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Technical details

● use Java 1.6 and Swing
● both Unitex and IDELing have been 

developed with Eclipse
● you must set Unitex as a required project for 

IDELing: 
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Unitex logic

● user vs system directories
● a directory per language

– you can't have different settings for two 
tasks on the same language

● language-specific hard-coded constraints 
(semitic mode, char-by-char mode, etc)

● you can work with one language at a time
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IDELing logic

● a workspace containing projects
● you can have several projects opened at the 

same time
● similar projects can use common things 

with the dependency system
● you can configure everything
● main goal: fixing all tiny annoying details 

from Unitex
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The challenge

● how to reuse as much code as possible from 
Unitex without breaking the previous 
logics ?

● Gramlab.jar uses Unitex.jar as a library

● introduction of an abstraction layer in 
Unitex code so that IDELing can override 
some configuration things
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ConfigModel

● this interface lists methods needed for 
obtaining configuration information like:

● language has the following meaning:
– Unitex: name of the current language 

directory
– IDELing: name of the concerned project; 

null means the current project

public File getAlphabet(String language);
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ConfigManager

● to access to the actual information, you have 
to ask to the ConfigManager:

● in Unitex, an instance of ConfigManager is 
used

● in IDELing, an instance of 
ProjectPreferences is used

ConfigManager.getManager().getAlphabet("biniou");
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Configuration storage

● in Unitex:
– a file named Config in the language 

directory
– produced by the an instance of 

Preferences

– some things are hard-coded
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Configuration storage
● in IDELing, there are 4 files:

– pom.xml: maven configuration file

● Pom.java

– project.local_config: user's private preferences (text 
editor, last graphs used…)

● ProjectLocalConfig.java

– project.preferences: Unitex preferences (font, …)

● Preferences.java

– project.versionable_config: project settings to be shared 
on SVN (preprocessing config, …)

● ProjectVersionableConfig.java

● top-level object: Project.java that 
delegates to the previous classes



 paumier@univ-mlv.fr 10

Configuration storage

● in IDELing, the rule is to save configuration 
files on every modification:

public void validateAndSave() {
if (validateConfiguration(project,false)) {

try {
project.saveConfigurationFiles(false);

} catch (IOException e) {
JOptionPane.showMessageDialog(null,

              "Error while saving your project configuration:\n\n"
+e.getCause(), "Error", JOptionPane.ERROR_MESSAGE);

}
}

}
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Frames

● InternalFrameManager: allows each 
project to have its own JDesktopPane in 
IDELing

● FrameFactory objects to manage frames

● TabbableInternalFrame: used to provide 
a tab access to frames in IDELing

● KeyedInternalFrame: identify frames with 
a special value (often a File)
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Launching commands

● Launcher: launches command sets, with or 
without console logging

● MultiCommands=list of 
AbstractMethodCommand objects that can 
be:

– Unitex programs: DicoCommand, etc

– other external programs: MvnCommand, 
SvnCommand, etc

– method calls: CpCommand, MkdirCommand, etc
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Launching commands

● ProcessInfoFrame:  runs commands and 
displays their outputs into a frame

● you can run commands without this frame:
– ExecParameters: allows you to control what 

to do with process output and error streams
– you can use it invoking directly 

Executor.start()
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Adding a new command

● create the XxxCommand class with methods 
to setup the arguments

● make sure to use properly typed arguments 
and not evil things like:

● if it is a command used by Unitex, add it in 
HelpOnCommandFrame to make it visible in 
the help frame

public XxxCommand input(String file) {
...
}
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Big files

● support for large text files and HTML 
concordance files:

– BigTextArea, BigTextList

– BigConcordance, BigConcordanceDiff

● involves file mapping
● because of java bug #4715154, requires the 

phantom reference trick as in 
TextAsListModel.reset()



 paumier@univ-mlv.fr 16

SVN support

● svnktclient.jar: a standalone 1.7 SVN 
client with only one .svn directory

● invoked from SvnCommand

● SvnExecutor: 
– error message processing with 

SvnCommandResult

– getSvnInfos: for each file, creates a 
SvnInfo object describing the file status; 
used to display information in the tree
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SVN support

● SvnExecutor.getSvnStatusInfo returns 
a SvnStatusInfo instance that lists:

– unversioned files
– added files
– modified files
– removed files
– files in conflict

● used to refresh the tree and to prepare 
commits
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SVN credentials

● for every svn operation, first try without 
credentials

● on failure (the SvpOpResult value is 
AUTHENTICATION_REQUIRED), we try again 
with SvnCommand.auth

● credentials are stored by the SVN client in 
$HOME/.subversion/auth
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Ignore/add policy

● by default, ignore ..* *.fst2 *.bin 
*.inf target dep build 
project.local_config diff

– could be overriden by a manual svn add, 
but you don't really want that

● .grf files are forced to be considered as 
binary files in order to avoid svn diff3 
merging them as text

● don't add any file above the src directory, 
except gramlab configuration files
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$HOME/.gramlab

● global configuration file listing:
– known SVN repositories
– current workspace
– current project in current workspace
– other opened projects in current workspace

svn_repositories: 2
http://foosvn.univ­mlv.fr/svn/test/fr
http://my.other.svn.server.com/svn/biniou
/home/paumier/my_gramlab
en
fr
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Maven support

● PomIO is  responsible for I/O on pom.xml 
files

● for each project, a Pom object describes the 
GAV and the dependencies, if any

● MvnCommand is used invoke mvn as an 
external program:

– under Windows, we launch cmd /c mvn 
because one cannot not really launch a 
.bat file from a JVM
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Maven support

● we test if the two required gramlab artifacts 
are installed

● if not, we install them:
– App/assembly/pom.xml: pom used to 

package projects as .zip artifacts

– App/pom.xml: gramlab parent pom

● see Pom.getXXXCommand methods
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Packaging a project

● we generate a ant task in the pom file that is 
responsible to copy and/or compile files to 
be packaged

● as this task may invoke UnitexToolLogger in 
a portable way, the maven command has to 
be invoked with its path as an argument:

mvn ­Dunitextoollogger=<path to it> ...



 paumier@univ-mlv.fr 24

Getting dependencies

● the command mvn dependency:unpack­
dependencies places dependencies in the 
dep directory

● dep is made read-only in order to prevent 
users to try editing files in it

● it must be made writeable again before 
modifying the project's dependencies
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Hornet nests

● graph display objects:
– GenericGraphicalZone, GraphicalZone, 

TfstGraphicalZone

– GenericGraphBox, GraphBox, 
TfstGraphBox

● IDELing workspace management:
– GramlabFrame, ProjectManager, 

fr.gramlab.workspace.*

– workspace tree refresh is a nightmare!
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