr 14

Adding a new command

● create the XxxCommand class with methods
to setup the arguments

● make sure to use properly typed arguments
and not evil things like:

● if it is a command used by Unitex, add it in
HelpOnCommandFrame to make it visible in
the help frame

public XxxCommand input(String file) {
...
}

 paumier@univ-mlv.fr 15

Big files

● support for large text files and HTML
concordance files:

– BigTextArea, BigTextList

– BigConcordance, BigConcordanceDiff

● involves file mapping
● because of java bug #4715154, requires the

phantom reference trick as in
TextAsListModel.reset()

 paumier@univ-mlv.fr 16

SVN support

● svnktclient.jar: a standalone 1.7 SVN
client with only one .svn directory

● invoked from SvnCommand

● SvnExecutor:
– error message processing with

SvnCommandResult

– getSvnInfos: for each file, creates a
SvnInfo object describing the file status;
used to display information in the tree

 paumier@univ-mlv.fr 17

SVN support

● SvnExecutor.getSvnStatusInfo returns
a SvnStatusInfo instance that lists:

– unversioned files
– added files
– modified files
– removed files
– files in conflict

● used to refresh the tree and to prepare
commits

 paumier@univ-mlv.fr 18

SVN credentials

● for every svn operation, first try without
credentials

● on failure (the SvpOpResult value is
AUTHENTICATION_REQUIRED), we try again
with SvnCommand.auth

● credentials are stored by the SVN client in
$HOME/.subversion/auth

 paumier@univ-mlv.fr 19

Ignore/add policy

● by default, ignore ..* *.fst2 *.bin
*.inf target dep build
project.local_config diff

– could be overriden by a manual svn add,
but you don't really want that

● .grf files are forced to be considered as
binary files in order to avoid svn diff3
merging them as text

● don't add any file above the src directory,
except gramlab configuration files

 paumier@univ-mlv.fr 20

$HOME/.gramlab

● global configuration file listing:
– known SVN repositories
– current workspace
– current project in current workspace
– other opened projects in current workspace

svn_repositories: 2
http://foosvn.univ­mlv.fr/svn/test/fr
http://my.other.svn.server.com/svn/biniou
/home/paumier/my_gramlab
en
fr

 paumier@univ-mlv.fr 21

Maven support

● PomIO is responsible for I/O on pom.xml
files

● for each project, a Pom object describes the
GAV and the dependencies, if any

● MvnCommand is used invoke mvn as an
external program:

– under Windows, we launch cmd /c mvn
because one cannot not really launch a
.bat file from a JVM

 paumier@univ-mlv.fr 22

Maven support

● we test if the two required gramlab artifacts
are installed

● if not, we install them:
– App/assembly/pom.xml: pom used to

package projects as .zip artifacts

– App/pom.xml: gramlab parent pom

● see Pom.getXXXCommand methods

 paumier@univ-mlv.fr 23

Packaging a project

● we generate a ant task in the pom file that is
responsible to copy and/or compile files to
be packaged

● as this task may invoke UnitexToolLogger in
a portable way, the maven command has to
be invoked with its path as an argument:

mvn ­Dunitextoollogger=<path to it> ...

 paumier@univ-mlv.fr 24

Getting dependencies

● the command mvn dependency:unpack­
dependencies places dependencies in the
dep directory

● dep is made read-only in order to prevent
users to try editing files in it

● it must be made writeable again before
modifying the project's dependencies

 paumier@univ-mlv.fr 25

Hornet nests

● graph display objects:
– GenericGraphicalZone, GraphicalZone,

TfstGraphicalZone

– GenericGraphBox, GraphBox,
TfstGraphBox

● IDELing workspace management:
– GramlabFrame, ProjectManager,

fr.gramlab.workspace.*

– workspace tree refresh is a nightmare!

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25

