
The JFreeChart Class Library

Version 0.9.1

REFERENCE DOCUMENTATION

Written by David Gilbert

June 14, 2002

c© 2000-2002, Simba Management Limited. All rights reserved.

Please note that if you choose to use this document
you do so entirely at your own risk.

Contents

1 Introduction 2
1.1 What is JFreeChart? . 2
1.2 This Document . 2
1.3 Acknowledgements . 3
1.4 Comments and Suggestions . 3

2 Sample Charts 4
2.1 Introduction . 4
2.2 Pie Charts . 4
2.3 Bar Charts . 4
2.4 Line Chart . 6
2.5 XY Plots . 7
2.6 Area Charts . 9
2.7 Step Chart . 9
2.8 Gantt Chart . 10
2.9 Combined Charts . 10
2.10 Future Development . 11

3 Downloading and Installing JFreeChart 12
3.1 Introduction . 12
3.2 Download . 12
3.3 Unpacking the Files . 12
3.4 Running the Demonstration Application 13
3.5 Compiling the Source . 13
3.6 Generating the Javadoc Documentation 14

4 Developing with JFreeChart 15
4.1 Overview . 15
4.2 The Basic Structure . 15
4.3 Creating Your First Chart . 15
4.4 More about Datasets . 17

5 Customising Charts 18
5.1 Introduction . 18
5.2 Customising Charts . 18
5.3 Customising Plots . 19
5.4 Customising Axes . 20

6 Charts Using Category Datasets 23
6.1 Introduction . 23
6.2 Creating a Line Chart with Categorical Data 23

7 Charts Using XYDatasets 27
7.1 Introduction . 27
7.2 Creating a Line Chart with Numerical Data 27

1

8 Combined Charts 32
8.1 Introduction . 32
8.2 Creating an Overlaid XY Plot . 32
8.3 Creating a CombinedXYPlot . 34

9 Exporting Charts to Acrobat PDF 36
9.1 Introduction . 36
9.2 What is Acrobat PDF? . 36
9.3 iText . 36
9.4 Graphics2D . 36
9.5 Getting Started . 37
9.6 The Application . 37
9.7 Viewing the PDF File . 41
9.8 Unicode Characters . 41

10 Exporting Charts to SVG Format 45
10.1 Introduction . 45
10.2 What is SVG? . 45
10.3 Batik . 45
10.4 Batik and JFreeChart . 45
10.5 Getting Started . 45
10.6 The Application . 46
10.7 Viewing the SVG . 47

11 Packages 48
11.1 Overview . 48

12 Package: com.jrefinery.chart 49
12.1 Overview . 49
12.2 AbstractCategoryItemRenderer 49
12.3 AbstractTitle . 50
12.4 AbstractXYItemRenderer . 51
12.5 AreaCategoryItemRenderer . 51
12.6 AreaXYItemRenderer . 52
12.7 Axis . 52
12.8 AxisConstants . 54
12.9 AxisNotCompatibleException . 54
12.10BarRenderer . 55
12.11CandlestickRenderer . 55
12.12CategoryAxis . 56
12.13CategoryItemRenderer . 56
12.14CategoryPlot . 58
12.15CategoryPlotConstants . 60
12.16ChartFactory . 60
12.17ChartFrame . 62
12.18ChartMouseEvent . 62

2

12.19ChartMouseListener . 62
12.20ChartPanel . 63
12.21ChartPanelConstants . 65
12.22ChartRenderingInfo . 65
12.23ChartUtilities . 65
12.24CombinedXYPlot . 66
12.25CrosshairInfo . 67
12.26DateAxis . 67
12.27DateTitle . 68
12.28DateUnit . 68
12.29DefaultShapeFactory . 69
12.30HighLow . 69
12.31HighLowRenderer . 70
12.32HorizontalAxis . 70
12.33HorizontalBarRenderer . 71
12.34HorizontalCategoryAxis . 71
12.35HorizontalCategoryPlot . 72
12.36HorizontalDateAxis . 73
12.37HorizontalIntervalBarRenderer 73
12.38HorizontalNumberAxis . 73
12.39HorizontalNumberAxis3D . 74
12.40HorizontalSymbolicAxis . 74
12.41HorizontalValuePlot . 74
12.42ImageTitle . 75
12.43JFreeChart . 75
12.44JFreeChartConstants . 77
12.45JFreeChartInfo . 77
12.46Legend . 78
12.47LegendItem . 78
12.48LegendItemCollection . 78
12.49LegendItemLayout . 78
12.50LineAndShapeRenderer . 79
12.51Marker . 79
12.52MeterLegend . 80
12.53MeterPlot . 80
12.54NumberAxis . 80
12.55NumberTickUnit . 82
12.56OverlaidVerticalCategoryPlot . 83
12.57OverlaidXYPlot . 83
12.58PeriodMarkerPlot . 84
12.59PiePlot . 84
12.60Plot . 86
12.61PlotException . 88
12.62PlotNotCompatibleException . 88
12.63SeriesShapeFactory . 88
12.64ShapeFactory . 88

3

12.65SignalRenderer . 89
12.66Spacer . 89
12.67StackedHorizontalBarRenderer 89
12.68StackedVerticalBarRenderer . 89
12.69StackedVerticalBarRenderer3D 90
12.70StandardLegend . 90
12.71StandardXYItemRenderer . 90
12.72TextTitle . 91
12.73Tick . 91
12.74TickUnit . 91
12.75TickUnits . 92
12.76ValueAxis . 92
12.77VerticalAxis . 94
12.78VerticalBarRenderer . 94
12.79VerticalBarRenderer3D . 95
12.80VerticalCategoryAxis . 95
12.81VerticalCategoryPlot . 95
12.82VerticalIntervalBarRenderer . 96
12.83VerticalLogarithmicAxis . 96
12.84VerticalNumberAxis . 97
12.85VerticalNumberAxis3D . 97
12.86VerticalSymbolicAxis . 98
12.87VerticalValuePlot . 98
12.88VerticalXYBarRenderer . 98
12.89WindItemRenderer . 99
12.90XYItemRenderer . 99
12.91XYPlot . 100
12.92XYStepRenderer . 102

13 Package: com.jrefinery.chart.data 103
13.1 Introduction . 103
13.2 LinearPlotFitAlgorithm . 103
13.3 MovingAveragePlotFitAlgorithm 103
13.4 PlotFit . 103
13.5 PlotFitAlgorithm . 103

14 Package: com.jrefinery.chart.entity 104
14.1 Introduction . 104
14.2 CategoryItemEntity . 104
14.3 ChartEntity . 105
14.4 EntityCollection . 106
14.5 PieSectionEntity . 106
14.6 StandardEntityCollection . 107
14.7 XYItemEntity . 107

4

15 Package: com.jrefinery.chart.event 109
15.1 Introduction . 109
15.2 AxisChangeEvent . 109
15.3 AxisChangeListener . 109
15.4 ChartChangeEvent . 109
15.5 ChartChangeListener . 110
15.6 LegendChangeEvent . 110
15.7 LegendChangeListener . 110
15.8 PlotChangeEvent . 110
15.9 PlotChangeListener . 111
15.10TitleChangeEvent . 111
15.11TitleChangeListener . 111

16 Package: com.jrefinery.chart.tooltips 112
16.1 Introduction . 112
16.2 CategoryToolTipGenerator . 112
16.3 PieToolTipGenerator . 112
16.4 StandardCategoryToolTipGenerator 113
16.5 StandardHighLowToolTipGenerator 113
16.6 StandardPieToolTipGenerator . 113
16.7 StandardToolTips . 113
16.8 StandardXYToolTipGenerator 114
16.9 ToolTip . 114
16.10ToolTipGenerator . 115
16.11ToolTips . 115
16.12XYToolTipGenerator . 115

17 Package: com.jrefinery.chart.ui 116
17.1 Introduction . 116
17.2 AxisPropertyEditPanel . 116
17.3 ChartPropertyEditPanel . 116
17.4 LegendPropertyEditPanel . 116
17.5 NumberAxisPropertyEditPanel 117
17.6 PlotPropertyEditPanel . 117
17.7 TitlePropertyEditPanel . 117

18 Package: com.jrefinery.data 118
18.1 Introduction . 118
18.2 AbstractDataset . 118
18.3 AbstractSeriesDataset . 118
18.4 BasicTimeSeries . 119
18.5 CategoryDataset . 121
18.6 CombinationDataset . 121
18.7 CombinedDataset . 122
18.8 Dataset . 122
18.9 DatasetChangeEvent . 123

5

18.10DatasetChangeListener . 123
18.11Datasets . 123
18.12Day . 124
18.13DefaultCategoryDataset . 125
18.14DefaultPieDataset . 126
18.15DefaultXYDataset . 127
18.16DomainInfo . 127
18.17HighLowDataset . 128
18.18Hour . 128
18.19IntervalXYDataset . 129
18.20IntervalXYZDataset . 130
18.21Millisecond . 130
18.22Minute . 131
18.23Month . 132
18.24PieDataset . 133
18.25Quarter . 134
18.26RangeInfo . 135
18.27Second . 136
18.28SeriesChangeListener . 137
18.29SeriesDataset . 137
18.30SeriesException . 137
18.31Statistics . 138
18.32SubseriesDataset . 138
18.33TimePeriod . 138
18.34TimePeriodFormatException . 140
18.35TimeSeriesCollection . 140
18.36TimeSeriesDataPair . 142
18.37TimeSeriesTableModel . 142
18.38Values . 142
18.39Week . 142
18.40XYDatapair . 143
18.41XYDataset . 144
18.42XYSeries . 144
18.43XYSeriesCollection . 145
18.44XYZDataset . 146
18.45Year . 146

A The GNU Lesser General Public Licence 148
A.1 Introduction . 148
A.2 The Licence . 148

6

1 Introduction

1.1 What is JFreeChart?

JFreeChart is a free1 Java class library for generating charts.

The chart types supported by JFreeChart include pie charts, bar charts (hori-
zontal and vertical, regular and stacked, optional 3D-effect), line charts, scatter
plots, time series charts (including moving averages, high-low-open-close charts
and candlestick plots), Gantt charts, meter charts (dial and thermometer), sym-
bol charts, wind plots, combination charts and more.

JFreeChart has the following features:

• interactive zooming;

• events;

• tooltips;

• data is accessible from any implementation of the defined interfaces;

• export to JPEG, PNG, SVG, PDF and any other format with a Graphics2D
implementation;

• works in applications, servlets and applets;

• complete source code available under the terms of the GNU Lesser General
Public License (LGPL);

JFreeChart can be downloaded from:

http://www.object-refinery.com/jfreechart/index.html

JFreeChart is written entirely in Java, and should run on any implementation
of the Java 2 platform (JDK1.3 or later recommended).

1.2 This Document

This document has been written for version 0.9.1 of JFreeChart.

Two versions of the document are available:

• a free version can be downloaded from the JFreeChart web page, and
includes the chapters up to and including the instructions for installing
JFreeChart.

1Free under the terms of the GNU Lesser General Public License. See Appendix A for
details.

7

• a premium version can be purchased from the JFreeChart web page and
includes additional tutorial chapters and reference documentation for the
JFreeChart classes. Proceeds from the sale of this document are used to
sponsor on-going development of JFreeChart.

Please note that I have put in considerable effort to ensure that the information
in this document is up-to-date and accurate, but I cannot guarantee that it does
not contain errors. You must use this document at your own risk or not use it
at all.

1.3 Acknowledgements

JFreeChart contains code and ideas from many people. At the risk of missing
someone out, I would like to thank the following people for their contribu-
tions: Andrzej Porebski, Bill Kelemen, David Berry, Matthew Wright, David
Li, Sylvain Vieujot, Serge V. Grachov, Jonathan Nash, Hans-Jurgen Greiner,
Joao Guilherme Del Valle, Mark Watson, Søren Caspersen, Laurence Vanhel-
suwé, Martin Cordova, Wolfgang Irler, Craig MacFarlane, Michael Duffy, Bryan
Scott, Hari, Anthony Boulestreau, Thomas Meier, Sam (oldman), Jeremy Bow-
man, Jean-Luc Schwab, Roger Studner, Andreas Schneider, Eric Thomas, Jon
Iles, Tin Luu and Krzysztof Paz.

1.4 Comments and Suggestions

If you have any comments or suggestions regarding this document, please send
e-mail to: david.gilbert@object-refinery.com

8

2 Sample Charts

2.1 Introduction

This section shows some sample charts created using the JFreeChart demon-
stration application. It is intended to give a reasonable overview of the types of
charts that JFreeChart can generate.

2.2 Pie Charts

JFreeChart can create pie charts using any data that conforms to the PieDataset
interface:

Individual pie sections can be ”exploded”, and the chart can take on an elliptical
shape, as shown in the next example:

The original pie chart implementation was contributed by Andrzej Porebski.

2.3 Bar Charts

A range of bar charts can be created with JFreeChart, using any data that
conforms to the CategoryDataset interface.

9

The first example is a horizontal bar chart :

Using exactly the same data, but changing the orientation, we can generate a
vertical bar chart :

Vertical bar charts can be displayed with a 3D effect (thanks to Serge Grachov):

The bars can be stacked in a stacked horizontal bar chart :

10

...and similarly a stacked vertical bar chart :

The stacked vertical bar chart can be displayed with a 3D effect (again thanks
to Serge Grachov):

2.4 Line Chart

The line chart is generated using the same CategoryDataset that is used for
the bar charts:

11

The data is the same, but the line chart gives you another presentation option.

2.5 XY Plots

A third type of dataset, the XYDataset, is used to generate further chart types.
The standard XY plot has numerical x and y axes. By default, lines are drawn
between each data point:

Shapes can be drawn at data points, rather than drawing lines between data
points, for a scatter plot :

12

JFreeChart supports time series charts:

It is possible to add a moving average line to a time series plot:

You can display high-low-open-close data (thanks to Andrzej Porebski), using
HighLowDataset (an extension of XYDataset):

Bar charts over a numerical domain can be drawn using IntervalXYDataset
(another extension of XYDataset):

13

2.6 Area Charts

You can generate an area chart for data in a CategoryDataset or an XYDataset.
The following example uses the latter:

The renderer classes for area charts were developed by Jon Iles and Hari.

2.7 Step Chart

Here is an example of a step chart :

14

The renderer class for this chart was contributed by Roger Studner.

2.8 Gantt Chart

Simple Gantt charts can be generated using data from an IntervalCategoryDataset:

The renderer for this chart was developed by Eduard Martinescu.

2.9 Combined Charts

Bill Kelemen has extended JFreeChart to allow for combined charts, including
overlaid charts:

15

...horizontally combined charts:

...and vertically combined charts:

2.10 Future Development

Given the open development model of JFreeChart, it is likely that many more
chart types will be developed in the future as developers modify JFreeChart to
meet their requirements. Check the JFreeChart web-page for updates.

16

3 Downloading and Installing JFreeChart

3.1 Introduction

This section contains instructions for downloading, unpacking, and recompil-
ing JFreeChart (recompiling is optional, as the runtime jar files are included
in the download). Also included are instructions for running the JFreeChart
demonstration application, and generating the Javadoc HTML files from the
JFreeChart source code.

3.2 Download

You can download the latest version of JFreeChart from:

http://www.object-refinery.com/jfreechart/index.html

There are two versions of the JFreeChart download:
File: Description:

jfreechart-0.9.1.tar.gz JFreeChart for Linux/Unix.
jfreechart-0.9.1.zip JFreeChart for Windows.

The two files contain the same source code. All the text files in the Windows
download have been recoded into DOS format (both carriage return and line-
feed at the end of each line).

JFreeChart uses the JCommon Class Library (currently version 0.6.2). The
JCommon runtime jar file is included in the JFreeChart download, but if you re-
quire the source code (recommended) then you should also download JCommon
from:

http://www.object-refinery.com/jcommon/index.html

There is a separate PDF document for JCommon, which includes full instruc-
tions for downloading and unpacking the files.

3.3 Unpacking the Files

After downloading JFreeChart, you need to unpack the files. You should move
the download file to a convenient directory—when you unpack JFreeChart, a
new subdirectory will be created in the same location as the download file.

3.3.1 Unpacking on Linux/Unix

To extract the files from the download on Linux/Unix, enter the following com-
mand:

tar xvzf jfreechart-0.9.1.tar.gz

This will extract all the source, run-time and documentation files for JFreeChart
into a new directory called jfreechart-0.9.1.

17

3.3.2 Unpacking on Windows

To extract the files from the download on Windows, enter the following com-
mand:

jar -xvf jfreechart-0.9.1.zip

This will extract all the source, run-time and documentation files for JFreeChart
into a new directory called jfreechart-0.9.1.

3.3.3 The Files

The top-level directory (jfreechart-0.9.1) contains two files and three sub-
directories, as described in the following table:

File/Directory: Description:

jars A directory containing the JFreeChart and JCommon run-
time jar files.

licence-LGPL.txt The licence for JFreeChart.
README Important information - read this first!
servlet A directory containing files required for the servlet demon-

stration.
source A directory containing the source code for JFreeChart.

You should spend some time familiarising yourself with the files included in the
download. In particular, you should always read the README file.

3.4 Running the Demonstration Application

A demonstration application is included with JFreeChart, to give you some idea
of what the class library can do. It is not necessary to recompile the library to
run the demonstration application. All the classes are precompiled in the jar
files.

To run the demo, type the following command2 all on one line:
java -classpath jcommon-0.6.2.jar:jfreechart-0.9.1.jar:

jfreechart-0.9.1-demo.jar com.jrefinery.chart.demo.JFreeChartDemo

Depending on your system setup, you may need to specify the full path for the
java executable. You may also need to type the full (or relative) path to the
JFreeChart and JCommon jar files.

3.5 Compiling the Source

You can recompile the source files (contained in the source folder) using the
javac tool, although I would recommend that you set up a project in your
favourite development environment.

Nevertheless, if you insist upon using the command line...change to the source
directory, then type the following command:

2If you are using Windows, you should use a semi-colon rather than a colon to separate
the jar files.

18

javac -g:none -O -verbose -classpath .:../jars/jcommon-0.6.2.jar

com/jrefinery/chart/demo/JFreeChartDemo.java

This compiles the demonstration application and most of the JFreeChart classes
(javac compiles each class for which it cannot find a .class file provided that
it can find the corresponding .java source file). The class files are written to
the same directories as the source files.

With the introduction of resource bundles for internationalisation, which are
dynamically loaded by class name rather than directly referenced in code, you
now need to separately compile the resource bundle classes. Type the following
command:

javac -g:none -O -verbose -classpath .:../jars/jcommon-0.6.2.jar

com/jrefinery/chart/demo/resources/*.java

This compiles each of the resource bundle classes individually. You should now
be able to run the JFreeChartDemo class.

There are a range of other demonstration applications alongside JFreeChartDemo.
These can be compiled using a similar command:

javac -g:none -O -verbose -classpath .:../jars/jcommon-0.6.2.jar

com/jrefinery/chart/demo/XXX.java

Replace the text XXX with the name of the class you wish to compile.

Note that the JFreeChartServletDemo will not compile unless you have the
servlet.jar file on the classpath—the file is included with Tomcat, and I’m
guessing other servlet engines also.

3.6 Generating the Javadoc Documentation

The JFreeChart source code contains comprehensive Javadoc comments. You
can use the javadoc tool to generate HTML documentation files directly from
the source code.

To generate the documentation, use the javadoc utility as follows:
javadoc -sourcepath <your-source-directory> -d <your-output-directory>

com.jrefinery.chart com.jrefinery.chart.entity

com.jrefinery.chart.event com.jrefinery.chart.tooltips

com.jrefinery.chart.ui

There is a link to the Javadoc HTML pages on the JFreeChart web page.

19

4 Developing with JFreeChart

4.1 Overview

This section presents a tutorial on how to use the JFreeChart class library in
your own projects.

4.2 The Basic Structure

The JFreeChart class coordinates the entire process of drawing charts. One
method:

public void draw(Graphics2D g2, Rectangle2D area);

...instructs the JFreeChart object to draw a chart onto a specific area on a
graphics device.3

In broad terms, JFreeChart achieves this by obtaining data from a Dataset, and
delegating the drawing to a Plot object (which, in turn, delegates the drawing
of individual data items to a CategoryItemRenderer or a XYItemRenderer,
depending on the plot type).

The JFreeChart class can work with many different Dataset implementations,
and even more Plot subclasses. The following table summarises the combina-
tions that are currently available:

Dataset: Compatible Plot Types:

PieDataset PiePlot.
CategoryDataset CategoryPlot subclasses with various renderers.
XYDataset XYPlot with various renderers.
IntervalXYDataset XYPlot with a VerticalXYBarRenderer.
HighLowDataset XYPlot with a HighLowRenderer.
CandleStickDataset XYPlot with a CandleStickRenderer.

There are a lot of combinations, but don’t worry, just keep in mind that a chart
usually has one Dataset and one Plot.

4.3 Creating Your First Chart

To illustrate, let’s create a pie chart. First, we need to create a dataset that
implements the PieDataset interface. The DefaultPieDataset class in the
JCommon Class Library4 is designed just for this purpose:

3Java supports several graphics devices—including the screen, the printer, and buffered
images—via different implementations of java.awt.Graphics2D. Thanks to this abstraction,
JFreeChart can generate charts on any of these target devices, as well as others implemented
by third parties (for example, the SVG Generator of the Batik Project).

4I moved all the dataset classes out of JFreeChart and into JCommon to underline the fact
that the data classes are not intended just for generating charts—you ought to be able to use
them in other ways. The TimeSeriesTableModel class is one example, making it easy for a
time series to be displayed in a JTable

20

// create a dataset...
DefaultPieDataset data = new DefaultPieDataset();
data.setValue("Category 1", new Double(43.2));
data.setValue("Category 2", new Double(27.9));
data.setValue("Category 3", new Double(79.5));

Next, we need to create a chart. A convenient way to do this in JFreeChart is
to use the ChartFactory class:

// create a chart...
JFreeChart chart = ChartFactory.createPieChart("Sample Pie Chart", data, true);

Notice how we have passed a reference to the dataset to the factory method.
The chart object retains this reference so that it can obtain data later on when
it is drawing the chart.

Now we have a chart, but we don’t yet have anywhere to draw it. Let’s create
a frame to display the chart in. The ChartFrame class contains the machinery
required to display charts:

// create and display a frame...
JFreeChartFrame frame = new JFreeChartFrame("Test", chart);
frame.pack();
frame.setVisible(true);

And that’s all there is to it...here is the complete program, so that you know
which packages you need to import:

package com.jrefinery.chart.demo;

import com.jrefinery.data.DefaultPieDataset;
import com.jrefinery.chart.ChartFactory;
import com.jrefinery.chart.JFreeChart;
import com.jrefinery.chart.ChartFrame;

public class First {

public static void main(String[] args) {

// create a dataset...
DefaultPieDataset data = new DefaultPieDataset();
data.setValue("Category 1", new Double(43.2));
data.setValue("Category 2", new Double(27.9));
data.setValue("Category 3", new Double(79.5));

// create a chart...
JFreeChart chart = ChartFactory.createPieChart("Sample Pie Chart", data, true);

// create and display a frame...
ChartFrame frame = new ChartFrame("Test", chart);
frame.pack();
frame.setVisible(true);

}

}

Hopefully this has convinced you that it is not difficult to create and display
charts with JFreeChart. Of course, there is much more to learn...

21

4.4 More about Datasets

In the previous section, we used the DefaultPieDataset class to supply data
for our chart. JFreeChart can work with this class, because it implements the
PieDataset interface. Take a look at this interface now, by looking at the source
code5 or the Javadoc HTML pages for the JCommon Class Library, or in the
reference section towards the end of this document.

All of the datasets used by JFreeChart are defined by interfaces. This allows you
to implement your own dataset using whatever data structures make sense for
your own project. Of course, there are default classes available (in the JCommon
Class Library) that implement each of the interfaces used by JFreeChart. You
are free to use these default implementations if that is easier for you.

The CategoryDataset interface is used to access categorical data, most fre-
quently used to display bar charts. In this dataset, the domain is a set of
categories represented by any java.lang.Object. The categories are required
to be unique (they are used to access the data values) and the toString()
method is used to generate category labels. You’ll probably find it convenient
to use the String class for your categories.

The range for a CategoryDataset is numerical, with values represented by
Number objects. You can use null values to represent missing or unknown
data.6

The XYDataset interface is used to access data values in the form of (x, y) pairs.
The domain values (x-values) are always numbers, even though sometimes they
will be presented in a chart as dates. The range values (y-values) are always
numbers too.

The CategoryDataset and XYDataset interfaces are not interchangeable. If a
chart requires one type of data, you cannot substitute the other.

5One of the many advantages of free or open source software is that you can always refer
to the source code to find out how things work.

6Most chart types check for null values. It is possible that some code is still missing this—if
you get a null pointer exception due to null values in your dataset, please post a bug report.

22

5 Customising Charts

5.1 Introduction

This section describes common ways to customise the charts you create with
JFreeChart. As far as possible, JFreeChart tries to use sensible default values
when it creates charts. But at the same time, everything is defined to be con-
figurable so that you can have complete control over the appearance of your
charts.

5.2 Customising Charts

5.2.1 Adding Chart Titles

Charts are created with only one title (or sometimes no title at all). To add
another title to your chart, use the addTitle(...) method. This method
requires you to supply a reference to an AbstractTitle subclass, for example
TextTitle:

TextTitle title = new TextTitle("New Chart Title");

myChart.addTitle(title);

The placement of the title at the top, bottom, left or right of the chart is
controlled by a property of the title itself.

You can add as many titles as you like to a chart, but keep in mind that as you
add more titles there will be less and less space available for drawing the chart.

5.2.2 Modifying Chart Titles

To modify a title that has already been added to a chart, you need to get a
reference to the title. You can use the getTitle(int) method in the JFreeChart
class:

AbstractTitle title = myChart.getTitle(titleIndex);

You will need to cast the AbstractTitle reference to an appropriate subclass
before you can change its properties.

5.2.3 Setting the Background Color

You can use the setBackgroundPaint(...) method to set the background
color for a chart. For example:

chart.setBackgroundPaint(Color.blue);

You can use any implementation of the Paint interface, including the Java
classes Color, GradientPaint and TexturePaint. For example:

Paint p = new GradientPaint(0, 0, Color.white, 1000, 0, Color.green));

chart.setBackgroundPaint(p);

You can also set the background paint to null, which is recommended if you
have specified a background image for your chart.

23

5.2.4 Using a Background Image

You can use the setBackgroundImage(...) method to set a background image
for a chart. The image will be scaled to fit the area that the chart is being
drawn into. You can also control the alpha-transparency for the image using
the setBackgroundImageAlpha(...) method.

If you want an image to fill only the data area in your chart, then you need to
add a background image to the Plot (described later).

5.2.5 Antialiasing

JFreeChart makes use of the Java2D antialiasing feature to draw smooth looking
charts. You can switch this feature on or off as follows:

// turn on antialiasing...

chart.setAntiAlias(true);

// turn off antialiasing...

chart.setAntiAlias(false);

By default, charts are drawn with anti-aliasing.

5.3 Customising Plots

5.3.1 Overview

Much of the work in drawing a chart is delegated to the Plot class (or to
a specific subclass of Plot). Often you will need to access this delegate in
order to change the appearance of your chart. The getPlot() method in the
JFreeChart class returns a reference to the plot being used by the chart.

Plot plot = myChart.getPlot();

You may need to cast this reference to a specific subclass of Plot. This is
discussed later.

5.3.2 Setting the Background Paint

You can use the setBackgroundPaint(...) method to set the background
color for a plot. For example:

Plot plot = myChart.getPlot();

plot.setBackgroundPaint(Color.white);

You can use any implementation of the Paint interface, including the Java
classes Color, GradientPaint and TexturePaint. You can also set the back-
ground paint to null.

5.3.3 Using a Background Image

You can use the setBackgroundImage(...) method to set a background image
for a plot. The image will be scaled to fit the area that the plot is being

24

drawn into. You can also control the alpha-transparency for the image using
the setBackgroundAlpha(...) method.

If you prefer your image to fill the entire chart are, then you need to add a
background image to the JFreeChart object (described previously).

5.3.4 Changing Colors for Series

To change the colors used for the series in a plot, you should create an array of
Paint objects:

Plot plot = myChart.getPlot();

Paint[] myPaintArray = new Paint[] { Color.red, Color.green, Color.blue

}; plot.setSeriesPaint(myPaintArray);

Ideally you should specify one Paint object per series, but JFreeChart will cycle
through the array if there are too few items.

5.3.5 Other Properties

Some properties can only be changed after you have cast the result of the
getPlot() method to an appropriate subclass of Plot. For example, if you
want to set the gap before the first item in a CategoryPlot, you will need to
use something like this:

CategoryPlot plot = (CategoryPlot)myChart.getPlot();

plot.setIntroGapPercent(0.10);

Refer to the documentation for the individual Plot subclasses for more infor-
mation about the properties that you can change.

5.4 Customising Axes

5.4.1 Overview

Most plots in JFreeChart have two axes, the domain axis and the range axis,
although some plots (for example, the PiePlot class) don’t use axes at all. In
the cases where axes are used, you can make many changes to the appearance
of your chart by changing axis properties.

5.4.2 Obtaining an Axis Reference

Before you can change the properties of an axis, you need to obtain a reference
to the axis.

The plot classes CategoryPlot and XYPlot both have the methods getDomainAxis()
and getRangeAxis(). These methods return a reference to a ValueAxis, ex-
cept in the case of a CategoryPlot the getDomainAxis() method returns a
CategoryAxis.

Here is an example:

25

// get an axis reference...

CategoryPlot myPlot = myChart.getCategoryPlot();

CategoryAxis domainAxis = myPlot.getDomainAxis();

// change axis properties...

domainAxis.setLabel("Categories");

domainAxis.setLabelFont(someFont);

There are many different subclasses of the Axis class. Sometimes you will need
to cast your axis reference to a more specific subclass, in order to access some of
its attributes. For example, if you know that your range axis is a NumberAxis
(and it almost always is), then you can do the following:

XYPlot myPlot = myChart.getXYPlot();

NumberAxis rangeAxis = (NumberAxis)myPlot.getRangeAxis();

rangeAxis.setAutoRange(false);

5.4.3 Setting the Axis Label

You can change the axis label by calling the setLabel(...) method in the
Axis class. If you would prefer not to have a label for your axis, then use
setLabel(null).

You can change the font, color and insets (the space around the outside of
the label) with the methods setLabelFont(...), setLabelPaint(...), and
setLabelInsets(...), also in the Axis class.

5.4.4 Rotating Axis Labels

For vertical axes (VerticalCategoryAxis and VerticalNumberAxis), the axis
label can be drawn with a vertical orientation to save space (this is the default).
You can control this setting with the setVerticalLabel(boolean) method.

5.4.5 Rotating Category Labels

The category labels on a HorizontalCategoryAxis can be displayed with a
vertical orientation, which is useful when the labels overlap because of a lack of
space. Use the setVerticalCategoryLabels(boolean) method as follows:

CategoryPlot myPlot = myChart.getCategoryPlot();

HorizontalCategoryAxis axis = (HorizontalCategoryAxis)myPlot.getDomainAxis();

axis.setVerticalCategoryLabels(true);

The HorizontalNumberAxis and HorizontalDateAxis classes have the same
feature available via the setVerticalTickLabels(boolean) method.

5.4.6 Hiding Tick Labels

To hide the tick labels for an axis:
CategoryPlot myPlot = myChart.getCategoryPlot();

ValueAxis axis = myPlot.getRangeAxis();

axis.setTickLabelsVisible(false);

26

For a category axis, setTickLabelsVisible(false) will hide the category la-
bels.

5.4.7 Hiding Tick Marks

To hide the tick marks for an axis:
XYPlot myPlot = myChart.getXYPlot();

Axis axis = myPlot.getDomainAxis();

axis.setTickMarksVisible(false);

Category axes do not have tick marks.

5.4.8 Setting the Tick Size

By default, numerical and date axes automatically select a tick size so that the
tick labels will not overlap. You can override this by setting your own tick unit
using the setTickUnit(...) method.

Alternatively, for a NumberAxis you can specify your own set of tick units from
which the axis will automatically select an appropriate tick size. See the next
section.

5.4.9 Specifying the Auto Tick Units

In the NumberAxis class, there is a method setStandardTickUnits(TickUnits
collection) that allows you to supply your own set of tick units for the auto-
selection mechanism.

One common application is where you have a number axis that should only
display integers. In this case, you don’t want tick units of 0.5 or 0.25. There
is a method in the TickUnits class that returns a set of standard integer tick
units (look at the source code to see how to create your own):

XYPlot myPlot = myChart.getXYPlot();

NumberAxis axis = (NumberAxis)myPlot.getRangeAxis();

TickUnits units = TickUnits.createIntegerTickUnits();

axis.setStandardTickUnits(units);

27

6 Charts Using Category Datasets

6.1 Introduction

This section describes how to generate charts based on data from the Category-
Dataset interface.

6.2 Creating a Line Chart with Categorical Data

6.2.1 Overview

With JFreeChart, you can produce line charts using categorical data obtained
via the CategoryDataset interface. In this section, I describe a sample appli-
cation that creates the following line chart:

The full source code is included in the download.

6.2.2 The Dataset

You can use any implementation of the CategoryDataset interface to generate
your chart. The DefaultCategoryDataset class is included with JFreeChart
as a convenient implementation for those developers who do not wish to write
their own datasets.

The code to create a dataset is relatively straightforward. Simply create a two-
dimensional array of double values (each row in the array contains the data for
one series, each column in the array contains the data for one category), then
pass it to the appropriate constructor:

// create a dataset...
double[][] data = new double[][] {

{ 1.0, 4.0, 3.0, 5.0, 5.0, 7.0, 7.0, 8.0 },
{ 5.0, 7.0, 6.0, 8.0, 4.0, 4.0, 2.0, 1.0 },
{ 4.0, 3.0, 2.0, 3.0, 6.0, 3.0, 4.0, 3.0 }

};

DefaultCategoryDataset dataset = new DefaultCategoryDataset(data);

28

The DefaultCategoryDataset class will automatically generate names for the
series and categories. You can specify these yourself, either in one of the alterna-
tive constructors, or using the setSeriesNames(...) and setCategories(...)
methods.

// set the series names...
String[] seriesNames = new String[] { "First", "Second", "Third" };
dataset.setSeriesNames(seriesNames);

// set the category names...
String[] categories = new String[] { "Type 1", "Type 2", "Type 3", "Type 4",

"Type 5", "Type 6", "Type 7", "Type 8" };
dataset.setCategories(categories);

6.2.3 Constructing the Chart

The easiest way to construct the chart is to use the ChartFactory class:

// create the chart...
JFreeChart chart = ChartFactory.createLineChart(

"Line Chart Demo 1", // chart title
"Category", // domain axis label
"Value", // range axis label
dataset, // data
true // include legend

);

This method constructs a plot with the appropriate axes and renderer, adds
it to a chart, sets up the chart title and legend and returns a reference to the
chart.

6.2.4 Customising the Line Chart

The default settings for the chart should produce an attractive chart, but of
course you are free to modify any of the settings to change the appearance of
the chart. In this example, we will make the following changes:

• change the chart background color;

• change the auto tick unit selection on the vertical axis so that the tick
values always display integer values;

• change the series colors;

• change the series stroke (the pen/brush style used to draw the lines for
each series);

Changing the chart’s background color is simple:

// set the background color for the chart...
chart.setBackgroundPaint(Color.yellow);

To change the color used to represent each series, pass an array of Paint objects
to the plot:

29

// get a reference to the plot for further customisation...
CategoryPlot plot = chart.getCategoryPlot();

// set the color for each series...
plot.setSeriesPaint(new Paint[] { Color.green, Color.orange, Color.red });

The plot reference is retained for the remaining customisations.

You have full control over the line style for the plot. Simply create an array of
Stroke objects and call the setSeriesStroke(...) method:

// set the stroke for each series...
Stroke[] seriesStrokeArray = new Stroke[3];
seriesStrokeArray[0] = new BasicStroke(2.0f, BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND,

1.0f, new float[] { 10.0f, 6.0f }, 0.0f);
seriesStrokeArray[1] = new BasicStroke(2.0f, BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND,

1.0f, new float[] { 6.0f, 6.0f }, 0.0f);
seriesStrokeArray[2] = new BasicStroke(2.0f, BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND,

1.0f, new float[] { 2.0f, 6.0f }, 0.0f);
plot.setSeriesStroke(seriesStrokeArray);

The final modification is a change to the range axis. We change the default col-
lection of tick units (which allow fractional values) to an integer-only collection:

// change the auto tick unit selection to integer units only...
NumberAxis rangeAxis = (NumberAxis)plot.getRangeAxis();
rangeAxis.setStandardTickUnits(TickUnits.createIntegerTickUnits());

Refer to the source code, Javadoc API documentation or elsewhere in this doc-
ument for details of the other customisations that you can make to a line plot.

6.2.5 The Complete Program

The code for the demonstration application is presented in full, complete with
the import statements. You should find this code included in the JFreeChart
download.

package com.jrefinery.chart.demo;

import java.awt.Paint;

import java.awt.Color;

import java.awt.Stroke;

import java.awt.BasicStroke;

import com.jrefinery.data.CategoryDataset;

import com.jrefinery.data.DefaultCategoryDataset;

import com.jrefinery.ui.ApplicationFrame;

import com.jrefinery.chart.JFreeChart;

import com.jrefinery.chart.ChartFactory;

import com.jrefinery.chart.ChartPanel;

import com.jrefinery.chart.CategoryPlot;

import com.jrefinery.chart.Axis;

import com.jrefinery.chart.HorizontalCategoryAxis;

import com.jrefinery.chart.NumberAxis;

import com.jrefinery.chart.TickUnits;

/**

* A simple demonstration application showing how to create a line chart using data from a

* CategoryDataset.

*/

public class LineChartDemo1 extends ApplicationFrame {

/** The data. */

protected CategoryDataset data;

/**

* Default constructor.

*/

public LineChartDemo1(String title) {

super(title);

30

// create a dataset...

double[][] data = new double[][] {

{ 1.0, 4.0, 3.0, 5.0, 5.0, 7.0, 7.0, 8.0 },

{ 5.0, 7.0, 6.0, 8.0, 4.0, 4.0, 2.0, 1.0 },

{ 4.0, 3.0, 2.0, 3.0, 6.0, 3.0, 4.0, 3.0 }

};

DefaultCategoryDataset dataset = new DefaultCategoryDataset(data);

// set the series names...

String[] seriesNames = new String[] { "First", "Second", "Third" };

dataset.setSeriesNames(seriesNames);

// set the category names...

String[] categories = new String[] { "Type 1", "Type 2", "Type 3", "Type 4",

"Type 5", "Type 6", "Type 7", "Type 8" };

dataset.setCategories(categories);

// create the chart...

JFreeChart chart = ChartFactory.createLineChart("Line Chart Demo 1", // chart title

"Category", // domain axis label

"Value", // range axis label

dataset, // data

true // include legend

);

// NOW DO SOME OPTIONAL CUSTOMISATION OF THE CHART...

// set the background color for the chart...

chart.setBackgroundPaint(Color.yellow);

// get a reference to the plot for further customisation...

CategoryPlot plot = chart.getCategoryPlot();

// label data points with values...

plot.setLabelsVisible(true);

// set the color for each series...

plot.setSeriesPaint(new Paint[] { Color.green, Color.orange, Color.red });

// set the stroke for each series...

Stroke[] seriesStrokeArray = new Stroke[3];

seriesStrokeArray[0] = new BasicStroke(2.0f, BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND,

1.0f, new float[] { 10.0f, 6.0f }, 0.0f);

seriesStrokeArray[1] = new BasicStroke(2.0f, BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND,

1.0f, new float[] { 6.0f, 6.0f }, 0.0f);

seriesStrokeArray[2] = new BasicStroke(2.0f, BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND,

1.0f, new float[] { 2.0f, 6.0f }, 0.0f);

plot.setSeriesStroke(seriesStrokeArray);

// change the auto tick unit selection to integer units only...

NumberAxis rangeAxis = (NumberAxis)plot.getRangeAxis();

rangeAxis.setAutoRangeIncludesZero(false);

rangeAxis.setStandardTickUnits(TickUnits.createIntegerTickUnits());

HorizontalCategoryAxis domainAxis = (HorizontalCategoryAxis)plot.getDomainAxis();

domainAxis.setVerticalCategoryLabels(true);

// OPTIONAL CUSTOMISATION COMPLETED.

// add the chart to a panel...

ChartPanel chartPanel = new ChartPanel(chart);

this.setContentPane(chartPanel);

}

/**

* Starting point for the demonstration application.

*/

public static void main(String[] args) {

LineChartDemo1 demo = new LineChartDemo1("Line Chart Demo");

demo.pack();

demo.setVisible(true);

}

}

31

7 Charts Using XYDatasets

7.1 Introduction

This section describes how to create charts based on data from the XYDataset
interface.

7.2 Creating a Line Chart with Numerical Data

7.2.1 Overview

With JFreeChart, you can produce line charts using numerical data obtained
via the XYDataset interface. In this section, I describe a sample application
that creates the following line chart:

The complete source code is available in the download.

7.2.2 The Dataset

You can use any implementation of the XYDataset interface to generate your
chart. The XYSeriesCollection class is included with JFreeChart as a conve-
nient implementation for those developers who do not wish to write their own
datasets.

The code to create a dataset is relatively straightforward. Simply create each
series individually, add them to a collection, and you have your dataset:

// create a dataset...
XYSeries series1 = new XYSeries("First");
series1.add(1.0, 1.0);
series1.add(2.0, 4.0);
series1.add(3.0, 3.0);
series1.add(4.0, 5.0);
series1.add(5.0, 5.0);
series1.add(6.0, 7.0);
series1.add(7.0, 7.0);
series1.add(8.0, 8.0);

32

XYSeries series2 = new XYSeries("Second");
series2.add(1.0, 5.0);
series2.add(2.0, 7.0);
series2.add(3.0, 6.0);
series2.add(4.0, 8.0);
series2.add(5.0, 4.0);
series2.add(6.0, 4.0);
series2.add(7.0, 2.0);
series2.add(8.0, 1.0);

XYSeries series3 = new XYSeries("Third");
series3.add(3.0, 4.0);
series3.add(4.0, 3.0);
series3.add(5.0, 2.0);
series3.add(6.0, 3.0);
series3.add(7.0, 6.0);
series3.add(8.0, 3.0);
series3.add(9.0, 4.0);
series3.add(10.0, 3.0);

XYSeriesCollection dataset = new XYSeriesCollection();
dataset.addSeries(series1);
dataset.addSeries(series2);
dataset.addSeries(series3);

7.2.3 Constructing the Chart

The easiest way to construct the chart is to use the ChartFactory class:

// create the chart...
JFreeChart chart = ChartFactory.createXYChart("Line Chart Demo 2", // chart title

"X", // domain axis label
"Y", // range axis label
dataset, // data
true // include legend
);

This method constructs a plot with the appropriate axes and renderer, adds
it to a chart, sets up the chart title and legend and returns a reference to the
chart.

7.2.4 Customising the Line Chart

The default settings for the chart should produce an attractive chart, but of
course you are free to modify any of the settings to change the appearance of
the chart. In this example, we will make the following changes:

• change the chart background color;

• change the auto tick unit selection on the vertical axis so that the tick
values always display integer values;

• change the series colors;

• change the series stroke (the pen/brush style used to draw the lines for
each series);

Changing the chart’s background color is simple:

33

// set the background color for the chart...
chart.setBackgroundPaint(Color.orange);

To change the color used to represent each series, pass an array of Paint objects
to the plot:

// get a reference to the plot for further customisation...
XYPlot plot = chart.getXYPlot();

// set the color for each series...
plot.setSeriesPaint(new Paint[] { Color.green, Color.orange, Color.red });

The plot reference is retained for the remaining customisations.

You have full control over the line style for the plot. Simply create an array of
Stroke objects and call the setSeriesStroke(...) method:

// set the stroke for each series...
Stroke[] seriesStrokeArray = new Stroke[3];
seriesStrokeArray[0] = new BasicStroke(2.0f, BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND,

1.0f, new float[] { 10.0f, 6.0f }, 0.0f);
seriesStrokeArray[1] = new BasicStroke(2.0f, BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND,

1.0f, new float[] { 6.0f, 6.0f }, 0.0f);
seriesStrokeArray[2] = new BasicStroke(2.0f, BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND,

1.0f, new float[] { 2.0f, 6.0f }, 0.0f);
plot.setSeriesStroke(seriesStrokeArray);

The final modification is a change to the range axis. We change the default col-
lection of tick units (which allow fractional values) to an integer-only collection:

// change the auto tick unit selection to integer units only...
NumberAxis rangeAxis = (NumberAxis)plot.getRangeAxis();
rangeAxis.setStandardTickUnits(TickUnits.createIntegerTickUnits());

Refer to the source code, Javadoc API documentation or elsewhere in this doc-
ument for details of the other customisations that you can make to an XY plot.

7.2.5 The Complete Program

The code for the demonstration application is presented in full, complete with
the import statements. You should find this code included in the JFreeChart
download.

package com.jrefinery.chart.demo;

import java.awt.Paint;

import java.awt.Color;

import java.awt.Stroke;

import java.awt.BasicStroke;

import com.jrefinery.data.XYDataset;

import com.jrefinery.data.XYSeriesCollection;

import com.jrefinery.data.XYSeries;

import com.jrefinery.ui.ApplicationFrame;

import com.jrefinery.chart.JFreeChart;

import com.jrefinery.chart.ChartFactory;

import com.jrefinery.chart.ChartPanel;

import com.jrefinery.chart.XYPlot;

import com.jrefinery.chart.NumberAxis;

import com.jrefinery.chart.TickUnits;

/**

* A simple demonstration application showing how to create a line chart using data from an

* XYDataset.

*/

public class LineChartDemo2 extends ApplicationFrame {

34

/** The data. */

protected XYDataset data;

/**

* Default constructor.

*/

public LineChartDemo2(String title) {

super(title);

// create a dataset...

XYSeries series1 = new XYSeries("First");

series1.add(1.0, 1.0);

series1.add(2.0, 4.0);

series1.add(3.0, 3.0);

series1.add(4.0, 5.0);

series1.add(5.0, 5.0);

series1.add(6.0, 7.0);

series1.add(7.0, 7.0);

series1.add(8.0, 8.0);

XYSeries series2 = new XYSeries("Second");

series2.add(1.0, 5.0);

series2.add(2.0, 7.0);

series2.add(3.0, 6.0);

series2.add(4.0, 8.0);

series2.add(5.0, 4.0);

series2.add(6.0, 4.0);

series2.add(7.0, 2.0);

series2.add(8.0, 1.0);

XYSeries series3 = new XYSeries("Third");

series3.add(3.0, 4.0);

series3.add(4.0, 3.0);

series3.add(5.0, 2.0);

series3.add(6.0, 3.0);

series3.add(7.0, 6.0);

series3.add(8.0, 3.0);

series3.add(9.0, 4.0);

series3.add(10.0, 3.0);

XYSeriesCollection dataset = new XYSeriesCollection();

dataset.addSeries(series1);

dataset.addSeries(series2);

dataset.addSeries(series3);

// create the chart...

JFreeChart chart = ChartFactory.createXYChart("Line Chart Demo 2", // chart title

"X", // domain axis label

"Y", // range axis label

dataset, // data

true // include legend

);

// NOW DO SOME OPTIONAL CUSTOMISATION OF THE CHART...

// set the background color for the chart...

chart.setBackgroundPaint(Color.orange);

// get a reference to the plot for further customisation...

XYPlot plot = chart.getXYPlot();

// set the color for each series...

plot.setSeriesPaint(new Paint[] { Color.green, Color.orange, Color.red });

// set the stroke for each series...

Stroke[] seriesStrokeArray = new Stroke[3];

seriesStrokeArray[0] = new BasicStroke(2.0f, BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND,

1.0f, new float[] { 10.0f, 6.0f }, 0.0f);

seriesStrokeArray[1] = new BasicStroke(2.0f, BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND,

1.0f, new float[] { 6.0f, 6.0f }, 0.0f);

seriesStrokeArray[2] = new BasicStroke(2.0f, BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND,

1.0f, new float[] { 2.0f, 6.0f }, 0.0f);

plot.setSeriesStroke(seriesStrokeArray);

// change the auto tick unit selection to integer units only...

NumberAxis rangeAxis = (NumberAxis)plot.getRangeAxis();

rangeAxis.setStandardTickUnits(TickUnits.createIntegerTickUnits());

// OPTIONAL CUSTOMISATION COMPLETED.

// add the chart to a panel...

ChartPanel chartPanel = new ChartPanel(chart);

this.setContentPane(chartPanel);

}

/**

* Starting point for the demonstration application.

*/

public static void main(String[] args) {

35

LineChartDemo2 demo = new LineChartDemo2("Line Chart Demo 2");

demo.pack();

demo.setVisible(true);

}

}

36

8 Combined Charts

8.1 Introduction

The combined charts facility was contributed to the JFreeChart project by Bill
Kelemen. It provides a flexible mechanism for combining multiple plots on a
single chart.

Since Bill first contributed the code, other changes have been made to JFreeChart.
Most importantly, the dataset is now referenced by the Plot class rather than
the JFreeChart class. This has made it possible to reorganise the combined
charts code to make it easier to use.

In this section, I describe a few examples that use the combined charts facility.
These examples are included in the JFreeChart download, so you can compile
and run the code yourself.

8.2 Creating an Overlaid XY Plot

8.2.1 Overview

An overlaid XY plot is a specialised type of plot that combines two or more
XYPlot instances together on one chart, using shared axes. Here I describe
an example (included in the download) that displays a vertical XY bar plot
combined with a time series plot :

The procedure for creating a chart containing an overlaid plot is not very dif-
ferent from the procedure for creating a standard chart. However, you cannot
use the ChartFactory class, so you need to be familiar with creating instances
of XYPlot and JFreeChart by calling the constructors directly.

8.2.2 The Application

The demonstration application is called OverlaidXYPlotDemo, and can be found
in the com.jrefinery.chart.demo package.

37

The TimeSeriesCollection class does a lot of the background work for us
in this example. It implements both the XYDataset interface that is required
to create the time series plot, and the IntervalXYDataset interface that is
required to create the vertical XY bar chart.

In your own code, you may provide your own implementations of these dataset
interfaces, but you are also free to use the TimeSeriesCollection class if it is
convenient for you.

The code for creating the datasets follows a pattern that is used quite frequently
in the JFreeChart demonstration code:

// create dataset 1...
BasicTimeSeries series1 = new BasicTimeSeries("Series 1", Day.class);
series1.add(new Day(1, SerialDate.MARCH, 2002), 12353.3);
series1.add(new Day(2, SerialDate.MARCH, 2002), 13734.4);
...
series1.add(new Day(15, SerialDate.MARCH, 2002), 11235.2);

return new TimeSeriesCollection(series1);

In the demonstration application, one time series collection is assigned to data1
and another is assigned to data2.

8.2.3 Constructing the Chart

With the two datasets data1 and data2, we can proceed to construct the over-
laid chart. The first step is to create the two subplots (both with null axes):

// create subplot 1...
IntervalXYDataset data1 = this.createDataset1();
XYItemRenderer renderer1 = new VerticalXYBarRenderer(0.20);
renderer1.setToolTipGenerator(new TimeSeriesToolTipGenerator("d-MMM-yyyy", "0.00"));
XYPlot subplot1 = new XYPlot(data1, null, null, renderer1);

// create subplot 2...
XYDataset data2 = this.createDataset2();
XYItemRenderer renderer2 = new StandardXYItemRenderer();
renderer2.setToolTipGenerator(new TimeSeriesToolTipGenerator("d-MMM-yyyy", "0.00"));
XYPlot subplot2 = new XYPlot(data2, null, null, renderer2);

Next, create a new OverlaidXYPlot and add the subplots:

// make an overlaid plot and add the subplots...
ValueAxis domainAxis = new HorizontalDateAxis("Date");
ValueAxis rangeAxis = new VerticalNumberAxis("Value");
OverlaidXYPlot plot = new OverlaidXYPlot(domainAxis, rangeAxis);
plot.add(subplot1);
plot.add(subplot2);

// return a new chart containing the overlaid plot...
return new JFreeChart("Overlaid Plot Example", JFreeChart.DEFAULT_TITLE_FONT, plot, true);

And that’s it!

38

8.3 Creating a CombinedXYPlot

8.3.1 Overview

A combined XY plot is a plot that has two or more subplots sharing either the
horizontal or the vertical axis.

To demonstrate, I have created a price-volume chart. This is a common type of
chart used in the finance industry. It is used to plot the price of some commodity,
along with the commodity’s trading volume (the number of units traded, usually
per day).

The procedure for creating this chart is fairly similar to that described in the
previous section for the overlaid XY plot.

8.3.2 The Application

As in the previous overlaid plot example, I have used the TimeSeriesCollection
class to represent both the price dataset and the volume dataset for this example.
These datasets are assigned (in the example) to the object references priceData
and volumeData.

8.3.3 Constructing the Chart

With the two datasets priceData and volumeData, we can proceed to construct
the combined chart.

// create subplot 1...
XYDataset priceData = this.createPriceDataset();
XYItemRenderer renderer1 = new StandardXYItemRenderer();
renderer1.setToolTipGenerator(new TimeSeriesToolTipGenerator("d-MMM-yyyy", "0.00"));
NumberAxis axis = new VerticalNumberAxis("Price");
axis.setAutoRangeIncludesZero(false);
XYPlot subplot1 = new XYPlot(priceData, null, axis, renderer1);

// create subplot 2...
IntervalXYDataset volumeData = this.createVolumeDataset();

39

XYItemRenderer renderer2 = new VerticalXYBarRenderer(0.20);
renderer2.setToolTipGenerator(new TimeSeriesToolTipGenerator("d-MMM-yyyy", "0.00"));
XYPlot subplot2 = new XYPlot(volumeData, null, new VerticalNumberAxis("Volume"), renderer2);

Notice how each of the subplots has a null domain axis, since they share the
parent plot’s axis.

To create the parent plot:

// make a combined plot...
CombinedXYPlot plot = new CombinedXYPlot(new HorizontalDateAxis("Date"),

CombinedXYPlot.VERTICAL);
plot.add(subplot1, 3);
plot.add(subplot2, 1);

// return a new chart containing the overlaid plot...
return new JFreeChart("Price / Volume Example",

JFreeChart.DEFAULT_TITLE_FONT,
plot,
true);

The combined plot is created with a VERTICAL orientation, which means that
the sub-plots are stacked from top to bottom.

You can control the amount of space allocated to each plot by specifying a weight
for each plot as you add them to the parent plot. The weights are totalled, and
each plot is allocated space based on its weight as a percentage of the total.
In the example above, the first subplot is allocated 3/4 of the space, and the
second subplot is allocated 1/4 of the space.

40

9 Exporting Charts to Acrobat PDF

9.1 Introduction

In this section, I describe how to export a chart to an Acrobat PDF file using
JFreeChart and iText. Along with the description, I provide a small demonstra-
tion application that creates a PDF file containing a basic chart. The resulting
file can be viewed using Acrobat Reader, or any other software that is capable
of reading and displaying PDF files.

9.2 What is Acrobat PDF?

Acrobat PDF is a widely used electronic document format. Its popularity is
due, at least in part, to its ability to reproduce high quality output on a variety
of different platforms.

PDF was created by Adobe Systems Incorporated. Adobe provide a free (but
closed source) application called Acrobat Reader for reading PDF documents.
Acrobat Reader is available on most end-user computing platforms, including
GNU/Linux, Windows, Unix, Macintosh and others.

If your system doesn’t have Acrobat Reader installed, you can download a copy
from:

http://www.adobe.com/products/acrobat/readstep.html

On some platforms, there are free (in the GNU sense) software packages available
for viewing PDF files. Ghostview on Linux is one example.

9.3 iText

iText is a popular free Java class library for creating documents in PDF format.
It is developed by Bruno Lowagie, Paulo Soares and others.

The home page for iText is:

http://www.lowagie.com/iText

At the time of writing, the latest version of iText is 0.92.

9.4 Graphics2D

JFreeChart can work easily with iText because iText provides a Graphics2D
implementation. Before I proceed to the demonstration application, I will briefly
review the Graphics2D class.

The java.awt.Graphics2D class, part of the standard Java 2D API, defines
a range of methods for drawing text and graphics in a two dimensional space.
Particular subclasses of Graphics2D handle all the details of mapping the output
(text and graphics) to specific devices.

41

JFreeChart has been designed to draw charts using only the methods defined
by the Graphics2D class. This means that JFreeChart can generate output to
any target that can provide a Graphics2D subclass.

JFreeChart

+draw(Graphics2D)

PDF

Graphics2D

Figure 1: The JFreeChart draw(...) method

Recently, a new PdfGraphics2D class has been added to iText. This means that
iText is now capable of generating PDF content based on calls to the methods
defined by the Graphics2D class...and this makes it easy to produce charts in
PDF format, as you will see in the following sections.

9.5 Getting Started

To compile and run the demonstration application, you will need the following
jar files:

File: Description:

jfreechart-0.9.1.jar The JFreeChart class library.
jfreechart-0.9.1-demo.jar The demo programs for JFreeChart (includes sam-

ple data).
jcommon-0.6.2.jar The JCommon class library (used by JFreeChart).
iText-0.92.jar The iText class library.

The first three files are included with JFreeChart, and the fourth is the iText
runtime.

9.6 The Application

The first thing the sample application needs to do is create a chart. By making
use of some of the sample data in the JFreeChart download, I will create a chart
in just two lines of code:

// create a chart...
XYDataset data = DemoDatasetFactory.createSampleXYDataset();
JFreeChart chart = ChartFactory.createXYChart("PDF Chart 1", "X", "Y", data, true);

42

There is nothing special here—in fact you could replace these two lines of code
with any other code that creates a JFreeChart object. You are encouraged to
experiment.

Next, I will save a copy of the chart in a PDF file:

// write the chart to a PDF file...
File fileName = new File("/home/dgilbert/jfreechart1.pdf");
saveChartAsPDF(fileName, chart, 400, 300);

There are a couple of things to note here.

First, I have hard-coded the filename used for the PDF file. I’ve done this to keep
the sample code short. You will need to replace the file name with something
appropriate for your system. In a real application, you would provide some
other means for the user to specify the filename, perhaps by presenting a file
chooser dialog.

Second, the saveChartAsPDF(...) method hasn’t been implemented yet! To
create that method, I’ll first write another more general method, writeChartAs-
PDF(...). This method performs most of the work that will be required by the
saveChartAsPDF(...) method, but it writes data to an output stream rather
than a file.

public static void writeChartAsPDF(OutputStream out,
JFreeChart chart,
int width, int height,
FontMapper mapper) throws IOException {

Rectangle pagesize = new Rectangle(width, height);
Document document = new Document(pagesize, 50, 50, 50, 50);

try {
PdfWriter writer = PdfWriter.getInstance(document, out);

document.addAuthor("JFreeChart");
document.addSubject("Demonstration");
document.open();

PdfContentByte cb = writer.getDirectContent();
PdfTemplate tp = cb.createTemplate(width, height);
Graphics2D g2 = tp.createGraphics(width, height, mapper);

Rectangle2D r2D = new Rectangle2D.Double(0, 0, width, height);
chart.draw(g2, r2D, null);
g2.dispose();
cb.addTemplate(tp, 0, 0);

}
catch(DocumentException de) {

System.err.println(de.getMessage());
}

document.close();

}

Inside this method, you will see some code that sets up and opens an iText
document, obtains a Graphics2D instance from the document, draws the chart
using the Graphics2D object, and closes the document.

43

You will also notice that one of the parameters for this method is a FontMapper
object. The FontMapper interface maps Java Font objects to the BaseFont
objects used by iText.

The DefaultFontMapper class is predefined with default mappings for the Java
logical fonts. If you use only these fonts, then it is enough to create a Default-
FontMapper using the default constructor. If you want to use other fonts (for
example, a font that supports a particular character set) then you need to do
more work. I’ll give an example of this later.

In the implementation of the writeChartAsPDF(...) method, I’ve chosen to
create a PDF document with a custom page size (matching the requested size
of the chart). You can easily adapt the code to use a different page size, alter
the size and position of the chart and even draw multiple charts inside one PDF
document.

Now that I have a method to send PDF data to an output stream, it is straight-
forward to implement the saveChartAsPDF(...) method. Simply create a
FileOutputStream and pass it on to the writeChartAsPDF(...) method:

public static void saveChartAsPDF(File file,
JFreeChart chart,
int width, int height,
FontMapper mapper) throws IOException {

OutputStream out = new BufferedOutputStream(new FileOutputStream(file));
writeChartAsPDF(out, chart, width, height, mapper);
out.close();

}

This is all the code that is required. The pieces can be assembled into the
following program (reproduced in full here so that you can see all the required
import statements and the context in which the code is run):

package com.jrefinery.chart.demo;

import java.awt.Graphics2D;
import java.awt.geom.Rectangle2D;
import java.io.File;
import java.io.OutputStream;
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import com.lowagie.text.Document;
import com.lowagie.text.Rectangle;
import com.lowagie.text.DocumentException;
import com.lowagie.text.pdf.PdfWriter;
import com.lowagie.text.pdf.PdfContentByte;
import com.lowagie.text.pdf.PdfTemplate;
import com.lowagie.text.pdf.FontMapper;
import com.lowagie.text.pdf.DefaultFontMapper;
import com.lowagie.text.pdf.BaseFont;
import com.jrefinery.data.XYDataset;
import com.jrefinery.chart.JFreeChart;
import com.jrefinery.chart.ChartFactory;
import com.jrefinery.chart.demo.DemoDatasetFactory;

/**

44

* A simple demonstration showing how to write a chart to PDF format using
* JFreeChart and iText.
* <P>
* You can download iText from http://www.lowagie.com/iText.
*/

public class ChartToPDFDemo1 {

/**
* Saves a chart to a PDF file.
*
* @param file The file.
* @param chart The chart.
* @param width The chart width.
* @param height The chart height.
*/

public static void saveChartAsPDF(File file,
JFreeChart chart,
int width, int height,
FontMapper mapper) throws IOException {

OutputStream out = new BufferedOutputStream(new FileOutputStream(file));
writeChartAsPDF(out, chart, width, height, mapper);
out.close();

}

/**
* Writes a chart to an output stream in PDF format.
*
* @param out The output stream.
* @param chart The chart.
* @param width The chart width.
* @param height The chart height.
*/

public static void writeChartAsPDF(OutputStream out,
JFreeChart chart,
int width, int height,
FontMapper mapper) throws IOException {

Rectangle pagesize = new Rectangle(width, height);
Document document = new Document(pagesize, 50, 50, 50, 50);

try {
PdfWriter writer = PdfWriter.getInstance(document, out);

document.addAuthor("JFreeChart");
document.addSubject("Demonstration");
document.open();

PdfContentByte cb = writer.getDirectContent();
PdfTemplate tp = cb.createTemplate(width, height);
Graphics2D g2 = tp.createGraphics(width, height, mapper);

Rectangle2D r2D = new Rectangle2D.Double(0, 0, width, height);
chart.draw(g2, r2D, null);
g2.dispose();
cb.addTemplate(tp, 0, 0);

}
catch(DocumentException de) {

System.err.println(de.getMessage());
}

document.close();

}

/**
* Starting point for the demonstration application.

45

*/
public static void main(String[] args) {

try {
// create a chart...
XYDataset data = DemoDatasetFactory.createSampleXYDataset();
JFreeChart chart = ChartFactory.createXYChart("PDF Test Chart 1",

"X", "Y",
data, true);

// write the chart to a PDF file...
File fileName = new File("/home/dgilbert/jfreechart1.pdf");
saveChartAsPDF(fileName, chart, 400, 300, new DefaultFontMapper());

}
catch (IOException e) {

System.out.println(e.getMessage());
}

}

}

Before you compile and run the application, remember to change the file name
used for the PDF file to something appropriate for your system! And include
the jar files listed in section 9.5 on your classpath.

9.7 Viewing the PDF File

After compiling and running the sample application, you can view the resulting
PDF file using Acrobat Reader:

Acrobat Reader provides a zooming facility to allow you to get a close up view
of your charts.

9.8 Unicode Characters

It is possible to use the full range of Unicode characters in JFreeChart and iText,
as long as you are careful about which fonts you use. In this section, I present

46

some modifications to the previous example to show how to do this.

9.8.1 Background

Internally, Java uses the Unicode character encoding to represent text strings.
This encoding uses sixteen bits per character, which means there are potentially
65,536 different characters available (the Unicode standard defines something
like 38,000 characters).

You can use any of these characters in both JFreeChart and iText, subject to
one proviso: the font you use to display the text must define the characters used
or you will not be able to see them.

Many fonts are not designed to display the entire Unicode character set. The fol-
lowing website contains useful information about fonts that do support Unicode
(at least to some extent):

http://www.ccss.de/slovo/unifonts.htm

I have tried out the Arial Unicode MS font with success—in fact, I will use this
font in the example that follows. But you should bear in mind that supporting
the full Unicode character set means that the font definition file is quite large:
the arialuni.ttf file weighs in at 24,131,012 bytes on my system.

9.8.2 Fonts, iText and Java

iText has to handle fonts according to the PDF specification. This deals with
document portability by allowing fonts to be (optionally) embedded in a PDF
file. This requires access to the font definition file.

Java, on the other hand, abstracts away some of the details of particular font
formats with the use of the Font class.

To support the Graphics2D implementation in iText, it is necessary to map
Font objects from Java to BaseFont objects in iText. This is the role of the
FontMapper interface.

If you create a new DefaultFontMapper instance using the default constructor,
it will already contain sensible mappings for the logical fonts defined by the
Java specification. But if you want to use additional fonts—and you must if
you want to use a wide range of Unicode characters—then you need to add
extra mappings to the DefaultFontMapper object.

9.8.3 Mapping Additional Fonts

I’ve decided to use the Arial Unicode MS font to display a chart title that
incorporates some Unicode characters. The font definition file (arialuni.ttf)
is located, on my system, in the directory:

/opt/jbuilder5/jdk1.3/jre/lib/fonts

47

Here’s the code used to create the FontMapper for use by iText—I’ve based this
on an example written by Paulo Soares:

DefaultFontMapper mapper = new DefaultFontMapper();
mapper.insertDirectory("/opt/jbuilder5/jdk1.3/jre/lib/fonts");
DefaultFontMapper.BaseFontParameters pp =

mapper.getBaseFontParameters("Arial Unicode MS");
if (pp!=null) {

pp.encoding = BaseFont.IDENTITY_H;
}

Now I can modify the code that creates the chart, in order to add a custom title
to the chart (I’ve changed the data and chart type also):

// create a chart...
XYDataset data = DemoDatasetFactory.createTimeSeriesCollection2();
JFreeChart chart = ChartFactory.createTimeSeriesChart("PDF Test",

"Time", "Price",
data, true);

String text = "\u278A\u20A0\u20A1\u20A2\u20A3\u20A4\u20A5\u20A6\u20A7\u20A8\u20A9";
Font font = new Font("Arial Unicode MS", Font.PLAIN, 12);
TextTitle subtitle = new TextTitle(text, font);
chart.addTitle(subtitle);

Notice that the subtitle (which mostly consists of a meaningless collection of
currency symbols) is defined using escape sequences to specify each Unicode
character. This avoids any problems with encoding conversions when I save the
Java source file.

The output from the modified sample program is shown in figure 2. The example
has been embedded in this document in PDF format, so it is a good example of
the type of output you can expect by following the instructions in this document.

PDF Test
➊₠₡₢₣₤₥₦₧₨₩

JPY/GBP Exchange Rate

Time
Jan-2001 Apr-2001 Jul-2001 Oct-2001

P
ric

e

167.5

170.0

172.5

175.0

177.5

180.0

Figure 2: A Unicode subtitle

48

10 Exporting Charts to SVG Format

10.1 Introduction

In this section, I describe how to export a chart to a file in SVG format, using
JFreeChart and Batik.

10.2 What is SVG?

Scalable Vector Graphics (SVG) is a standard language for describing two-
dimensional graphics in XML format. It is a Recommendation of the World
Wide Web Consortium (W3C).

10.3 Batik

Batik is an open source toolkit, written in Java, that allows you to generate
SVG content. Batik is available from:

http://xml.apache.org/batik

At the time of writing, the latest version of Batik is 1.1.1.

10.4 Batik and JFreeChart

Getting JFreeChart to work with Batik is relatively painless. I’ve only spent a
limited amount of time working with Batik, so I’m no expert, but here I will
describe a simple program that creates a chart and saves it in SVG format in a
file. Hopefully this will be enough to get you started.

10.5 Getting Started

First, you should download Batik and install it according to the instructions
provided on the Batik web page.

To compile and run the sample program presented in the next section, you need
to ensure that the following jar files are on your classpath:

File: Description:

jcommon-0.6.2.jar Common classes from The Object Refinery.
jfreechart-0.9.1.jar The JFreeChart class library.
batik-awt-util.jar Batik runtime files.
batik-dom.jar Batik runtime files.
batik-ext.jar Batik runtime files.
batik-svggen.jar Batik runtime files.
batik-util.jar Batik runtime files.
batik-xml.jar Batik runtime files.

49

10.6 The Application

Create a project in your favourite Java development environment, and type in
the following program:

package svgtest;

import com.jrefinery.chart.JFreeChart;
import com.jrefinery.chart.ChartFactory;
import com.jrefinery.data.DefaultPieDataset;

import org.apache.batik.svggen.SVGGraphics2D;
import org.apache.batik.dom.GenericDOMImplementation;
import org.w3c.dom.Document;
import org.w3c.dom.DOMImplementation;

import java.awt.geom.Rectangle2D;
import java.io.File;
import java.io.FileOutputStream;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.IOException;

public class Application {

public static void main(String[] args) throws IOException {

// create a dataset...
DefaultPieDataset data = new DefaultPieDataset();
data.setValue("Category 1", new Double(43.2));
data.setValue("Category 2", new Double(27.9));
data.setValue("Category 3", new Double(79.5));

// create a chart
JFreeChart chart = ChartFactory.createPieChart("Sample Pie Chart",

data, true);

// THE FOLLOWING CODE BASED ON THE EXAMPLE IN THE BATIK DOCUMENTATION...
// Get a DOMImplementation
DOMImplementation domImpl = GenericDOMImplementation.getDOMImplementation();

// Create an instance of org.w3c.dom.Document
Document document = domImpl.createDocument(null, "svg", null);

// Create an instance of the SVG Generator
SVGGraphics2D svgGenerator = new SVGGraphics2D(document);

// Ask the chart to render into the SVG Graphics2D implementation
chart.draw(svgGenerator, new Rectangle2D.Double(0, 0, 400, 300), null);

// Finally, stream out SVG to a file using UTF-8
// character to byte encoding
boolean useCSS = true; // we want to use CSS style attribute
Writer out = new OutputStreamWriter(new FileOutputStream(new File("test.svg")),

"UTF-8");
svgGenerator.stream(out, useCSS);

}

}

Running this program creates a file test.svg in SVG format.

50

10.7 Viewing the SVG

Batik includes a viewer application which you can use to open the SVG file.
The Batik download includes instructions for running the viewer, effectively all
you require is:

jar -jar batik-svgbrowser.jar

The following screen shot shows the pie chart that we created earlier, displayed
in the Batik browser application:

If you play about with the viewer, zooming in and out and transforming the
chart, you will begin to appreciate the power of the SVG format.

51

11 Packages

11.1 Overview

The following sections contain reference information for the packages that make
up JFreeChart.

Package (com.jrefinery.*): Description:

chart The main chart classes.
chart.data Some data fitting classes (to be moved).
chart.entity Classes representing chart entities.
chart.event The event classes.
chart.junit Tests for the JFreeChart library based on

the JUnit framework
chart.tooltips The tooltip classes.
chart.ui User interface classes.
chart.demo The demonstration application.
chart.demo.jdbc.servlet A servlet demonstration.
chart.demo.jdbc.swing A JDBC demonstration.
chart.demo.resources Resource bundles for user interface items

that require localisation.

I also include documentation for the com.jrefinery.data package—part of the
JCommon class library—since it is used extensively by JFreeChart.

Additional information can be found in the Javadoc HTML files for JFreeChart
and JCommon.

52

12 Package: com.jrefinery.chart

12.1 Overview

This package contains the major classes and interfaces in the JFreeChart class
library.

12.2 AbstractCategoryItemRenderer

12.2.1 Overview

A base class that can be used to implement a new category item renderer.

AbstractCategoryItemRenderer
+toolTipGenerator
+initialise()

CategoryItemRenderer

+drawCategoryItem()
+initialise(): boolean
+isStacked(): boolean

BarRenderer

HorizontalBarRenderer

+drawCategoryItem()

VerticalBarRenderer

+drawCategoryItem()

LineAndShapeRenderer

+drawCategoryItem()

StackedVerticalBarRenderer

+isStacked(): boolean
+drawCategoryItem()

StackedVerticalBarRenderer3D

+isStacked(): boolean
+drawCategoryItem()

StackedHorizontalBarRenderer

+isStacked(): boolean
+drawCategoryItem()

StackedHorizontalBarRenderer3D

+isStacked(): boolean
+drawCategoryItem()

VerticalIntervalBarRenderer

+drawCategoryItem()

HorizontalIntervalBarRenderer

+drawCategoryItem()

AreaCategoryItemRenderer

+drawCategoryItem()

Figure 3: Category item renderers

12.2.2 Constructors

The default constructor:

protected AbstractCategoryItemRenderer();

Creates a new renderer with a standard tool tip generator. The tool tip

generator is set up even if it is never used.

The other constructor allows you to supply a custom tool tip generator:

protected AbstractCategoryItemRenderer(CategoryToolTipGenerator toolTip-

Generator);

Creates a new renderer with a custom tool tip generator.

53

12.2.3 Methods

The following method is called once every time the chart is drawn:

public void initialise(...);

Performs any initialisation required by the renderer. The default imple-

mentation simply stores a local reference to the info object (which may

be null).

12.2.4 Notes

If you are implementing your own renderer, you do not have to use this base
class, but it does save you some work.

See Also
CategoryItemRenderer.

12.3 AbstractTitle

12.3.1 Overview

The base class for all chart titles. Several concrete sub-classes have been imple-
mented, including: TextTitle, DateTitle and ImageTitle.

The JFreeChart class maintains a list of titles, which can hold zero, one or
many titles.

12.3.2 Constructors

The standard constructor:

protected AbstractTitle(int position, int horizontalAlignment, int vertical-

Alignment, Spacer spacer);

Creates a new AbstractTitle.

12.3.3 Notes

The original version of this class was written by David Berry. I’ve since made
a few changes to the original version, but the idea for allowing a chart to have
multiple titles came from David.

This class implements Cloneable, which is useful when editing title properties
because you can edit a copy of the original, and then either apply the changes
or cancel the changes.

See Also
ImageTitle, TextTitle.

54

12.4 AbstractXYItemRenderer

12.4.1 Overview

A convenient base class for creating new XYItemRenderer implementations.

This class provides a property change mechanism to support the requirements
of the XYItemRenderer interface.

12.4.2 Constructors

This class provides a default constructor which allocates storage for the list of
property change listener references.

12.4.3 Methods

To register a PropertyChangeListener with the renderer:

public void addPropertyChangeListener(PropertyChangeListener listener);

Registers a listener so that it receives notification of any changes to the

renderer.

If an object no longer wishes to receive property change notifications:

public void removePropertyChangeListener(PropertyChangeListener listener);

Removes a listener so that it no longer receives notification of changes to

the renderer.

See Also
XYItemRenderer, XYPlot.

12.5 AreaCategoryItemRenderer

12.5.1 Overview

A category item renderer that draws an area chart using data from a Category-
Dataset. You can use this renderer with the VerticalCategoryPlot class.

12.5.2 Methods

This renderer overrides two methods from the superclass AbstractCategory-
ItemRenderer:

public void drawRangeMarker(...);

Draws a vertical line to represent a marker on the range axis.

12.5.3 Notes

If you are implementing your own renderer, you do not have to use this base
class, but it does save you some work.

55

See Also
CategoryItemRenderer.

12.6 AreaXYItemRenderer

12.6.1 Overview

A renderer that can be used by XYPlot to draw an area chart. An area chart is
similar to a line chart, except that the region between the line and the x-axis is
filled with a solid color.

12.6.2 Constructors

The default constructor sets up the renderer to draw area charts:

public AreaXYItemRenderer();

Creates a new AreaXYItemRenderer. By default, the type is set to AREA

(see the next constructor).

You can change the appearance of the chart by specifying the type:

public AreaXYItemRenderer(int type);

Creates a new AreaXYItemRenderer using one of the following types:

SHAPES, LINES, SHAPES AND LINES, AREA, AREA AND SHAPES.

12.6.3 Notes

You can see from this second constructor that the AreaXYItemRenderer class
is based on the StandardXYItemRenderer class, and that some additional work
is required to eliminate the duplication. One option (still under considera-
tion) for a future version of JFreeChart is to merge AreaXYItemRenderer with
StandardXYItemRenderer.

See Also
StandardXYItemRenderer, XYItemRenderer, XYPlot.

12.7 Axis

12.7.1 Overview

An abstract class representing an axis (horizontal or vertical). Some subclasses
of Plot will use axes to display data.

Figure 4 illustrates the axis class hierarchy.

12.7.2 Constructors

To create a new Axis:

protected Axis(String label);

Creates a new Axis, with the specified label.

56

Axis

ValueAxisCategoryAxis

HorizontalCategoryAxis

VerticalCategoryAxis DateAxisNumberAxis

VerticalNumberAxisHorizontalNumberAxis

HorizontalNumberAxis3D VerticalNumberAxis3D

HorizontalDateAxis

HorizontalLogarithmicAxis

VerticalLogarithmicAxis

HorizontalSymbolicAxis VerticalSymbolicAxis

Figure 4: Axis classes

12.7.3 Attributes

The Axis class has the following attributes:

Attribute: Description:

Plot The plot that the axis belongs to.
Label The axis label.
LabelFont The font for the axis label.
LabelPaint The color for the axis label.
LabelInsets The space to leave blank around the axis label.
TickLabelsVisible A flag controlling the visibility of tick labels.
TickLabelFont The font for the tick labels.
TickLabelPaint The color for the tick labels.
TickLabelInsets The space to leave around the tick labels.
TickMarksVisible A flag controlling the visibility of tick marks.
TickMarkStroke The stroke used to draw the tick marks.

The following default values are used for attributes wherever necessary:

Name: Value:

DEFAULT AXIS LABEL FONT new Font("SansSerif", Font.PLAIN, 14);

DEFAULT AXIS LABEL PAINT Color.black;

DEFAULT AXIS LABEL INSETS new Insets(2, 2, 2, 2);

DEFAULT TICK LABEL FONT new Font("SansSerif", Font.PLAIN, 10);

DEFAULT TICK LABEL PAINT Color.black;

DEFAULT TICK LABEL INSETS new Insets(2, 1, 2, 1);

DEFAULT TICK STROKE new BasicStroke(1);

12.7.4 Notes

The Axis class implements a notification mechanism that informs registered
listeners whenever a change is made to an axis. The following methods are
used:

57

public void addChangeListener(AxisChangeListener listener);

Registers an object to receive notification whenever the axis changes.

public void removeChangeListener(AxisChangeListener listener);

Deregisters an object, so that it no longer receives notification when the
axis changes.

public void notifyListeners(AxisChangeEvent event);

Notifies all registered listeners that a change has been made to the axis.

See Also
AxisConstants, AxisChangeEvent, AxisChangeListener, AxisNotCompatibleException.

12.8 AxisConstants

12.8.1 Overview

An interface that defines the constants used by the Axis class.

12.8.2 Notes

The Plot class also implements this interface, so that it has convenient access
to the constants for internal use.

See Also
Axis.

12.9 AxisNotCompatibleException

12.9.1 Overview

An exception that indicates that an attempt has been made to assign an axis
to a Plot where the axis is not compatible with the plot type (for example, a
VerticalCategoryAxis will not work with an XYPlot).

12.9.2 Constructors

To create a new exception:

public AxisNotCompatibleException(String message);

Creates a new exception.

12.9.3 Notes

The AxisNotCompatibleException is a subclass of RuntimeException.

See Also
PlotNotCompatibleException.

58

12.10 BarRenderer

12.10.1 Overview

A base class that is used to implement various category item renderers that
represent data using bars.

See Also
HorizontalBarRenderer, VerticalBarRenderer.

12.11 CandlestickRenderer

12.11.1 Overview

A renderer that is used by the XYPlot class to generate candlestick charts. This
class implements the XYItemRenderer interface.

A recent addition to this renderer is the ability to represent volume information
in the background of the chart.

12.11.2 Constructors

To create a new renderer:

public CandlestickRenderer(double candleWidth);

Creates a new renderer.

12.11.3 Methods

To set the width of the candles (in points):

public void setCandleWidth(double width);

Sets the width of each candle. If the value is negative, then the renderer

will automatically determine a width each time the chart is redrawn.

To set the color used to fill candles when the closing price is higher than the
opening price (the price has moved up):

public void setUpPaint(Paint paint);

Sets the fill color for candles where the closing price is higher than the

opening price.

To set the color used to fill candles when the closing price is lower than the
opening price (the price has moved down):

public void setDownPaint(Paint paint);

Sets the fill color for candles where the closing price is lower than the

opening price.

To control whether or not volume bars are drawn in the background of the chart:

59

public void setDrawVolume(boolean flag);

Controls whether or not volume bars are drawn in the background of the

chart.

These methods will fire a property change event that will be picked up by the
XYPlot class, triggering a chart redraw.

12.11.4 Notes

This renderer requires a HighLowDataset.

The original candlestick chart was developed by Sylvain Vieujot. As JFreeChart
evolved, I converted the code to a class that implements the XYItemRenderer
interface. Sylvain has continued to enhance the renderer, recently incorporating
a feature to display volume data in the background of the chart.

See Also
XYItemRenderer, HighLowDataset.

12.12 CategoryAxis

12.12.1 Overview

An abstract base class for axes that display labels for categorical data.

12.12.2 Notes

The CategoryAxis class extends the Axis class. Note that this class doesn’t
add anything to Axis—it occupies its place in the class hierarchy purely for
descriptive purposes.

Known subclasses include HorizontalCategoryAxis and VerticalCategoryAxis.

See Also
Axis.

12.13 CategoryItemRenderer

12.13.1 Overview

The interface that must be supported by a category item renderer. A renderer is
a plug-in for the CategoryPlot class that is responsible for drawing individual
data items.

A number of different renderers have been developed, allowing different chart
types to be generated easily.

The following table lists the renderers that have been implemented to date:

60

Class: Description:

HorizontalBarRenderer Represents data using horizontal bars (an-
chored at zero).

VerticalBarRenderer Represents data using vertical bars (anchored
at zero).

HorizontalIntervalBar-

Renderer

Draws intervals using horizontal bars. This
renderer can be used to create simple GANTT
charts.

LineAndShapeRenderer Draws lines and/or shapes to represent data.
StackedHorizontalBar-

Renderer

Used to create a horizontal stacked bar chart.

StackedVerticalBar-

Renderer

Used to create a vertical stacked bar chart.

Classes that implement the CategoryItemRenderer interface are expected to
be immutable.7 That way, you can only change the appearance of the chart by
calling the setRenderer(...) method in the CategoryPlot class, and so the
proper event notification can be triggered to update the chart.

12.13.2 Methods

The interface defines an initialisation method:

public void initialise(...);

This method is called at the start of every chart redraw. It gives the

renderer a chance to precalculate any information it might require later

when rendering individual data items.

For data range calculations, the CategoryPlot class needs to know whether
or not the renderer stacks values. This can be determined via the following
method:

public boolean isStacked();

Returns true if the values are stacked, and false otherwise.

The most important method is the one that actually draws a data item:

public Shape drawCategoryItem(...);

Draws one item on a category plot.

12.13.3 Notes

Classes that implement the CategoryItemRenderer interface are used by the
CategoryPlot class. They cannot be used by the XYPlot class (which uses
implementations of the XYItemRenderer interface).

See Also
CategoryPlot.

7This will change in a future version. A property change notification mechanism will be
added, to parallel the same feature that has been added to the XYItemRenderer interface.

61

12.14 CategoryPlot

12.14.1 Overview

A base class that controls the drawing of a plot based on data from a Category-
Dataset. The visual appearance of the plot can be customised by setting a
CategoryItemRenderer for the plot.

12.14.2 Constructors

There are two constructors for CategoryPlot. The simpler of the two requires
the caller to specify the axes and the renderer, with all other axis properties
assuming default values:

protected CategoryPlot(Axis horizontalAxis, Axis verticalAxis,

CategoryItemRenderer renderer);

Creates a new CategoryPlot using mostly default values.

The alternative constructor allows the caller to specify a wide range of axis
properties. Refer to the source code or Javadoc HTML pages for details.

12.14.3 Attributes

The CategoryPlot adds the following attributes to those that it inherits from
the Plot class:

Attribute: Description:

Renderer The class responsible for rendering each data item in
the plot.

IntroGapPercent The space before the first item in the plot.
TrailGapPercent The space after the last item in the plot.
CategoryGapsPercent The space between the last item in one category, and

the first item in the next category.
ItemGapsPercent The space between two bars in the same category.
ToolTipGenerator The tooltip generator (optional).

The following default values are used for attributes wherever necessary:

Name: Value:

DEFAULT INTRO GAP PERCENT 0.05 (5 percent)
DEFAULT TRAIL GAP PERCENT 0.05 (5 percent)
DEFAULT CATEGORY GAPS PERCENT 0.20 (20 percent)
DEFAULT ITEM GAPS PERCENT 0.15 (15 percent)
DEFAULT TOOL TIP GENERATOR null

This diagram illustrates the purpose of the ”gap” attributes:

62

12.14.4 Methods

You can control the appearance of the plot by setting a renderer for the plot.
The renderer is responsible for drawing a visual representation of each data
item:

public void setRenderer(CategoryItemRenderer renderer);

Sets the renderer for the plot. A range of different renderers are available.

If you set the renderer to null, an empty chart is drawn.

To get a reference to the category axis for the plot:

public abstract CategoryAxis getDomainAxis();

Returns the category axis for the plot.

To get a reference to the numerical axis for the plot:

public abstract ValueAxis getRangeAxis();

Returns the value axis for the plot.

To set a tooltip generator for the plot:

public void setToolTipGenerator(CategoryToolTipGenerator generator);

Sets a tooltip generator for the plot. If tooltip information is requested at

the time a chart is drawn, this generator will be used to create the text

for each data item. Registering your own generator gives you full control

over the tooltip text formatting.

A zoom method is provided to support the zooming function provided by the
JFreeChartPanel class:

public void zoom(double percent);

Increases or decreases the axis range (about the anchor value) by the spec-

ified percentage. If the percentage is zero, then the auto-range calculation

is restored for the value axis.

The category axis remains fixed during zooming, only the value axis changes.

63

12.14.5 Notes

The CategoryDataset interface is part of the JCommon Class Library.

A number of different item renderers have been implemented—see the listings in
the entries for the subclasses HorizontalCategoryPlot and VerticalCategoryPlot.

See Also
HorizontalCategoryPlot, VerticalCategoryPlot.

12.15 CategoryPlotConstants

12.15.1 Overview

An interface that defines constants used by the CategoryPlot class.

12.16 ChartFactory

12.16.1 Overview

This class provides a range of static methods for constructing charts. These
methods make it easier to create charts with default properties.

12.16.2 Methods

public static JFreeChart createPieChart(String title, PieDataset data,

boolean legend);

Creates a pie chart for the given PieDataset.

public static JFreeChart createVerticalBarChart(String title,

String categoryAxisLabel, String valueAxisLabel, CategoryDataset data,

boolean legend);

Creates a vertical bar chart for the given CategoryDataset.

public static JFreeChart createVerticalBarChart3D(String title,

String categoryAxisLabel, String valueAxisLabel, CategoryDataset data,

boolean legend);

Creates a vertical bar chart with 3D effect for the given CategoryDataset.

public static JFreeChart createStackedVerticalBarChart(String title,

String categoryAxisLabel, String valueAxisLabel, CategoryDataset data,

boolean legend);

Creates a stacked vertical bar chart for the given CategoryDataset.

public static JFreeChart createStackedVerticalBarChart3D(String title,

String categoryAxisLabel, String valueAxisLabel, CategoryDataset data,

boolean legend);

Creates a stacked vertical bar chart with 3D effect for the given CategoryDataset.

64

public static JFreeChart createHorizontalBarChart(String title, String

categoryAxisLabel, String valueAxisLabel, CategoryDataset data, boolean

legend);

Creates a horizontal bar chart for the given CategoryDataset.

public static JFreeChart createStackedHorizontalBarChart(String title,

String categoryAxisLabel, String valueAxisLabel, CategoryDataset data,

boolean legend);

Creates a stacked horizontal bar chart for the given CategoryDataset.

public static JFreeChart createLineChart(String title,

String categoryAxisLabel, String valueAxisLabel, CategoryDataset data,

boolean legend);

Creates a line chart for the given CategoryDataset.

public static JFreeChart createXYChart(String title, String xAxisLabel,

String yAxisLabel, XYDataset data, boolean legend)

Creates an XY plot for the given XYDataset.

public static JFreeChart createScatterPlot(String title, String xAxisLabel,

String yAxisLabel, XYDataset data, boolean legend)

Creates a scatter plot for the given XYDataset.

public static JFreeChart createTimeSeriesChart(String title,

String timeAxisLabel, String valueAxisLabel, XYDataset data, boolean legend)

Creates a time series chart for the given XYDataset.

public static JFreeChart createVerticalXYBarChart(String title,

String xAxisLabel, String yAxisLabel, IntervalXYDataset data, boolean legend)

Creates a vertical XY bar chart for the given IntervalXYDataset.

public static JFreeChart createHighLowChart(String title,

String timeAxisLabel, String valueAxisLabel, HighLowDataset data, boolean

legend)

Creates a high-low-open-close chart for the given HighLowDataset.

public static JFreeChart createCandlestickChart(String title,

String timeAxisLabel, String valueAxisLabel, HighLowDataset data, boolean

legend)

Creates a candlestick chart for the given HighLowDataset.

12.16.3 Notes

These methods are provided for convenience only. You are not required to use
them.

See Also
JFreeChart.

65

12.17 ChartFrame

12.17.1 Overview

A frame containing chart within a ChartPanel.

12.17.2 Constructors

There are two constructors:

public ChartFrame(String title, JFreeChart chart);

Creates a new ChartFrame containing the specified chart.

The second constructor gives you the opportunity to request that the chart is
contained within a JScrollPane:

public ChartFrame(String title, JFreeChart chart, boolean scrollPane);

Creates a new ChartFrame containing the specified chart.

12.17.3 Notes

Refer to Javadoc HTML files and source code for details.

See Also
ChartPanel.

12.18 ChartMouseEvent

12.18.1 Overview

An event generated by the ChartPanel class for mouse clicks and mouse move-
ments over a chart.

12.18.2 Notes

To receive notification of these events, an object needs to implement the ChartMouseListener
interface and register itself with a ChartPanel object.

See Also
ChartPanel, ChartMouseListener.

12.19 ChartMouseListener

12.19.1 Overview

An interface that defines the callback method for a chart mouse listener.

66

12.19.2 Methods

There are two methods defined by this interface.

The first receives notification of mouse click events:

public void chartMouseClicked(ChartMouseEvent event);

A callback method for receiving notification of a mouse click on a chart.

The second receives notification of mouse movement events:

public void chartMouseMoved(ChartMouseEvent event);

A callback method for receiving notification of a mouse movement event

on a chart.

12.19.3 Notes

Instances of any class that implements this interface can register with a ChartPanel
object to receive notification of chart mouse events.

See Also
ChartPanel, ChartMouseEvent.

12.20 ChartPanel

12.20.1 Overview

A panel (extends javax.swing.JPanel) that provides a convenient means to
display a JFreeChart instance in a Swing-based user-interface.

The panel can be set up to include a popup menu providing access to:

• chart properties – the property editors are incomplete, but allow you to
customise many chart properties;

• printing – print a chart via the standard Java printing facilities;

• saving the chart to a PNG format file;

• zooming options;

In addition, the panel can:

• provide offscreen buffering to improve performance when redrawing over-
lapping frames;

• display tooltips for some chart types;

All of these features are used in the demonstration application that is included
with the JFreeChart distribution.

67

12.20.2 Constructors

The standard constructor accepts a JFreeChart as the only parameter, and
creates a panel that displays the chart:

public ChartPanel(JFreeChart chart);

Creates a new ChartPanel for drawing the specified chart.

By default, the panel is automatically updated whenever the chart changes.

12.20.3 Methods

You can get access to the chart that is displayed in the panel:

public JFreeChart getChart();

Returns the chart that is displayed in the panel.

You can change the chart that is displayed in the panel:

public void setChart(JFreeChart chart);

Sets the chart that is displayed in the panel. The panel registers with the

chart as a change listener, so that it can repaint the chart whenever it

changes.

The panel includes support for tooltips (which are available on most chart
types). To turn this feature on or off, use the following method:

public void setToolTipGeneration(boolean flag);

Switches the tooltips feature on or off for this panel.

As the space available for drawing a chart gets smaller and smaller, it becomes
more and more difficult to layout the components of the chart without overlaps.
One solution to this is to specify the minimum drawing area for the chart—if
the space on the panel is less than the minimum, then the chart is drawn in a
buffer at the minimum size, then scaled into the available space on the panel.
Use the following method to specify the minimum size:

public void setMinimumDrawArea(Rectangle2D area);

Sets the minimum size for drawing the chart. A scaling transformation is

used to fit the chart into spaces smaller than this if required.

12.20.4 Notes

The panel includes support for displaying tooltips for a chart.

See Also
JFreeChart.

68

12.21 ChartPanelConstants

12.21.1 Overview

An interface that defines constants used by the ChartPanel class.

12.22 ChartRenderingInfo

12.22.1 Overview

This class can be used to collect information about a chart as it is rendered,
particularly information concerning the dimensions of various sub-components
of the chart.

In the current implementation, four pieces of information are recorded for most
chart types:

• the chart area;

• the plot area (including the axes);

• the data area (”inside” the axes);

• entities (including tooltip information);

12.22.2 Constructors

The default constructor:

public ChartRenderingInfo();

Creates a ChartRenderingInfo object.

See Also
EntityCollection.

12.23 ChartUtilities

12.23.1 Overview

This class contains some useful methods for use with charts.

12.23.2 Methods

The methods include:

public static void saveChartAsPNG(File file, JFreeChart chart, int width,

int height);

Saves a chart to a PNG format image file.

public static void saveChartAsJPEG(File file, JFreeChart chart, int width,

int height);

Saves a chart to a JPEG format image file.

69

12.23.3 Notes

PNG tends to be a better format for charts than JPEG since the compression
is ”lossless” for PNG.

See Also
JFreeChart.

12.24 CombinedXYPlot

12.24.1 Overview

A subclass of XYPlot that allows you to combined multiple plots on one chart.
The subplots share either the horizontal or vertical axis from the parent, and
maintain one “non-shared” axis each.

Figure 5 illustrates the relationship between the parent plot and its subplots (in
this case the combination is vertical).

independent range axes

Subplot 1

Subplot 2

Subplot 3

CombinedXYPlot (VERTICAL)

domain axes = null

shared domain axis

shared range axis = null

Figure 5: CombinedXYPlot axes

12.24.2 Methods

To add a subplot:

public void add(XYPlot subplot, int weight);

Adds a subplot. The subplot can be any instance of XYPlot and should

have one of its axes (the shared axis) set to null. The weight determines

how much of the plot area is assigned to the subplot.

70

12.24.3 Notes

The dataset for this class should be set to null (only the subplots display data).

The subplots managed by this class should have one axis set to null (the shared
axis is maintained by this class).

A demonstration of this type of plot is described in section 8.3.

See Also
XYPlot, OverlaidXYPlot.

12.25 CrosshairInfo

12.25.1 Overview

This class maintains information about the crosshairs on a plot, as the plot is
being rendered.

12.25.2 Constructors

The default constructor:

public CrosshairInfo();

Creates a CrosshairInfo object.

12.25.3 Methods

The following method is called as a plot is being rendered:

public void updateCrosshairPoint(double candidateX, double candidateY);

Creates a CrosshairInfo object.

12.26 DateAxis

12.26.1 Overview

The base class for axes that display date/time values—extends ValueAxis.
This class is designed to be flexible about the range of dates/times that it
can display—anything from several milliseconds to several decades should be
handled.

12.26.2 Constructors

This class has two constructors—the first requires all properties to be specified,
while the second assumes default values for many properties.

71

12.26.3 Attributes

DateAxis defines the following properties:

Attribute: Description:

minimumDate The minimum date (or time) visible on the axis.
maximumDate The maximum date (or time) visible on the axis.
tickUnits The DateUnit used for tick marks.
tickLabelFormatter The DateFormat object used to format the tick labels.

12.26.4 Notes

In the current implementation, there is one subclass: HorizontalDateAxis,
which can be used with an XYPlot to present time series data.

See Also
HorizontalDateAxis, DateUnit.

12.27 DateTitle

12.27.1 Overview

A chart title that displays the current date. Since charts can have multiple titles,
this class enables the current date to be added in various positions relative to
the chart (often at the bottom).

12.27.2 Notes

The original version of this class was written by David Berry (dberry@dallas.net).

See Also
AbstractTitle.

12.28 DateUnit

12.28.1 Overview

Represents a fixed unit of time, used to specify the tick units for a DateAxis.

12.28.2 Constructors

There is just one constructor:

public DateUnit(int field, int count);

Creates a new DateUnit.

The field attribute uses constants defined in the java.util.Calendar class:

72

Time Unit: Constant:

Year Calendar.YEAR

Month Calendar.MONTH

Day Calendar.DATE

Hour Calendar.HOUR OF DAY

Minute Calendar.MINUTE

Second Calendar.SECOND

Millisecond Calendar.MILLISECOND

You should not use any of the other constants defined in java.util.Calendar.

12.28.3 Methods

The following method is used for simple date addition:

public Date addToDate(Date base);

Creates a new Date that is one DateUnit after the base date.

12.28.4 Notes

To create a DateUnit representing one week, use the following code:

DateUnit week = new DateUnit(Calendar.DATE, 7);

If you want to create a DateUnit measured in hours, note that a common
mistake is to use the Calendar.HOUR constant in the constructor. This doesn’t
work—you should use Calendar.HOUR OF DAY instead.

See Also
DateAxis.

12.29 DefaultShapeFactory

12.29.1 Overview

A shape factory implementation provided to match the behaviour of older ver-
sions of JFreeChart. You should use SeriesShapeFactory instead.

12.30 HighLow

12.30.1 Overview

Represents one item used by a HighLowRenderer during the rendering process.

12.30.2 Notes

Refer to Javadoc HTML files and source code for details.

73

See Also
HighLowRenderer.

12.31 HighLowRenderer

12.31.1 Overview

A renderer that can be used with the XYPlot class and a HighLowDataset to
create high-low-open-close charts.

12.31.2 Methods

Implements the drawItem(...) method defined in the XYItemRenderer inter-
face.

12.31.3 Notes

Refer to Javadoc HTML files and source code for details.

See Also
XYPlot, XYItemRenderer.

12.32 HorizontalAxis

12.32.1 Overview

An interface that must be implemented by all horizontal axes. The methods
defined by this interface are used by the Plot that owns the axis, for layout
purposes.

12.32.2 Methods

The interface defines two methods. The plot will call one of these two methods,
depending on the implementation.

public Rectangle2D reserveAxisArea(Graphics2D g2,

Plot plot, Rectangle2D drawArea, double reservedWidth);

Calculates the area that the horizontal axis requires to draw itself. If this

method is used, it will be called after the vertical axis has determined the

width that it requires—the argument reservedWidth contains this value.

public double reserveHeight(Graphics2D g2, Plot plot,

Rectangle2D drawArea);

Estimates the height that the horizontal axis requires to draw itself. If

this method is used, it will be called before the vertical axis is asked to

calculate the area that it requires—the height returned by this method

will be passed to the vertical axis.

74

See Also
VerticalAxis.

12.33 HorizontalBarRenderer

12.33.1 Overview

A renderer that draws horizontal bars.

12.33.2 Methods

The plot calls the following method to draw each bar:

public Shape drawBar(...);

This method returns the y-coordinate of the center of the specified cate-

gory. The category axis will call this method to determine where to place

the category labels, because it has no knowledge of the distribution of

categories (these could vary, depending on the nature of the plot).

12.33.3 Notes

The important methods from this class need to be factored out into an interface.

Refer to Javadoc HTML files and source code for details.

See Also
StackedHorizontalBarRenderer.

12.34 HorizontalCategoryAxis

12.34.1 Overview

A horizontal axis that displays labels for categorical data. This class extends
CategoryAxis and implements HorizontalAxis.

12.34.2 Constructors

There are two constructors defined, one that sets up the axis with mostly default
properties, and another that requires the caller to specify all the properties for
the axis. Refer to the Javadoc or the source code for details.

public HorizontalCategoryAxis(String label);

Creates a new axis, using default values where necessary.

12.34.3 Attributes

The axis can display category labels with a horizontal or vertical orientation—
this is controlled by the VerticalCategoryLabels attribute. The remaining
properties for this class are inherited from CategoryAxis.

75

12.34.4 Notes

In the current implementation, this class can be used with LinePlot and Ver-
ticalBarPlot.

This class relies on the Plot to implement the CategoryPlot interface. This
is because the axis has no control over the visual presentation of the data—in
particular, the axis cannot know how the categories are to be distributed along
the axis, so it must query the Plot via the defined interface.

See Also
CategoryAxis, VerticalCategoryAxis.

12.35 HorizontalCategoryPlot

12.35.1 Overview

This plot draws a chart using data from a CategoryDataset, where the cat-
egories are plotted against the vertical axis and the numerical data is plotted
against the horizontal axis.

12.35.2 Constructors

This class provides two constructors—one that requires all the attributes for the
plot to be specified, the other assumes a number of default values. Refer to the
Javadoc or the source code for details.

12.35.3 Methods

Some notes on the methods for HorizontalCategoryPlot:

public double getCategoryCoordinate(...);

This method returns the y-coordinate of the center of the specified cate-

gory. The category axis will call this method to determine where to place

the category labels, because it has no knowledge of the distribution of

categories (these could vary, depending on the nature of the plot).

12.35.4 Notes

This class inherits most of its functions from the CategoryPlot class.

See Also
CategoryPlot, HorizontalValuePlot, VerticalCategoryPlot.

76

12.36 HorizontalDateAxis

12.36.1 Overview

An axis that displays numerical data in date format—this class extends DateAxis
and implements HorizontalAxis.

12.36.2 Attributes

The axis can display category labels with a horizontal or vertical orientation—
this is controlled by the verticalTickLabels property.

The remaining properties for this class are inherited from DateAxis. Although
the axis displays dates for tick labels, it is still working with Number objects.
The numbers are interpreted as the number of milliseconds since 1 January 1970
(that is, the encoding used by java.util.Date).

See Also
DateAxis.

12.37 HorizontalIntervalBarRenderer

12.37.1 Overview

A category item renderer that draws horizontal bars representing an interval.
This renderer requires data from the IntervalCategoryDataset.

See Also
HorizontalCategoryPlot, CategoryItemRenderer.

12.38 HorizontalNumberAxis

12.38.1 Overview

An horizontal axis that displays numerical data—this class extends NumberAxis
and implements HorizontalAxis.

12.38.2 Constructors

There are three constructors for this class. One requires the caller to specify all
the axis properties, while the other two use some default properties. Refer to
the Javadoc or the source code for details.

12.38.3 Methods

Some notes on the methods in HorizontalNumberAxis:

77

public void autoAdjustRange();

Obtains the minimum and maximum data values from the Plot, provided

that it implements HorizontalValueRange, and adjusts the axis range

accordingly. Note that the autoRangeIncludesZero flag is checked in this

method.

public void refreshTicks(...);

A utility method for calculating the positions of the ticks on an axis, just

prior to drawing the axis. This method checks the autoTickUnits flag,

and automatically determines a suitable “standard” tick size if required.

12.38.4 Notes

Refer to the Javadoc HTML files and the source code for details.

See Also
NumberAxis, HorizontalNumberAxis.

12.39 HorizontalNumberAxis3D

12.39.1 Overview

A horizontal number axis that works with the horizontal 3D bar chart.

12.40 HorizontalSymbolicAxis

12.40.1 Overview

An axis that displays numerical data using symbols.

See Also
HorizontalNumberAxis.

12.41 HorizontalValuePlot

12.41.1 Overview

An interface that returns the minimum and maximum values in the “horizontal
direction” for a two-dimensional plot. The values could be from the dataset’s
domain or range, depending on the orientation of the plot.

This interface is known to be implemented by HorizontalBarPlot.

12.41.2 Methods

This interface has two methods:

78

public Number getMinimumHorizontalDataValue();

Returns the minimum data value in the horizontal direction for the plot;

public Number getMaximumHorizontalDataValue();

Returns the maximum data value in the horizontal direction for the plot;

12.41.3 Notes

Refer to the Javadoc HTML files and source code for details.

See Also
VerticalValuePlot.

12.42 ImageTitle

12.42.1 Overview

A chart title that displays an image.

12.42.2 Notes

Refer to Javadoc HTML files and source code for details.

See Also
AbstractTitle.

12.43 JFreeChart

12.43.1 Overview

The JFreeChart class controls the entire chart generation process. It co-
ordinates a collection of other classes with the aim of rendering charts that
look good at arbitrary sizes.

JFreeChart has been designed to draw charts onto a Java 2D graphics device
(java.awt.Graphics2D) which means that charts can be drawn on any device
supported by Java. Usually, developers are interested in drawing charts on the
screen, but you have the option to also output charts to the printer, an offscreen
image buffer, a scalable vector graphics (SVG) generator, a PDF generator or
whatever. Thanks to Graphics2D the same drawing code is used in all cases.

12.43.2 Constructors

All constructors require you to supply a Plot instance (the Plot maintains a
reference to the dataset used for the chart).

The simplest constructor is:

79

public JFreeChart(Plot plot);

Creates a new JFreeChart instance. The chart will have no title, and no

legend.

For greater control, a more complete constructor is available:

public JFreeChart(Plot plot, String title, Font titleFont, boolean createLegend);

Creates a new JFreeChart instance. This constructor allows you to spec-

ify a single title (you can add additional titles, later, if necessary).

The ChartFactory class provides some utility methods that can make the pro-
cess of constructing charts simpler.

12.43.3 Attributes

The JFreeChart class has the following attributes:

Attribute: Description:

titles A list of the titles for the chart.
legend The chart legend.
plot The plot.
antialias A flag that indicates whether or not the chart should

be drawn with anti-aliasing.
backgroundPaint The background paint for the chart.
backgroundImage An optional background image for the chart.
backgroundImageAlpha The alpha transparency for the background image.

12.43.4 Methods

The most important method for a chart is the draw(...) method:

public void draw(Graphics2D g2, Rectangle2D chartArea);

Draws the chart on the Graphics2D device, within the specified area.

The chart does not retain any information about the location or dimensions
of the items it draws. Callers that require such information should use the
alternative method:

public void draw(Graphics2D g2, Rectangle2D chartArea, ChartRenderingInfo

info);

Draws the chart on the Graphics2D device, within the specified area. If

info is not null, it will be populated with information about the items

drawn within the chart (to be returned to the caller).

Charts can have zero, one or many titles. To add a title to the chart:

public void addTitle(AbstractTitle title);

Adds a title to the chart.

The legend shows the names of the series (or sometimes categories) in a chart,
next to a small color indicator. To set the legend for a chart:

80

public void setLegend(Legend legend);

Sets the legend for a chart.

You can control whether or not the chart is drawn with anti-aliasing (switching
anti-aliasing on can improve the on-screen appearance of charts):

public void setAntiAlias(boolean flag);

Sets a flag controlling whether or not anti-aliasing is used when drawing

the chart.

To receive notification of any change to a chart, a listener object should register
via this method:

public void addChangeListener(ChartChangeListener listener);

Register to receive chart change events.

To stop receiving change notifications, a listener object should deregister via
this method:

public void removeChangeListener(ChartChangeListener listener);

Deregister to stop receiving chart change events.

12.43.5 Notes

The ChartFactory class provides some convenient methods for creating ”ready-
made” charts.

The Java2D API is used throughout JFreeChart, so JFreeChart does not work
with JDK1.1 (a common question from applet developers, although hopefully
less of an issue as browser support for Java2 improves).

A chart can have multiple titles (see AbstractTitle), although often you will
require just one title or no title at all.

See Also
ChartFactory, ChartPanel, Plot.

12.44 JFreeChartConstants

12.44.1 Overview

A collection of constants used by the JFreeChart class.

See Also
JFreeChart.

12.45 JFreeChartInfo

12.45.1 Overview

Information about the JFreeChart class library.

81

See Also
JFreeChart.

12.46 Legend

12.46.1 Overview

The base class for a chart legend.

12.46.2 Notes

This class implements a listener mechanism which can be used by subclasses.

Refer to Javadoc HTML files and source code for details.

See Also
StandardLegend.

12.47 LegendItem

12.47.1 Overview

An item within a legend.

See Also
Legend.

12.48 LegendItemCollection

12.48.1 Overview

A collection of legend items.

See Also
Legend.

12.49 LegendItemLayout

12.49.1 Overview

An interface for laying out a collection of legend items.

12.49.2 Notes

This code is incomplete.

See Also
Legend.

82

12.50 LineAndShapeRenderer

12.50.1 Overview

A renderer used by the HorizontalCategoryPlot class to draw line plots with
a CategoryDataset. This renderer can represent data values using shapes, lines
or shapes and lines.

12.50.2 Constructors

The default constructor creates a renderer that draws both shapes and lines:

public LineAndShapeRenderer();

Creates a new LineAndShapeRenderer that draws both shapes and lines.

The other constructor allows you to specify the type of renderer:

public LineAndShapeRenderer(int type);

Creates a new LineAndShapeRenderer of the specified type. Use one of

the constants defined by this class: SHAPES, LINES, or SHAPES AND LINES.

12.50.3 Methods

This class implements the drawCategoryItem(...) method that is defined in
the CategoryItemRenderer interface.

12.50.4 Notes

The renderer is immutable, meaning that once an instance is created its prop-
erties cannot be changed. This property is relied upon to ensure that the ap-
pearance of a plot can be changed only in ways that are known to the plot (so
that the plot can notify registered listeners that it has changed).

Refer to Javadoc HTML files and source code for further details.

See Also
CategoryItemRenderer.

12.51 Marker

12.51.1 Overview

Represents a constant value to be “marked” on a plot. Most plots will draw a
line across the plot to indicate the marker.

See Also
CategoryPlot, XYPlot.

83

12.52 MeterLegend

12.52.1 Overview

To be documented.

12.53 MeterPlot

12.53.1 Overview

A plot that displays a single value in a meter (or gauge).

12.53.2 Notes

This was contributed by Hari.

See Also
Plot.

12.54 NumberAxis

12.54.1 Overview

The base class for axes (both horizontal and vertical) that display numerical
data—extends ValueAxis.

12.54.2 Constructors

The NumberAxis class is abstract. Therefore you cannot instantiate this class
directly—you must use a subclass (for example, HorizontalNumberAxis or
VerticalNumberAxis).

Subclasses can call one of two constructors for the NumberAxis class. The sim-
pler version requires only the axis label to be specified, with all other attributes
taking default values:

protected NumberAxis(String label);

Creates a new NumberAxis.

The other constructor takes an extensive list of parameters, allowing much
greater control over the construction of the axis. Refer to the Javadoc HTML
pages or the source code for details.

12.54.3 Attributes

The following table lists the properties defined by NumberAxis:8

8Keep in mind that many other attributes are inherited from ValueAxis.

84

Attribute: Description:

MinimumAxisValue The lowest value displayed on the axis.
MaximumAxisValue The highest value displayed on the axis.
AutoRangeIncludesZero A flag that indicates whether or not zero is always

included when the axis range is determined automat-
ically.

AutoRangeMinimumSize If the axis range is determined automatically, it is
guaranteed never to be less that this value.

UpperMargin The margin to allow at the upper end of the axis scale
(expressed as a percentage of the total axis range).

LowerMargin The margin to allow at the lower end of the axis scale
(expressed as a percentage of the total axis range).

TickUnit The spacing between ticks on the axis.
StandardTickUnits A collection of standard tick units. If auto-tick-

selection is on, one of these tick units will be selected
automatically.

The following default values are used for attributes wherever necessary:

Name: Value:

DEFAULT MINIMUM AXIS VALUE 0.0

DEFAULT MAXIMUM AXIS VALUE 1.0

DEFAULT UPPER MARGIN 0.05 (5 percent)
DEFAULT LOWER MARGIN 0.05 (5 percent)
DEFAULT MINIMUM AUTO RANGE new Double(0.0000001);

DEFAULT TICK UNIT new NumberTickUnit(new Double(1.0), new

DecimalFormat("0"));

12.54.4 Methods

To set the lower bound for the axis:

public void setMinimumAxisValue(double value);

Sets the lower bound for the axis. If the AutoRange attribute is true it is

automatically switched to false. Registered listeners are notified of the

change.

To set the upper bound for the axis:

public void setMaximumAxisValue(double value);

Sets the upper bound for the axis. If the AutoRange attribute is true it is

automatically switched to false. Registered listeners are notified of the

change.

If you have set the AutoRange flag to true (so that the axis range automatically
adjusts to fit the current data), you may also want to set the AutoRangeIncludes-
Zero flag to ensure that the axis range always includes zero:

public void setAutoRangeIncludesZero(boolean flag);

Sets the AutoRangeIncludesZero flag.

85

When the AutoTickUnit property is set to true, the axis will select a tick unit
from a set of standard tick units. You can define your own standard tick units
for an axis with the following method:

public void setStandardTickUnits(TickUnits units);

Sets the standard tick units for the axis.

You don’t have to use the auto tick units mechanism. To specify a fixed tick
size (and format):

public void setTickUnit(NumberTickUnit unit);

Sets a fixed tick unit for the axis. This allows you to control the size and

format of the ticks, but you need to be sure to choose a tick size that

doesn’t cause the tick labels to overlap.

12.54.5 Notes

This class defines a default set of standard tick units. You can override the
default settings by calling the setStandardTickUnits(...) method.

See Also
TickUnits, ValueAxis.

12.55 NumberTickUnit

12.55.1 Overview

A numerical tick unit. The NumberAxis class creates a collection of standard
tick units from which it can choose an appropriate tick unit for the range of
data it is trying to display.

12.55.2 Constructors

The standard constructor:

public NumberTickUnit(Number value, NumberFormat formatter);

Creates a new number tick unit.

12.55.3 Notes

Extends the TickUnit class.

See Also
TickUnit.

86

12.56 OverlaidVerticalCategoryPlot

12.56.1 Overview

A recent addition to the JFreeChart class library that draws overlaid vertical
category plots. To be documented.

12.57 OverlaidXYPlot

12.57.1 Overview

A subclass of XYPlot, this class allows you to combine multiple subplots within
a single chart. As far as possible, this class tries to behave in exactly the same
way as a regular XYPlot. Setting axis ranges, background colors and so forth
should be no different to usual.

One important difference between this class and XYPlot is that you do not
supply a dataset for overlaid plots. Each of the subplots maintains its own
dataset.

All the subplots (instances of XYPlot) should have null axes, because they
share the axes managed by the OverlaidXYPlot. When you set the properties
of an axis belonging to an overlaid plot (the parent plot) all of the subplots will
update to reflect the change.

Figure 6 illustrates the relationship between the parent plot and its subplots.

range axis = null

Subplot 1

Subplot 2

Subplot 3

OverlaidXYPlot

domain axis = null

shared domain axis

shared range axis

Figure 6: OverlaidXYPlot axes

12.57.2 Constructors

To construct a new OverlaidXYPlot:

87

public OverlaidXYPlot(ValueAxis domain, ValueAxis range);

Creates a new plot with the specified axes. No dataset is necessary, since

the subplots (which you must add) maintain their own datasets.

Another constructor, which takes a domain axis label and a range axis label as
arguments, creates a new plot with numerical axes. This is provided for conve-
nience, allowing you to construct a new plot without having to first construct
axes.

12.57.3 Methods

To add a subplot:

public void add(XYPlot subplot);

Adds a subplot. The subplot can be almost any instance of XYPlot and

should have both its axes set to null.

12.57.4 Notes

The dataset for this class should be set to null.

The subplots managed by this class should have their domain and range axes
set to null.

A demonstration of this type of plot is described in section 8.2.

See Also
XYPlot, CombinedXYPlot.

12.58 PeriodMarkerPlot

12.58.1 Overview

A plot that highlights time periods using different colors.

12.58.2 Notes

This was contributed by Sylvain Vieujot. I haven’t done any work with this class
yet, but my initial thought is that it could be converted to an XYItemRenderer.

See Also
XYPlot.

12.59 PiePlot

12.59.1 Overview

The PiePlot class draws pie charts, using data obtained through the PieDataset
interface (part of the JCommon Class Library).

88

12.59.2 Constructors

The default constructor:

protected PiePlot();

Creates a pie plot with default attributes.

12.59.3 Attributes

The PiePlot class has the following attributes:

Attribute: Description:

InteriorGapPercent The space to leave blank around the outside of the pie.
Circular Circular or elliptical pie.
RadiusPercent Controls the radius of the unexploded pie.
SectionLabelType The type of labels for the pie sections.
SectionLabelFont The font for the section labels.
SectionLabelPaint The color for the section labels.
SectionLabelGapPercent The gap for the section labels.
ExplodePercentages[] The amount to ’explode’ each pie section.
PercentFormatter A formatter for the percentage labels.
ToolTipGenerator A plug-in tooltip generator.

The following default values are used where necessary:

Name: Value:

DEFAULT INTERIOR GAP 0.20 (20 percent)
DEFAULT RADIUS 1.00 (100 percent)
DEFAULT SECTION LABEL FONT new Font("SansSerif", Font.PLAIN, 10);

DEFAULT SECTION LABEL PAINT Color.black;

DEFAULT SECTION LABEL GAP 0.10 (10 percent)

12.59.4 Methods

A pie plot is drawn with this method:

public void draw(Graphics2D g2, Rectangle2D drawArea, ToolTips tooltips);

Draws the pie plot within the specified drawing area.

If tooltips is not null, then tooltip regions will be recorded for each pie

section as the pie plot is drawn. This information can be used later to

display tooltips.

The JFreeChart class usually calls the draw(...) method for you.

You can control the style of the labels for each section of the pie chart:

public void setSectionLabelType(int type);

Sets the type of label to display next to each section of the pie chart. Use

one of the following constants: NO LABELS, NAME LABELS, VALUE LABELS,

PERCENT LABELS, NAME AND VALUE LABELS, NAME AND PERCENT LABELS and

VALUE AND PERCENT LABELS.

89

To set the tooltip generator (optional) for the pie plot:

public void setToolTipGenerator(PieToolTipGenerator generator) ;

Registers a tooltip generator with the pie plot. If you write your own

generator, you can have full control over the tooltip text that is generated

for each pie section.

12.59.5 Notes

PiePlot inherits axes from the Plot class. You should leave these set to null.

See Also
Plot.

12.60 Plot

12.60.1 Overview

An abstract base class that controls the visual representation of data in a chart.

The JFreeChart class maintains a reference to one Plot. The plot, in turn,
manages the Dataset and the axes (if there are any).

When a chart is drawn, the JFreeChart class first draws the title (or titles) and
legend. Next, the plot is given an area (the plot area) into which it must draw
a representation of its dataset. This function is implemented in the draw(...)
method, each subclass of Plot takes a slightly different approach.

Figure 7 illustrates the plot class hierarchy.

Plot
#dataset

PiePlot

+getPieDataset()

MeterPlot

+getMeterDataset()

CategoryPlot

+getCategoryDataset()
+getDomainAxis()
+getRangeAxis()

XYPlot

+getXYDataset()
+getDomainAxis()
+getRangeAxis()

ThermometerPlot

HorizontalCategoryPlot VerticalCategoryPlot

OverlaidVerticalCategoryPlot

OverlaidXYPlotCombinedXYPlot PeriodMarkerPlot

Figure 7: Plot classes

12.60.2 Constructors

This class is abstract, so the constructors are protected.
The first constructor accepts a Dataset and uses default values for all other
attributes:

90

protected Plot(Dataset data);

Creates a new Plot. The plot registers with the dataset to receive notifi-

cation of any changes.

The other constructor allows you to supply custom values for most attributes.

12.60.3 Attributes

The Plot class has the following attributes:

Attribute: Description:

Dataset The dataset.
Insets The amount of space to leave around the outside of

the plot.
BackgroundPaint The color used to draw the background of the plot

area.
BackgroundImage An optional background image.
BackgroundAlpha The alpha transparency used to draw the background.
OutlineStroke The pen/brush used to draw an outline around the

plot area.
OutlinePaint The color used to draw an outline around the plot

area.
ForegroundAlpha The alpha transparency used to draw the foreground.
SeriesPaint An array of Paint objects used for the series colors.
SeriesStroke An array of Stroke objects used for drawing series.
SeriesOutlineStroke An array of Stroke objects used for drawing series.
SeriesOutlinePaint An array of Paint objects used for the series outline

colors.

12.60.4 Methods

The most important method is the draw(...) method:

public abstract void draw(Graphics2D g2, Rectangle2D plotArea, ChartRenderingInfo

info);

Draws the chart using the supplied Graphics2D. The plot should be con-
fined to the specified plotArea.

If you wish to record details of the items drawn within the plot, you need

to supply a ChartRenderingInfo object. Once the drawing is complete,

this object will contain a lot of information about the plot. If you don’t

want this information, pass in null.

Note that the draw(...) method is called by the JFreeChart class. You don’t
normally need to call it yourself.

12.60.5 Notes

The Plot class works with the Dataset interface (and its extensions) that are
defined in the JCommon Class Library. You can download JCommon from:

http://www.object-refinery.com/jcommon/index.html

91

See Also
JFreeChart, CategoryPlot, XYPlot.

12.61 PlotException

12.61.1 Overview

A general purpose exception that can be generated by subclasses of Plot.

12.61.2 Notes

At the current time, there isn’t any code that throws this type of exception, but
the class is being retained for future use.

12.62 PlotNotCompatibleException

12.62.1 Overview

An exception that indicates that an attempt has been made to assign a plot to
a chart where the plot is not compatible with the chart’s current Dataset. For
example, an XYPlot will not work with a CategoryDataset.

12.62.2 Constructors

To create a new exception:

public AxisNotCompatibleException(String message);

Creates a new exception.

12.62.3 Notes

The PlotNotCompatibleException class is a subclass of RuntimeException.

See Also
AxisNotCompatibleException.

12.63 SeriesShapeFactory

12.63.1 Overview

An implementation of the ShapeFactory interface that generates shapes for use
on charts.

12.64 ShapeFactory

12.64.1 Overview

An interface for generating shapes for a chart. To be documented.

92

12.65 SignalRenderer

12.65.1 Overview

A plot that draws different signals depending on the direction of the data.

12.65.2 Notes

This was contributed by Sylvain Vieujot.

See Also
Plot.

12.66 Spacer

12.66.1 Overview

A class that is used to specify spacing information within charts.

12.66.2 Notes

This class is intended to replace the use of Insets.

See Also
Plot.

12.67 StackedHorizontalBarRenderer

12.67.1 Overview

A renderer for the HorizontalBarPlot class that draws stacked bars.

12.67.2 Notes

Refer to Javadoc HTML files and source code for details.

See Also
HorizontalBarPlot, HorizontalBarRenderer.

12.68 StackedVerticalBarRenderer

12.68.1 Overview

A renderer for the VerticalBarPlot class that draws stacked bars.

12.68.2 Notes

Refer to Javadoc HTML files and source code for details.

93

See Also
VerticalBarPlot.

12.69 StackedVerticalBarRenderer3D

12.69.1 Overview

A renderer for the VerticalBarPlot class that draws stacked bars with a 3D-
effect.

12.69.2 Notes

Refer to Javadoc HTML files and source code for details.

See Also
VerticalBarPlot.

12.70 StandardLegend

12.70.1 Overview

This class is soon to be replaced by LegendTitle.

12.71 StandardXYItemRenderer

12.71.1 Overview

The default renderer for the XYPlot class. This renderer represents data by
drawing lines between (x, y) data points and/or drawing shapes at each (x, y)
data point.

12.71.2 Constructors

To create a StandardXYItemRenderer:

public StandardXYItemRenderer(int type);

Creates a new renderer. The type argument should be one of: LINES,

SHAPES or SHAPES AND LINES.

12.71.3 Notes

This class implements the XYItemRenderer interface.

The XYPlot class will use an instance of this class as its default renderer.

See Also
XYPlot, XYItemRenderer.

94

12.72 TextTitle

12.72.1 Overview

A standard chart title—extends AbstractTitle.

12.72.2 Notes

The original version of this class was written by David Berry.

See Also
AbstractTitle.

12.73 Tick

12.73.1 Overview

A utility class representing a tick on an axis. Used temporarily during the
drawing process only.

12.73.2 Constructors

The standard constructor:

public Tick(Object value, String text, float x, float y)

Creates a tick.

See Also
TickUnit.

12.74 TickUnit

12.74.1 Overview

An abstract class representing a tick unit. Subclasses include NumberTickUnit.

12.74.2 Constructors

The standard constructor:

public TickUnit(Number value);

Creates a new tick value.

12.74.3 Notes

Implements the Comparable interface, so that a collection of TickUnit objects
can be sorted easily using standard Java methods.

95

See Also
NumberTickUnit.

12.75 TickUnits

12.75.1 Overview

A collection of tick units. Used by the Number axis class to store a list of
”standard” tick units, from which an appropriate tick unit is selected as the
chart is being redrawn.

12.75.2 Constructors

The default constructor:

public TickUnits();

Creates a new collection of tick units, initially empty.

12.75.3 Methods

To add a new tick unit to the collection:

public void add(TickUnit unit);

Adds the tick unit to the collection.

To find the tick unit in the collection that is closest in size to another tick unit:

public TickUnit getNearestTickUnit(TickUnit unit);

Returns the tick unit that is closest in size to the specified unit.

12.75.4 Notes

The NumberAxis class has a private method createStandardTickUnits() that
generates a tick unit collection (of standard tick sizes) for use by numerical axes.

See Also
TickUnit.

12.76 ValueAxis

12.76.1 Overview

The base class for all (horizontal and vertical) axes that display ”values”. Ulti-
mately, values are represented as double primitives, but subclasses of ValueAxis
have been implemented that give the appearance of working with Number and
Date objects.

Known subclasses of ValueAxis include DateAxis and NumberAxis.

96

12.76.2 Constructors

To construct a ValueAxis:

protected ValueAxis(String label);

Creates a ValueAxis with the specified label. All other attributes take

default values.

If you want more control over the settings for the axis, there is another con-
structor that takes a full range of arguments specifying the atttributes for the
axis. Refer to the Javadoc HTML files or the source code for details.

12.76.3 Attributes

The ValueAxis class has the following attributes:

Attribute: Description:

AutoRange A flag controlling whether or not the axis automatically
adjusts its range to reflect the range of data values.

AutoTickUnitSelection A flag controlling whether or not the tick units are selected
automatically.

CrosshairVisible A flag controlling whether or not the crosshair is visible.
CrosshairValue The value at which the crosshair is drawn.
CrosshairStroke The pen/brush used to draw the crosshair.
CrosshairPaint The paint used to draw the crosshair.
CrosshairLockedOnData A flag controlling whether or not the crosshair is locked to

a data point.
GridLinesVisible A flag controlling whether or not grid lines are displayed.
GridLineStroke The stroke used to draw the grid lines.
GridLinePaint The color for the grid lines.

The following default values are used for attributes wherever necessary:

Name: Value:

DEFAULT AUTO RANGE true;

DEFAULT MINIMUM AXIS VALUE 0.0;

DEFAULT MAXIMUM AXISVALUE 1.0;

DEFAULT GRID LINE STROKE new BasicStroke(0.5f,

BasicStroke.CAP BUTT,

BasicStroke.JOIN BEVEL, 0.0f, new

float[] 2.0f, 2.0f, 0.0f);

DEFAULT GRID LINE PAINT Color.grey;

12.76.4 Methods

A key function for a ValueAxis is to convert a data value to an output coordinate
for plotting purposes. The output coordinate will be dependent on the area into
which the data is being drawn:

public double translateValueToJava2D(double value, Rectangle2D dataArea);

Converts a data value into a co-ordinate within the dataArea. The dataArea

is the rectangle inside the plot’s axes.

97

See Also
Axis, DateAxis, NumberAxis.

12.77 VerticalAxis

12.77.1 Overview

An interface that must be implemented by all vertical axes. The methods
defined by this interface are used by the Plot that owns the axis, for layout
purposes.

12.77.2 Methods

The interface defines two methods. The plot chooses which of these two methods
to call when laying out the axes.

public Rectangle2D reserveAxisArea(Graphics2D g2, Plot

plot, Rectangle2D drawArea, double reservedHeight);

Calculates the area that the vertical axis requires to draw itself. If this

method is used, it will be called after the horizontal axis has estimated

the height that it requires—the argument reservedHeight contains this

value.

public double reserveWidth(Graphics2D g2, Plot plot,

Rectangle2D drawArea);

Estimates the width that the vertical axis requires to draw itself. If this

method is used, it will be called before the horizontal axis is asked to

calculate the area that it requires—the width returned by this method

will be passed to the horizontal axis.

See Also
HorizontalAxis.

12.78 VerticalBarRenderer

12.78.1 Overview

A renderer that draws ordinary bars on a VerticalBarPlot.

12.78.2 Notes

Refer to Javadoc HTML files and source code for details.

See Also
VerticalCategoryPlot.

98

12.79 VerticalBarRenderer3D

12.79.1 Overview

A specialised renderer for the VerticalBarPlot class that draws the bars with
a 3D-effect.

12.79.2 Notes

This class was contributed by Serge V. Grachov.

Refer to Javadoc HTML files and source code for details.

See Also
VerticalCategoryPlot.

12.80 VerticalCategoryAxis

12.80.1 Overview

A vertical axis that displays categorical data. This class extends CategoryAxis.
As for the other category axes, this class relies on the plot to provide information
about how the categories are distributed along the axis (this information is
obtained via the CategoryPlot interface).

12.80.2 Constructors

There are two constructors for this class. One requires all the attributes for the
axis to be specified, the other provides for default values on some attributes.
Refer to the Javadoc or source code for details.
The default constructor:

public VerticalCategoryAxis(String label);

Creates a new VerticalCategoryAxis.

See Also
CategoryAxis, HorizontalCategoryAxis.

12.81 VerticalCategoryPlot

12.81.1 Overview

This plot draws a chart using data from a CategoryDataset, where the cate-
gories are plotted against the horizontal axis and the numerical data is plotted
against the vertical axis.

99

12.81.2 Constructors

The simplest constructor requires only the axes to be specified:

public VerticalCategoryPlot(CategoryAxis domainAxis, ValueAxis rangeAxis);

Creates a vertical category plot. Default values are assumed for most at-

tributes.

For more complete control, use the following constructor:

public VerticalCategoryPlot(CategoryAxis domainAxis, ValueAxis rangeAxis,

Insets insets, double introGapPercent, double trailGapPercent,

double categoryGapPercent, double itemGapPercent,

CategoryToolTipGenerator toolTipGenerator);

Creates a vertical category plot.

12.81.3 Methods

The category axis will need to ask the plot for the coordinate of a particular
category, since the plot controls the distribution of the categories. This method
is used:

public double getCategoryCoordinate(...);

This method returns the x-coordinate of the center of the specified cate-

gory. The category axis will call this method to determine where to place

the category labels, because it has no knowledge of the distribution of

categories (these could vary depending on the nature of the plot).

12.81.4 Notes

The bar widths cannot be controlled directly. Instead, you set the amount
(percentage) of the total space that should be allocated to the gaps between the
bars, and then the bar widths are determined automatically.

See Also
CategoryPlot, HorizontalCategoryPlot, VerticalValuePlot.

12.82 VerticalIntervalBarRenderer

12.82.1 Overview

To be documented.

12.83 VerticalLogarithmicAxis

12.83.1 Overview

A numerical axis that displays values using a logarithmic scale.

100

12.83.2 Notes

An equivalent class HorizontalLogarithmicAxis has now been implemented.

See Also
NumberAxis.

12.84 VerticalNumberAxis

12.84.1 Overview

A vertical axis that displays numerical data—this class extends NumberAxis.

12.84.2 Constructors

There are three constructors for this class. One requires all the attributes for the
axis to be specified, the other two provide for default values on some attributes.
Refer to the Javadoc or source code for details.

12.84.3 Methods

A list of important methods:

public void autoAdjustRange();

This method obtains the maximum and minimum data values from the

Plot, provided that it implements VerticalValueRange, and adjusts the

axis range accordingly. Note that the autoRangeIncludesZero flag is

checked in this method.

public void refreshTicks(...);

A utility method for calculating the positions of the ticks on an axis, just

prior to drawing the axis. This method checks the autoTickUnits flag,

and automatically determines a suitable “standard” tick size if required.

private void calculateAutoTickUnits(...);

This method is used to pick a standard tick size from the array defined

in NumberAxis. The approach used is to find the smallest tick units such

that the tick labels do not overlap.

See Also
NumberAxis, HorizontalNumberAxis.

12.85 VerticalNumberAxis3D

12.85.1 Overview

A vertical axis that draws itself with a 3D-effect. In all other respects, the axis
should behave in the same way as the VerticalNumberAxis class.

101

12.85.2 Notes

Refer to Javadoc HTML files and source code for details.

See Also
VerticalNumberAxis.

12.86 VerticalSymbolicAxis

12.86.1 Overview

A numerical axis that displays values using symbols.

See Also
NumberAxis.

12.87 VerticalValuePlot

12.87.1 Overview

An interface that returns minimum and maximum data values in the “vertical
direction” for a two-dimensional plot. The values could be from the dataset
domain or range, depending on the orientation of the plot.

12.87.2 Methods

This interface has two methods:

public Number getMinimumVerticalDataValue();

Returns the minimum data value in the vertical direction for the plot.

public Number getMaximumVerticalDataValue();

Returns the maximum data value in the vertical direction for the plot.

12.87.3 Notes

This interface is known to be implemented by VerticalCategoryPlot and
XYPlot.

See Also
HorizontalValuePlot.

12.88 VerticalXYBarRenderer

12.88.1 Overview

Represents data from an IntervalXYDataset in the form of vertical bars on an
XYPlot.

102

12.88.2 Constructors

The only constructor takes no arguments.

12.88.3 Methods

The drawItem(...) method handles the rendering of a single item for the plot.

12.88.4 Notes

This renderer casts the dataset to IntervalXYDataset, so you should ensure
that the plot is supplied with the correct type of data. Refer to Javadoc HTML

files and source code for further details.

See Also
XYPlot.

12.89 WindItemRenderer

12.89.1 Overview

A renderer that XYPlot uses to draw wind plots.

See Also
XYPlot.

12.90 XYItemRenderer

12.90.1 Overview

An interface that must be implemented by a renderer so that it can work with an
XYPlot. By changing the renderer for an XYPlot, you can change the appearance
of the data items within the plot.

Figure 8 illustrates the hierarchy of classes that implement this interface.

AbstractXYItemRenderer

StandardXYItemRenderer

AreaXYItemRenderer

CandleStickRenderer

HighLowRenderer SignalRenderer

VerticalXYBarRenderer

Figure 8: Plot classes

103

12.90.2 Methods

The initialise method is called once at the beginning of the chart drawing
process, and gives the renderer a chance to initialise itself:

public void initialise(Graphics2D g2, Rectangle2D dataArea, XYPlot plot,

XYDataset data, ChartRenderingInfo info);

Initialises the renderer.

The drawItem method is responsible for drawing some representation of a par-
ticular data item within a plot:

public void drawItem(Graphics2D g2, Rectangle2D dataArea,

ChartRenderingInfo info, XYPlot plot, ValueAxis domainAxis, ValueAxis rangeAxis,

XYDataset data, int series, int item, CrosshairInfo info);

Draws a single data item on behalf of XYPlot.

12.90.3 Notes

Some renderers require a specific extension of XYDataset. For example, the
HighLowRenderer requires a HighLowDataset.

See Also
XYPlot.

12.91 XYPlot

12.91.1 Overview

Draws a visual representation of data from an XYDataset, where the horizontal
axis measures the x-values and the vertical axis measures the y-values.

It is possible to display time series data with XYPlot by employing a Horizon-
talDateAxis in place of the usual HorizontalNumberAxis. In this case, the
x-values are interpreted as milliseconds as used in java.util.Date.

12.91.2 Constructors

The simplist constructor requires just the axes to be specified:

public XYPlot(ValueAxis horizontalAxis, ValueAxis verticalAxis);

Creates an XY plot. Default values are used where necessary.

public XYPlot(ValueAxis horizontalAxis, ValueAxis verticalAxis,

Insets insets, Paint background, Stroke outlineStroke, Paint outlinePaint);

Creates an XY plot.

104

12.91.3 Methods

To get the current renderer for the plot:

public XYItemRenderer getItemRenderer();

Returns the current renderer.

To set a new renderer for the plot:

public void setItemRenderer(XYItemRenderer renderer);

Sets a new renderer.

12.91.4 Notes

The XYPlot class works with a renderer to control the visual representation of
the data. By default, a renderer is installed that draws lines between each of
the data points.

XYPlot implements both HorizontalValuePlot and VerticalValuePlot, en-
abling the axes to automatically determine the range of data that is available
for the plot.

Axes are laid out at the left and bottom of the drawing area. The space allocated
for the axes is determined automatically. The following diagram shows how this
area is divided:

Determining the dimensions of these regions is an awkward problem. The plot
area can be resized arbitrarily, but the vertical axis and horizontal axis sizes are
more difficult. Note that the height of the vertical axis is related to the height
of the horizontal axis, and, likewise, the width of the vertical axis is related to
the width of the horizontal axis. This results in a ”chicken and egg” problem,
because changing the width of an axis can affect its height (especially if the tick
units change with the resize) and changing its height can affect the width (for
the same reason).

See Also
Plot, OverlaidXYPlot, XYItemRenderer.

105

12.92 XYStepRenderer

12.92.1 Overview

To be documented.

106

13 Package: com.jrefinery.chart.data

13.1 Introduction

This package contains some classes for data fitting. These will eventually be
rewritten and moved into another package.

13.2 LinearPlotFitAlgorithm

13.2.1 Overview

Not yet documented.

13.2.2 Notes

Refer to Javadoc HTML files and source code for details.

13.3 MovingAveragePlotFitAlgorithm

13.3.1 Overview

Not yet documented.

13.3.2 Notes

Refer to Javadoc HTML files and source code for details.

13.4 PlotFit

13.4.1 Overview

Not yet documented.

13.4.2 Notes

Refer to Javadoc HTML files and source code for details.

13.5 PlotFitAlgorithm

13.5.1 Overview

Not yet documented.

13.5.2 Notes

Refer to Javadoc HTML files and source code for details.

107

14 Package: com.jrefinery.chart.entity

14.1 Introduction

The com.jrefinery.chart.entity package contains classes that represent en-
tities in a chart.

Recall that when you render a chart to a Graphics2D using the draw(...)
method in the JFreeChart class, you have the option of supplying a Chart-
RenderingInfo object to collect information about the chart’s structure. Most
of this information is represented in the form of ChartEntity objects, stored in
an EntityCollection.

You can use the entity information in any way you choose. For example, the
ChartPanel class makes use of the information for displaying tool tips and
returning detailed information for chart mouse events.

14.2 CategoryItemEntity

14.2.1 Overview

This class is used to convey information about an item within a category plot.
The information captured includes the area occupied by the item, the tool tip
text generated for the item, and the series and category that the item represents.

14.2.2 Constructors

To construct a new instance:

public CategoryItemEntity(Shape area, String toolTipText, int series,

Object category);

Creates a new entity instance.

14.2.3 Methods

Accessor methods are implemented for the series and category attributes.
Other methods are inherited from the ChartEntity class.

14.2.4 Notes

Most CategoryItemRenderer implementations will generate entities using this
class, as required.

See Also
ChartEntity, CategoryPlot.

108

14.3 ChartEntity

14.3.1 Overview

This class is used to convey information about an entity within a chart. The
information captured includes the area occupied by the item and the tool tip
text generated for the item.

There are a number of subclasses that can be used to provide additional infor-
mation about a chart entity.

ChartEntity
#area: Shape
#toolTipText: String

PieSectionEntity
#category: Object

CategoryItemEntity
#series: int
#category: Object

XYItemEntity
#series: int
#item: int

Figure 9: Chart entity classes

14.3.2 Constructors

To construct a new instance:

public ChartEntity(Shape area, String toolTipText);

Creates a new chart entity object. The area is specified in Java 2D space.

Chart entities are created by other classes in the JFreeChart library, you don’t
usually need to create them yourself.

14.3.3 Methods

Accessor methods are implemented for the area and toolTipText attributes.

14.3.4 Notes

The ChartEntity class records where an entity has been drawn using a Graphics2D
instance. Changing the attributes of an entity won’t change what has already
been drawn.

See Also
CategoryItemEntity, PieSectionEntity, XYItemEntity.

109

14.4 EntityCollection

14.4.1 Overview

An interface that defines the API for a chart entity collection. The Chart-
RenderingInfo class uses a chart entity collection to record where items have
been drawn when a chart is rendered using a Graphics2D instance.

14.4.2 Methods

The interface defines three methods. To clear a collection:

public void clear();

Clears the collection. All entities in the collection are discarded.

To add an entity to a collection:

public void addEntity(ChartEntity entity);

Adds an entity to the collection.

To retrieve an entity based on Java 2D coordinates:

public ChartEntity getEntity(double x, double y);

Returns an entity whose area contains the specified coordinates. If the

coordinates fall within the area of multiple entities (the entities overlap)

then only one entity is returned.

14.4.3 Notes

The StandardEntityCollection class provides a basic implementation of this
interface.

See Also
ChartEntity, StandardEntityCollection.

14.5 PieSectionEntity

14.5.1 Overview

This class is used to convey information about an item within a pie plot. The
information captured includes the area occupied by the item, the tool tip text
generated for the item and the category that the item represents.

14.5.2 Constructors

To construct a new instance:

public PieSectionEntity(Shape area, String toolTipText, Object category);

Creates a new entity object.

110

14.5.3 Methods

Accessor methods are implemented for the category attribute. Other methods
are inherited from the ChartEntity class.

14.5.4 Notes

The PiePlot class generates pie section entities as required.

See Also
ChartEntity, PiePlot.

14.6 StandardEntityCollection

14.6.1 Overview

A basic implementation of the EntityCollection interface. This class is used
to store a collection of chart entity objects from one rendering of a chart (see
the ChartRenderingInfo class for more details).

14.6.2 Methods

This class implements the methods in the EntityCollection interface.

14.6.3 Notes

The getEntity(...) method iterates through the entities searching for one
that contains the specified coordinates. For charts with a large number of
entities, a more efficient approach will be required.9

See Also
ChartEntity, EntityCollection.

14.7 XYItemEntity

14.7.1 Overview

This class is used to convey information about an item within an XY plot. The
information captured includes the area occupied by the item, the tool tip text
generated for the item, and the series and item index.

14.7.2 Constructors

To construct a new instance:

public XYItemEntity(Shape area, String toolTipText, int series, int item);

Creates a new entity object.

9This is on the to-do list but, given the size of the to-do list, I’m hopeful that someone will
contribute code to address this.

111

14.7.3 Methods

Accessor methods are implemented for the series and item attributes. Other
methods are inherited from the ChartEntity class.

14.7.4 Notes

Most XYItemRenderer implementations will generate entities using this class,
as required.

See Also
ChartEntity, XYPlot.

112

15 Package: com.jrefinery.chart.event

15.1 Introduction

This package contains classes and interfaces that are used to broadcast and
receive events relating to changes in chart properties. By default, some of the
classes in the library will automatically register themselves with other classes,
so that they receive notification of any changes and can react accordingly. For
the most part, you can simply rely on this default behaviour.

15.2 AxisChangeEvent

15.2.1 Overview

An event that is used to provide information about changes to axes.

See Also
AxisChangeListener.

15.3 AxisChangeListener

15.3.1 Overview

An interface through which axis change event notifications are posted. If a class
needs to receive notification of changes to an axis, then it needs to implement
this interface and register itself with the axis.

15.3.2 Methods

The interface defines a single method:

public void axisChanged(AxisChangeEvent event);

Receives notification of a change to an axis.

See Also
AxisChangeEvent.

15.4 ChartChangeEvent

15.4.1 Overview

An event that is used to provide information about changes to a chart.

See Also
ChartChangeListener.

113

15.5 ChartChangeListener

15.5.1 Overview

An interface through which chart change event notifications are posted. If a class
needs to receive notification of changes to a chart, then it needs to implement
this interface and register itself with the chart.

15.5.2 Methods

The interface defines a single method:

public void chartChanged(ChartChangeEvent event);

Receives notification of a change to a chart.

See Also
ChartChangeEvent.

15.6 LegendChangeEvent

15.6.1 Overview

An event that is used to provide information about changes to a legend.

See Also
LegendChangeListener.

15.7 LegendChangeListener

15.7.1 Overview

An interface through which legend change event notifications are posted. If
a class needs to receive notification of changes to a legend, then it needs to
implement this interface and register itself with the legend.

15.7.2 Methods

The interface defines a single method:

public void legendChanged(LegendChangeEvent event);

Receives notification of a change to a legend.

See Also
LegendChangeEvent.

15.8 PlotChangeEvent

15.8.1 Overview

An event that is used to provide information about changes to a plot.

114

See Also
PlotChangeListener.

15.9 PlotChangeListener

15.9.1 Overview

An interface through which plot change event notifications are posted. If a class
needs to receive notification of changes to a plot, then it needs to implement
this interface and register itself with the plot.

15.9.2 Methods

The interface defines a single method:

public void plotChanged(PlotChangeEvent event);

Receives notification of a change to a plot.

See Also
PlotChangeEvent.

15.10 TitleChangeEvent

15.10.1 Overview

An event that is used to provide information about changes to a plot.

See Also
TitleChangeListener.

15.11 TitleChangeListener

15.11.1 Overview

An interface through which title change event notifications are posted. If a class
needs to receive notification of changes to a title, then it needs to implement
this interface and register itself with the title.

15.11.2 Methods

The interface defines a single method:

public void titleChanged(TitleChangeEvent event);

Receives notification of a change to a title.

See Also
TitleChangeEvent.

115

16 Package: com.jrefinery.chart.tooltips

16.1 Introduction

This package contains some classes for generating tooltips.

16.2 CategoryToolTipGenerator

16.2.1 Overview

The interface that should be implemented by a category tooltip generator. The
idea is that you can develop your own tooltip generator, register it with a plot,
and take full control over the tooltip text that is generated.

16.2.2 Methods

This interface defines a single method:

public String generateToolTip(CategoryDataset data, int series, Object

category);

This method is called whenever the plot needs to generate a tooltip. It

should return the tooltip text (which can be anything you want to make

it).

16.2.3 Notes

The StandardCategoryToolTipGenerator is one implementation of this inter-
face, but you are free to write your own implementation to suit your require-
ments.

16.3 PieToolTipGenerator

16.3.1 Overview

The interface that should be implemented by a pie tooltip generator. The idea
is that you can develop your own tooltip generator, register it with a PiePlot,
and take full control over the tooltip text that is generated.

16.3.2 Methods

This interface defines a single method:

public String generateToolTip(PieDataset data, Object category);

This method is called whenever the PiePlot needs to generate a tooltip.

It should return a String that will be used as the tooltip text.

16.3.3 Notes

The StandardPieToolTipGenerator is one implementation of this interface,
but you are free to write your own implementation to suit your requirements.

116

See Also
StandardPieToolTipGenerator.

16.4 StandardCategoryToolTipGenerator

16.4.1 Overview

A default implementation of the CategoryToolTipGenerator interface.

16.4.2 Notes

Refer to Javadoc HTML files and source code for details.

See Also
CategoryToolTipGenerator.

16.5 StandardHighLowToolTipGenerator

16.5.1 Overview

A default implementation of the HighLowToolTipGenerator interface.

16.5.2 Notes

Refer to Javadoc HTML files and source code for details.

See Also
HighLowToolTipGenerator.

16.6 StandardPieToolTipGenerator

16.6.1 Overview

A default implementation of the PieToolTipGenerator interface.

16.6.2 Notes

Refer to Javadoc HTML files and source code for details.

See Also
PieToolTipGenerator.

16.7 StandardToolTips

16.7.1 Overview

An implementation of the ToolTips interface, this class can be registered with
a chart via the setToolTips(...) method and will collect tooltips as the chart
is being drawn.

117

16.7.2 Constructors

Use the default constructor to create a new tooltip manager:

public StandardToolTips();

Creates a new tooltip manager.

16.7.3 Methods

This class provides implementations for all the methods in the ToolTips inter-
face.

16.7.4 Notes

This implementation is not highly optimised. If you are using generating charts
with large numbers of data items, you should either stop using tooltips, or write
a more efficient implementation.

See Also
ToolTips.

16.8 StandardXYToolTipGenerator

16.8.1 Overview

A default implementation of the XYToolTipGenerator interface.

16.8.2 Notes

Refer to Javadoc HTML files and source code for details.

See Also
XYToolTipGenerator.

16.9 ToolTip

16.9.1 Overview

A simple class representing a tooltip. It records the tooltip text, and the area
that the tooltip applies to.

16.9.2 Notes

This class is immutable.

See Also
ToolTipGenerator.

118

16.10 ToolTipGenerator

16.10.1 Overview

Not yet documented.

16.10.2 Notes

Refer to Javadoc HTML files and source code for details.

16.11 ToolTips

16.11.1 Overview

An interface defining the methods to be supported by a tooltip manager.

If you set a tooltip manager for a chart, then it will collect tooltips as the chart is
being drawn (provided that the Plot subclass is capable of generating tooltips).
The JFreeChartPanel class makes use of this facility to provide chart tooltips.

16.11.2 Notes

By default, there is no tooltip manager set for a chart.

See Also
StandardToolTips.

16.12 XYToolTipGenerator

16.12.1 Overview

The interface that should be implemented by a XY tooltip generator. The idea
is that you can develop your own tooltip generator, register it with a plot, and
take full control over the tooltip text that is generated.

16.12.2 Methods

This interface defines a single method:

public String generateToolTip(XYDataset data, int series, int item);

This method is called whenever the XYPlot needs to generate a tooltip.

It should return a String that will be used as the tooltip text.

16.12.3 Notes

Refer to Javadoc HTML files and source code for details.

See Also
StandardXYToolTipGenerator.

119

17 Package: com.jrefinery.chart.ui

17.1 Introduction

This package contains user interface classes that can be used to modify chart
properties. These classes are optional—they are used in the demonstration
application, but you do not need to include this package in your own projects
if you do not want to.

17.2 AxisPropertyEditPanel

17.2.1 Overview

Not yet documented.

17.2.2 Notes

Refer to Javadoc HTML files and source code for details.

17.3 ChartPropertyEditPanel

17.3.1 Overview

A panel that displays all the properties of a chart, and allows the user to edit
the properties. The panel uses a JTabbedPane to display four sub-panels: a
TitlePropertyPanel, a LegendPropertyPanel, a PlotPropertyPanel and a
panel containing “other” properties (such as the anti-alias setting and the back-
ground paint for the chart).

The constructors for this class require a reference to a Dialog or a Frame.
Whichever one is specified is passed on to the TitlePropertyPanel and is used
if and when a sub-dialog is required for editing titles.

17.3.2 Notes

Refer to Javadoc HTML files and source code for details.

17.4 LegendPropertyEditPanel

17.4.1 Overview

Not yet documented.

17.4.2 Notes

Refer to Javadoc HTML files and source code for details.

120

17.5 NumberAxisPropertyEditPanel

17.5.1 Overview

Not yet documented.

17.5.2 Notes

Refer to Javadoc HTML files and source code for details.

17.6 PlotPropertyEditPanel

17.6.1 Overview

Not yet documented.

17.6.2 Notes

Refer to Javadoc HTML files and source code for details.

17.7 TitlePropertyEditPanel

17.7.1 Overview

Not yet documented.

17.7.2 Notes

Refer to Javadoc HTML files and source code for details.

121

18 Package: com.jrefinery.data

18.1 Introduction

This package is part of the JCommon Class Library, which can be downloaded
from:

http://www.jrefinery.com/jcommon/index.html

The reference documentation for this package is included here, even though it
is not strictly part of the JFreeChart Class Library, because JFreeChart makes
extensive use of the interfaces and classes in this package.

18.2 AbstractDataset

18.2.1 Overview

A useful base class for implementing the Dataset interface (or extensions). This
class provides a default implementation of the change listener mechanism.

18.2.2 Constructors

The default constructor:
protected AbstractDataset();

Allocates storage for the registered change listeners.

18.2.3 Methods

public void addChangeListener(DatasetChangeListener listener);

Registers a change listener with the dataset. The listener will be notified
whenever the dataset changes.

public void addChangeListener(DatasetChangeListener listener);

Deregisters a change listener. The listener will be no longer be notified
whenever the dataset changes.

18.2.4 Notes

You can implement a dataset without subclassing AbstractDataset. This class
is provided simply for convenience to save you having to implement your own
change listener mechanism.

See Also
Dataset, DatasetChangeListener, AbstractSeriesDataset.

18.3 AbstractSeriesDataset

18.3.1 Overview

A useful base class for implementing the SeriesDataset interface (or exten-
sions). This class extends AbstractDataset.

122

18.3.2 Constructors

The default constructor:
protected AbstractSeriesDataset();

Simply calls the constructor of the superclass.

18.3.3 Methods

Implementations are provided for the following methods:
public String[] getLegendItemLabels();

Returns an array of series names.

18.3.4 Notes

You can implement a dataset without subclassing AbstractSeriesDataset.
This class is provided simply for convenience.

See Also
Dataset.

18.4 BasicTimeSeries

18.4.1 Overview

A time series is a data structure that associates numeric values with particular
time periods. In other words, a collection of data values in the form (timeperiod,
value).

The time periods are represented by subclasses of TimePeriod. Subclasses
include Year, Quarter, Month, Week, Day, Hour, Minute, Second, Millisecond
and FixedMillisecond. Different subclasses of TimePeriod cannot be mixed
in one time series.

A time series may contain zero, one or many time periods with associated data
values. You can assign a null value to a time period, and you can skip time
periods completely. You cannot add duplicate time periods to a time series.

Here is an example showing how to create a series with quarterly data:

BasicTimeSeries series = new BasicTimeSeries("Quarterly Data", Quarter.class);
series.add(new Quarter(1, 2001), 500.2);
series.add(new Quarter(2, 2001), 694.1);
series.add(new Quarter(3, 2001), 734.4);
series.add(new Quarter(4, 2001), 453.2);
series.add(new Quarter(1, 2002), 500.2);
series.add(new Quarter(2, 2002), null);
series.add(new Quarter(3, 2002), 734.4);
series.add(new Quarter(4, 2002), 453.2);

One or more BasicTimeSeries objects can be added to a TimeSeriesCollection
and used as the dataset for a chart in JFreeChart.

123

18.4.2 Constructors

To create a named time series containing no data:
public BasicTimeSeries(String name);

Creates an empty time series for daily data (that is, one value per day).

To create a time series for a frequency other than daily, use this constructor:
public BasicTimeSeries(String name, Class timePeriodClass);

Creates an empty time series. The caller specifies the time period by spec-
ifying the class of the TimePeriod subclass (for example, Month.class).

The final constructor allows you to specify descriptions for the domain and range
of the data:

public BasicTimeSeries(String name, String domain, String range, Class

timePeriodClass);

Creates an empty time series. The caller specifies the time period, plus
strings describing the domain and range.

18.4.3 Attributes

Each instance of BasicTimeSeries has the following attributes:

Attribute: Description:

Name The name of the series (inherited from
Series).

DomainDescription A description of the time period domain (for
example, ’Quarter’). The default is ’Time’.

RangeDescription A description of the value range (for example,
’Price’). The default is ’Value’.

18.4.4 Methods

To find out how many data items are in a series:
public int getItemCount()

Returns the number of data items in the series.

To retrieve a particular value from a series by the index of the item:
public TimeSeriesDataPair getDataPair(int item)

Returns a data item. The item argument is a zero-based index.

To retrieve a particular value from a series by time period:
public TimeSeriesDataPair getDataPair(TimePeriod period)

Returns the data item (if any) for the specified time period.

To add a value to a time series:
public void add(TimePeriod period, Number value) throws SeriesException;

Adds a new value (null permitted) to the time series. Throws an excep-
tion if the time period is not unique within the series.

18.4.5 Notes

The class name was formerly TimeSeries, but this has been changed to avoid
confusion with the subclass in the com.jrefinery.finance package.

124

See Also
TimePeriod, TimeSeriesCollection.

18.5 CategoryDataset

18.5.1 Overview

An interface (extending SeriesDataset) that defines the structure of a cate-
gory dataset. The dataset consists of a table of series and categories. A value
is associated with each combination of series and category (null values are
permitted).

18.5.2 Methods

To obtain the number of categories:

public int getCategoryCount();

Returns the number of categories in the dataset.

To get a list of the categories in the dataset:

public List getCategories();

Returns a list of the categories in the dataset.

To get the value for a series/category combination:

public Number getValue(int series, Object category);

Returns the value associated with a particular series and category. The

value may be null.

18.5.3 Notes

You can use any Object instance to represent a category. Using String is
convenient, as the toString() method is used whenever a label is required for
a category.

This interface is intended for reading data, not updating it.

See Also
DefaultCategoryDataset, SeriesDataset.

18.6 CombinationDataset

18.6.1 Overview

An interface for combining datasets. Written by Bill Kelemen.

125

18.6.2 Notes

This interface is used to create combined charts with the JFreeChart class li-
brary.

See Also
CombinedDataset.

18.7 CombinedDataset

18.7.1 Overview

An implementation of the CombinationDataset interface. Written by Bill Kele-
men.

18.7.2 Notes

This class is used to create combined charts with the JFreeChart class library.

See Also
CombinationDataset.

18.8 Dataset

18.8.1 Overview

The base interface for datasets. Not useful in its own right, this interface is
further extended by PieDataset, CategoryDataset and SeriesDataset.

18.8.2 Methods

A couple of methods relate to the use of datasets for drawing charts (see
JFreeChart):

public int getLegendItemCount();

Returns the number of items to display in the legend.

public String[] getLegendItemLabels();

Returns an array of strings to use as labels in the legend.

Two further methods are used for registering change listeners with the dataset:

public void addChangeListener(DatasetChangeListener listener);

Registers a change listener with the dataset.

public void removeChangeListener(DatasetChangeListener listener);

Deregisters a change listener.

18.8.3 Notes

This interface is not intended to be used directly, you should use an extension
of this interface such as PieDataset, CategoryDataset or XYDataset.

126

See Also
PieDataset, SeriesDataset.

18.9 DatasetChangeEvent

18.9.1 Overview

An event that is used to provide information about changes to datasets.

See Also
DatasetChangeListener.

18.10 DatasetChangeListener

18.10.1 Overview

An interface through which dataset change event notifications are posted. If
a class needs to receive notification of changes to a dataset, then it needs to
implement this interface and register itself with the dataset.

18.10.2 Methods

The interface defines a single method:

public void datasetChanged(DatasetChangeEvent event);

Receives notification of a change to a dataset.

See Also
DatasetChangeEvent.

18.11 Datasets

18.11.1 Overview

A collection of utility methods for working with datasets.

18.11.2 Methods

To get the minimum and maximum domain values in a dataset:

public static Number getMinimumDomainValue(Dataset data);

Returns the minimum domain value for the dataset.

public static Number getMaximumDomainValue(Dataset data);

Returns the maximum domain value for the dataset.

To get the minimum and maximum range values in a dataset:

127

public static Number getMinimumRangeValue(Dataset data);

Returns the minimum range value for the dataset.

public static Number getMaximumRangeValue(Dataset data);

Returns the maximum range value for the dataset.

To create a PieDataset from a CategoryDataset:

public static PieDataset createPieDataset(CategoryDataset data, Object

category);

Returns a pie dataset by taking all the values in the category dataset for
the specified category.

public static PieDataset createPieDataset(CategoryDataset data,

int series) ;

Returns a pie dataset by taking all the values in the category dataset for

the specified series.

See Also
DomainInfo, RangeInfo.

18.12 Day

18.12.1 Overview

A subclass of TimePeriod that represents one day. This class is designed to be
used with the BasicTimeSeries class, but (hopefully) is general enough to be
used in other situations.

18.12.2 Constructor

To construct a Day instance:

public Day(int day, int month, int year);

Creates a new Day instance. The year argument should be in the range

1900 to 9999.

To create a Day instance based on a SerialDate:

public Day(SerialDate day);

Creates a new Day instance.

To create a Day instance based on a Date:

public Day(Date time);

Creates a new Day instance.

The default constructor creates a Day instance based on the current system date:

public Day();

Creates a new Day instance for the current system date.

128

18.12.3 Methods

To access the day:

public SerialDate getDay();

Returns the day as a SerialDate.

There is no method to set the day, because this class is immutable.

Given a Day object, you can create an instance representing the previous day
or the next day:

public TimePeriod previous();

Returns the previous day, or null if the lower limit of the range is reached.

public TimePeriod next();

Returns the next day, or null if the upper limit of the range is reached.

To convert a Day object to a String object:

public String toString();

Returns a string representing the day.

public static Day parseDay(String s) throws TimePeriodFormatException;

Parses the string and, if possible, returns a Day object.

18.12.4 Notes

In the current implementation, the day can be in the range 1-Jan-1900 to 31-
Dec-9999.

The Day class is immutable. This is a requirement for all TimePeriod subclasses.

See Also:
TimePeriod, BasicTimeSeries, SerialDate.

18.13 DefaultCategoryDataset

18.13.1 Overview

A default implementation of the CategoryDataset interface that uses an array
to store data.

18.13.2 Constructors

There are several constructors for this class.

public DefaultCategoryDataset(Number[][] data);

Constructs a dataset from an array. Default series names are generated
in the form Series 1, Series 2, ... , Series m. Default categories are
generated as String objects in the form Category 1, Category 2, ...,
Category n.

129

public DefaultCategoryDataset(String[] seriesNames, Object[] categories,

Number[][] data);

Constructs a dataset from an array. Also specified are the series names

and the categories.

Note that this class is simply a wrapper around the data array supplied to the
constructor. If you modify the contents of the array directly (using your original
reference to it) then you by-pass the event notification mechanism used by this
class to inform registered listeners of changes to the data. You shouldn’t do this
unless you are sure that is what you want to do.

18.13.3 Methods

To change the series names:

public void setSeriesNames(String[] seriesNames);

Changes all the series names for the dataset.

To change the categories:

public void setCategories(Object[] categories);

Changes all the categories for the dataset.

18.13.4 Notes

You can use any object to represent a category. The category label will be the
value returned by the toString() method. Most of the time, the String class
is sufficient for representing categories.

See Also
CategoryDataset

18.14 DefaultPieDataset

18.14.1 Overview

A convenient implementation of the PieDataset interface.

18.14.2 Constructors

The default constructor creates an empty pie dataset:

public DefaultPieDataset();

Creates a new dataset, initially empty.

public DefaultPieDataset(Collection values);

Creates a new dataset containing the values supplied. Section names are

automatically generated.

130

18.14.3 Methods

To get the value for a particular category:

public Number getValue(Object category);

Returns the number associated with a category. This method can return

null.

To set the value for a particular category:

public void setValue(Object category, Number value);

Sets the number associated with a category.

18.14.4 Notes

The dataset can contain null values.

See Also
PieDataset.

18.15 DefaultXYDataset

A quick and dirty implementation of the XYDataset interface. This class is in
the process of being replaced by XYSeriesCollection.

See Also
XYDataset

18.16 DomainInfo

18.16.1 Overview

An interface that provides information about the minimum and maximum values
in a dataset’s domain.

18.16.2 Methods

To get the minimum value in the dataset’s domain:

public Number getMinimumDomainValue();

Returns the minimum value in the dataset’s domain.

To get the maximum value in the dataset’s domain:
public Number getMaximumDomainValue();

Returns the maximum value in the dataset’s domain.

131

18.16.3 Notes

It is not mandatory for a dataset to implement this interface. However, some-
times it is necessary to calculate the minimum and maximum values in a dataset.
Without knowing the internal structure of a dataset, the only means of deter-
mining this information is iteration over the entire dataset. If there is a more
efficient way to determine the values for your data structures, then you can
implement this interface and provide the values directly.

See Also
RangeInfo.

18.17 HighLowDataset

An extension of the XYDataset interface, that supplies data in the form of
“high/low, open/close” items.

public Number getHighValue(int series, int item);

Returns the high value for an item within a series.

public Number getLowValue(int series, int item);

Returns the low value for an item within a series.

public Number getOpenValue(int series, int item);

Returns the open value for an item within a series.

public Number getCloseValue(int series, int item);

Returns the close value for an item within a series.

This interface is used in the JFreeChart library.

18.18 Hour

18.18.1 Overview

A subclass of TimePeriod that represents one hour in a particular day. This
class is designed to be used with the BasicTimeSeries class, but (hopefully) is
general enough to be used in other situations.

18.18.2 Constructor

To construct an Hour instance:

public Hour(int hour, Day day);

Creates a new Hour instance. The hour argument should be in the range

0 to 23.

To construct an Hour instance based on a java.util.Date:

public Hour(Date time);

Creates a new Hour instance.

132

A default constructor is provided:

public Hour();

Creates a new Hour instance based on the current system time.

18.18.3 Methods

To access the hour:

public int getHour();

Returns the hour (in the range 0 to 23).

To access the day:

public Day getDay();

Returns the day.

There is no method to set the hour or the day, because this class is immutable.

Given a Hour object, you can create an instance representing the previous hour
or the next hour:

public TimePeriod previous();

Returns the previous hour, or null if the lower limit of the range is reached.

public TimePeriod next();

Returns the next hour, or null if the upper limit of the range is reached.

18.18.4 Notes

The Hour class is immutable. This is a requirement for all TimePeriod sub-
classes.

See Also:
TimePeriod, BasicTimeSeries, Day.

18.19 IntervalXYDataset

An extension of the XYDataset interface. Additional methods are provided to
define an interval around the X and Y values:

public Number getStartXValue(int series, int item);

Returns the starting x-value for an item within a series.

public Number getEndXValue(int series, int item);

Returns the ending x-value for an item within a series.

public Number getStartYValue(int series, int item);

Returns the starting y-value for an item within a series.

public Number getEndYValue(int series, int item);

Returns the ending y-value for an item within a series.

133

18.20 IntervalXYZDataset

A natural extension of the IntervalXYDataset interface.

18.21 Millisecond

18.21.1 Overview

A subclass of TimePeriod that represents one millisecond within a particular
second. This class is designed to be used with the BasicTimeSeries class, but
(hopefully) is general enough to be used in other situations.

18.21.2 Constructors

To construct a Millisecond instance:

public Millisecond(int millisecond, Second second);

Creates a new Millisecond instance. The millisecond argument should

be in the range 0 to 999.

To construct a Millisecond instance based on a java.util.Date:

public Millisecond(Date date);

Creates a new Millisecond instance.

A default constructor is provided:

public Millisecond();

Creates a new Millisecond instance based on the current system time.

18.21.3 Methods

To access the millisecond:

public int getMillisecond();

Returns the second (in the range 0 to 999).

To access the Second:

public Second getSecond();

Returns the Second.

There is no method to set the millisecond or the second, because this class is
immutable.

Given a Millisecond object, you can create an instance representing the pre-
vious millisecond or the next millisecond:

public TimePeriod previous();

Returns the previous millisecond, or null if the lower limit of the range is
reached.

public TimePeriod next();

Returns the next millisecond, or null if the upper limit of the range is

reached.

134

18.21.4 Notes

The Millisecond class is immutable. This is a requirement for all TimePeriod
subclasses.

See Also:
TimePeriod, BasicTimeSeries, Second.

18.22 Minute

18.22.1 Overview

A subclass of TimePeriod that represents one minute in a particular day. This
class is designed to be used with the BasicTimeSeries class, but (hopefully) is
general enough to be used in other situations.

18.22.2 Constructors

To construct a Minute instance:

public Minute(int minute, Hour hour);

Creates a new Minute instance. The minute argument should be in the

range 0 to 59.

To construct a Minute instance based on a java.util.Date:

public Minute(Date time);

Creates a new Minute instance.

A default constructor is provided:

public Minute();

Creates a new Minute instance, based on the current system time.

18.22.3 Methods

To access the minute:

public int getMinute();

Returns the minute (in the range 0 to 59).

To access the hour:

public Hour getHour();

Returns the hour.

There is no method to set the minute or the day, because this class is immutable.

Given a Minute object, you can create an instance representing the previous
minute or the next minute:

135

public TimePeriod previous();

Returns the previous minute, or null if the lower limit of the range is
reached.

public TimePeriod next();

Returns the next minute, or null if the upper limit of the range is reached.

18.22.4 Notes

The Minute class is immutable. This is a requirement for all TimePeriod sub-
classes.

See Also:
TimePeriod, BasicTimeSeries, Day.

18.23 Month

18.23.1 Overview

A subclass of TimePeriod that represents one month in a particular year. This
class is designed to be used with the BasicTimeSeries class, but (hopefully) is
general enough to be used in other situations.

18.23.2 Constructors

To construct a Month instance:

public Month(int month, Year year);

Creates a new Month instance. The month argument should be in the
range 1 to 12.

public Month(int month, int year);

Creates a new Month instance.

To construct a Month instance based on a java.util.Date:

public Month(Date time);

Creates a new Month instance.

A default constructor is provided:

public Month();

Creates a new Month instance, based on the current system time.

18.23.3 Methods

To access the month:

public int getMonth();

Returns the month (in the range 1 to 12).

136

To access the year:

public Year getYear();

Returns the year.

There is no method to set the month or the year, because this class is immutable.

Given a Month object, you can create an instance representing the previous
month or the next month:

public TimePeriod previous();

Returns the previous month, or null if the lower limit of the range is
reached.

public TimePeriod next();

Returns the next month, or null if the upper limit of the range is reached.

To convert a Month object to a String object:

public String toString();

Returns a string representing the month.

18.23.4 Notes

In the current implementation, the year can be in the range 1900 to 9999.

The Month class is immutable. This is a requirement for all TimePeriod sub-
classes.

See Also:
TimePeriod, BasicTimeSeries, Year.

18.24 PieDataset

18.24.1 Overview

The interface for a dataset that associates values with categories.

18.24.2 Methods

Three methods are defined in the interface:

public int getCategoryCount();

Returns the number of categories in the dataset.

public Set getCategories();

Returns the set of categories.

public Number getValue(Object category);

Returns the value associated with a particular category.

137

18.24.3 Notes

The name of the interface is derived from a common usage for this type of
dataset—the creation of pie charts.

There are some convenient methods for creating a PieDataset object by slicing
a CategoryDataset. Refer to the Datasets class for more details.

See Also
DefaultPieDataset.

18.25 Quarter

18.25.1 Overview

A subclass of TimePeriod that represents one quarter in a particular year. This
class is designed to be used with the BasicTimeSeries class, but (hopefully) is
general enough to be used in other situations.

18.25.2 Constructor

To construct a Quarter instance:

public Quarter(int quarter, Year year);

Creates a new Quarter instance. The quarter argument should be in the

range 1 to 4.

public Quarter(int quarter, int year);

Creates a new Quarter instance.

To construct a Quarter instance based on a java.util.Date:

public Quarter(Date time);

Creates a new Quarter instance.

A default constructor is provided:

public Quarter();

Creates a new Quarter instance based on the current system time.

18.25.3 Methods

To access the quarter:

public int getQuarter();

Returns the quarter (in the range 1 to 4).

To access the year:

public Year getYear();

Returns the year.

138

There is no method to set the quarter or the year, because this class is im-
mutable.

Given a Quarter object, you can create an instance representing the previous
quarter or the next quarter:

public TimePeriod previous();

Returns the previous quarter, or null if the lower limit of the range is
reached.

public TimePeriod next();

Returns the next quarter, or null if the upper limit of the range is reached.

To convert a Quarter object to a String object:

public String toString();

Returns a string representing the quarter.

18.25.4 Notes

In the current implementation, the year can be in the range 1900 to 9999.

The Quarter class is immutable. This is a requirement for all TimePeriod
subclasses.

See Also:
TimePeriod, BasicTimeSeries, Year.

18.26 RangeInfo

18.26.1 Overview

An interface that provides information about the minimum and maximum values
in a dataset’s range.

18.26.2 Methods

To get the minimum value in the dataset’s range:

public Number getMinimumRangeValue();

Returns the minimum value in the dataset’s range.

To get the maximum value in the dataset’s range:
public Number getMaximumRangeValue();

Returns the maximum value in the dataset’s range.

139

18.26.3 Notes

It is not mandatory for a dataset to implement this interface. However, some-
times it is necessary to calculate the minimum and maximum values in a dataset.
Without knowing the internal structure of a dataset, the only means of deter-
mining this information is iteration over the entire dataset. If there is a more
efficient way to determine the values for your data structures, then you can
implement this interface and provide the values directly.

See Also
DomainInfo.

18.27 Second

18.27.1 Overview

A subclass of TimePeriod that represents one second in a particular day. This
class is designed to be used with the BasicTimeSeries class, but (hopefully) is
general enough to be used in other situations.

18.27.2 Constructors

To construct a Second instance:

public Second(int second, Minute minute);

Creates a new Second instance. The second argument should be in the

range 0 to 59.

To construct a Second instance based on a java.util.Date:

public Second(Date date);

Creates a new Second instance.

A default constructor is provided:

public Second();

Creates a new Second instance based on the current system time.

18.27.3 Methods

To access the second:

public int getSecond();

Returns the second (in the range 0 to 59).

To access the Minute:

public Minute getMinute();

Returns the minute.

140

There is no method to set the second or the day, because this class is immutable.

Given a Second object, you can create an instance representing the previous
second or the next second:

public TimePeriod previous();

Returns the previous second, or null if the lower limit of the range is
reached.

public TimePeriod next();

Returns the next second, or null if the upper limit of the range is reached.

18.27.4 Notes

The Second class is immutable. This is a requirement for all TimePeriod sub-
classes.

See Also:
TimePeriod, BasicTimeSeries, Day.

18.28 SeriesChangeListener

The interface through which series change notifications are posted.

18.29 SeriesDataset

18.29.1 Overview

A base interface that defines a dataset containing zero, one or many data series.

18.29.2 Methods

The methods in the interface are:
public int getSeriesCount();

Returns the number of series in the dataset.

public String getSeriesName(int series);

Returns the name of the series with the specified index (zero based).

18.29.3 Notes

This interface is extended by CategoryDataset and XYDataset.

See Also:
CategoryDataset, XYDataset.

18.30 SeriesException

An exception generated by a series. For example, a time series will not allow
duplicate time periods—attempting to add a duplicate time period will throw
a SeriesException.

141

18.31 Statistics

18.31.1 Overview

Provides some static utility methods for calculating statistics.

18.31.2 Methods

To calculate the average of an array of Number objects:

public static double getAverage(Number[] data);

Returns the average of an array of numbers.

To calculate the standard deviation of an array of Number objects:

public static double getStdDev(Number[] data);

Returns the standard deviation of an array of numbers.

To calculate a least squares regression line through an array of data:

public static double[] getLinearFit(Number[] x data, Number[] y data);

Returns the intercept (double[0]) and slope (double[1]) of the linear re-
gression line.

To calculate the slope of a least squares regression line:

public static double getSlope(Number[] x data, Number[] y data);

Returns the slope of the linear regression line.

To calculate the slope of a least squares regression line:

public static double getCorrelation(Number[] data1, Number[] data2);

Returns the correlation between two sets of numbers.

18.31.3 Notes

This class was written by Matthew Wright.

18.32 SubseriesDataset

A specialised dataset implementation written by Bill Kelemen. To be docu-
mented.

18.33 TimePeriod

18.33.1 Overview

An abstract class that represents a period of time. A number of concrete
subclasses have been implemented: Year, Quarter, Month, Week, Day, Hour,
Minute, Second, Millisecond and FixedMillisecond.

The time periods represented by this class are not (in general) fixed to a par-
ticular time zone. No matter where you are in the world, if you create a new
Day object to represent 1-Apr-2002, that is the day it represents.

142

Of course, against a real time line, 1-Apr-2002 in (say) New Zealand is not the
same as 1-Apr-2002 in France. But sometimes you want to treat them as if
they were the same. For example, an accountant might be adding up sales for
all the subsidiaries of a multinational company. Sales on 1-Apr-2002 in New
Zealand are added to sales on 1-Apr-2002 in France, even though the real time
periods are offset from one another.

In a sense, the time period classes are designed to be imprecise.

Occasionally you may want to convert a TimePeriod object into an instance of
java.util.Date. The latter class represents a precise moment in real time (as
the number of milliseconds since January 1, 1970, 00:00:00.000 GMT), so to do
the conversion you have to peg the TimePeriod instance to a particular time
zone. The various getStart(...) and getEnd(...) methods provide this
facility, using the default timezone, a user supplied timezone, or a Calendar
with the timezone preset.

18.33.2 Methods

Given a TimePeriod instance, you can create another instance representing the
previous time period, or the next time period:

public abstract TimePeriod previous();

Returns the previous time period, or null if the current time period is
the first in the supported range.

public abstract TimePeriod next();

Returns the next time period, or null if the current time period is the

last in the supported range.

To assist in converting the time period to a java.util.Date object, the follow-
ing methods peg the time period to a particular time zone and return the first
and last millisecond of the time period (using the same encoding convention as
java.util.Date):

public long getStart();

Returns the first millisecond of the time period, evaluated using the de-
fault timezone.

public long getStart(TimeZone zone);

Returns the first millisecond of the time period, evaluated using a partic-
ular timezone.

public abstract long getStart(Calendar calendar);

Returns the first millisecond of the time period, evaluated using the sup-
plied calendar (which incorporates a timezone).

public long getMiddle();

Returns the middle millisecond of the time period, evaluated using the
default timezone.

public long getMiddle(TimeZone zone);

Returns the middle millisecond of the time period, evaluated using a par-
ticular timezone.

143

public long getMiddle(Calendar calendar);

Returns the middle millisecond of the time period, evaluated using the
supplied calendar (which incorporates a timezone).

public long getEnd();

The last millisecond of the time period, evaluated using the default time-
zone.

public long getEnd(TimeZone zone);

Returns the last millisecond of the time period, evaluated using a partic-
ular timezone.

public abstract long getEnd(Calendar calendar); Returns the last
millisecond of the time period, evaluated using the supplied calendar
(which incorporates a timezone).

18.33.3 Notes

This class and its subclasses can be used with the BasicTimeSeries class.

All TimePeriod subclasses are required to be immutable.

Known subclasses include: Year, Quarter, Month, Week, Day, Hour, Minute,
Second, Millisecond and FixedMillisecond.

See Also:
BasicTimeSeries.

18.34 TimePeriodFormatException

An exception that can be thrown by the methods used to convert time periods
to strings, and vice versa.

See Also
TimePeriod

18.35 TimeSeriesCollection

18.35.1 Overview

A collection of TimeSeries objects. The collection may contain zero, one or
many time series.

TimeSeriesCollection extends AbstractSeriesDataset to provide some of
the basic series information.

The collection implements the IntervalXYDataset interface (and, therefore, the
XYDataset interface) and can be used as a convenient dataset for the JFreeChart
library.

144

18.35.2 Constructors

You can construct a TimeSeriesCollection in several different ways:

public TimeSeriesCollection();

Creates a new time series collection, initially empty.

public TimeSeriesCollection(BasicTimeSeries series);

Creates a new time series collection, containing a single time series.

Once a collection has been constructed, you are free to add additional time
series to the collection. There are not yet any methods for removing a series
from a collection (possibly to be implemented in the future).

18.35.3 Methods

To find out how many time series objects are in the collection:

public int getSeriesCount();

Returns the number of time series objects in the collection.

To get a reference to a particular series:

public BasicTimeSeries getSeries(int series);

Returns a reference to a series in the collection.

To get the name of a series:

public String getSeriesName(int series);

Returns the name of a series in the collection. This method is provided

for convenience.

To add a series to the collection:

public void addSeries(BasicTimeSeries series);

Adds the series to the collection. Registered listeners are notified that the

collection has changed.

To get the number of items in a series:

public int getItemCount(int series);

Returns the number of items in a series. This method is part of the

XYDataset interface.

18.35.4 Notes

This class implements the XYDataset and IntervalXYDataset interfaces.

See Also:
AbstractSeriesDataset, BasicTimeSeries, XYDataset and IntervalXYDataset.

145

18.36 TimeSeriesDataPair

Associates a numerical value with a time period. This class is used by the
TimeSeries class.

There are a number of important features. First, the class implements the
Comparable interface, allowing data items to be sorted into time order using
standard Java API calls. Second, the instances of this class can be easily cloned.
Third, the time period element is immutable, so that when a collection of objects
is held in sorted order, the sorted property cannot inadvertently be broken.

See Also
TimeSeries

18.37 TimeSeriesTableModel

An initial attempt to display a time series in a JTable.

18.38 Values

An interface for accessing a set of values. This hasn’t been used for anything
yet...but the idea was to create a simple data structure that could be passed to a
variety of statistical methods (for example, a method that calculates frequency
distributions, returning an appropriate dataset for constructing a histogram).
More work to be done...

18.39 Week

18.39.1 Overview

A subclass of TimePeriod that represents one week in a particular year. This
class is designed to be used with the BasicTimeSeries class, but (hopefully) is
general enough to be used in other situations.

18.39.2 Constructors

To construct a Week instance:

public Week(int week, Year year);

Creates a new Week instance. The week argument should be in the range
1 to 52.

public Week(int week, int year);

Creates a new Week instance.

To construct a Week instance based on a java.util.Date:

public Week(Date time);

Creates a new Week instance.

146

A default constructor is provided:

public Week();

Creates a new Week instance based on the current system time.

18.39.3 Methods

To access the week:

public int getWeek();

Returns the week (in the range 1 to 52).

To access the year:

public Year getYear();

Returns the year.

There is no method to set the week or the year, because this class is immutable.

Given a Week object, you can create an instance representing the previous week
or the next week:

public TimePeriod previous();

Returns the previous week, or null if the lower limit of the range is reached.

public TimePeriod next();

Returns the next week, or null if the upper limit of the range is reached.

To convert a Week object to a String object:

public String toString();

Returns a string representing the week.

18.39.4 Notes

In the current implementation, the year can be in the range 1900 to 9999.

The Week class is immutable. This is a requirement for all TimePeriod sub-
classes.

See Also:
TimePeriod, BasicTimeSeries, Year.

18.40 XYDatapair

Associates a numerical value with another numerical value. This class is analagous
to the TimeSeriesDataPair class.

147

18.41 XYDataset

18.41.1 Overview

An interface that defines a collection of data in the form of (x, y) values. The
dataset can consist of zero, one or many data series. Each series can have (x,
y) values that are completely independent of the other series in the dataset.

18.41.2 Methods

The methods in the interface are:

public int getItemCount(int series);

Returns the number of data items in a series.

public Number getXValue(int series, int item);

Returns an x-value for a series.

public Number getYValue(int series, int item);

Returns a y-value for a series (possibly null).

18.41.3 Notes

JFreeChart uses this interface to obtain data for drawing charts.

See Also:
SeriesDataset, DefaultXYDataset, IntervalXYDataset.

18.42 XYSeries

18.42.1 Overview

A series of (x, y) data items. Each item is represented by an instance of
XYDataItem and stored in a list.

18.42.2 Constructors

To construct a series:

public XYSeries(String name);

Creates a new series (initially empty) with the specified name.

18.42.3 Methods

To add new data to a series:

public void add(double x, double y);

Adds a new data item to the series. Note that duplicate x values are not

allowed.

To update an existing data value:

148

public void update(int item, Number y);

Changes the value of one item in the series. The item is a zero-based

index.

To find out how many items are contained in a series:

public int getItemCount();

Returns the number of items in the series.

18.42.4 Notes

This class extends Series, so you can register change listeners with the series.

You can create a collection of series using the XYSeriesCollection class. Since
XYSeriesCollection implements the XYDataset interface, this is a convenient
structure for supplying data to JFreeChart.

See Also:
XYSeriesCollection.

18.43 XYSeriesCollection

18.43.1 Overview

A collection of XYSeries objects. This class implements the XYDataset inter-
face, so can be used very conveniently with JFreeChart.

18.43.2 Constructors

To construct a series collection:

public XYSeriesCollection();

Creates a new empty series collection.

18.43.3 Methods

To add a series to the collection:

public void addSeries(XYSeries series);

Adds a series to the collection. Registered listeners are notified that the

dataset has changed.

To find out how many series are held in the collection:

public int getSeriesCount();

Returns the number of series in the collection.

To access a particular series:

public XYSeries getSeries(int series);

Returns a series from the collection. The series argument is a zero-based

index.

149

18.43.4 Notes

This class implements the XYDataset interface, so it is a convenient class for
use with JFreeChart.

See Also:
XYSeries.

18.44 XYZDataset

A natural extension of the XYDataset interface.

18.45 Year

18.45.1 Overview

A subclass of TimePeriod that represents one year. This class is designed to be
used with the TimeSeries class, but is (hopefully) general enough to be used
in other situations.

18.45.2 Constructors

To construct a Year instance:

public Year(int year);

Creates a new Year instance. The year argument should be in the range

1900 to 9999.

To construct a Year instance based on a java.util.Date:

public Year(Date time);

Creates a new Year instance.

A default constructor is provided:

public Year();

Creates a new Year instance based on the current system time.

18.45.3 Methods

To access the year:

public int getYear();

Returns the year.

There is no method to set the year, because this class is immutable.

Given a Year object, you can create an instance representing the previous year
or the next year:

150

public TimePeriod previous();

Returns the previous year, or null if the lower limit of the range is reached.

public TimePeriod next();

Returns the next year, or null if the upper limit of the range is reached.

To convert a Year object to a String object, or vice versa:

public String toString();

Returns a string representing the year.

public static Year parseYear(String s) throws TimePeriodFormatException;

Parses the string and, if possible, returns a Year object.

18.45.4 Notes

In the current implementation, the year can be in the range 1900 to 9999.

The Year class is immutable. This is a requirement for all TimePeriod sub-
classes.

See Also:
TimePeriod, TimeSeries.

151

A The GNU Lesser General Public Licence

A.1 Introduction

JFreeChart is licensed under the terms of the GNU Lesser General Public Li-
cence (LGPL). The full text of this licence is reproduced in this appendix. You
should read and understand this licence before using JFreeChart in your own
projects.

If you are not familiar with the idea of free software and/or open source software,
you can find out more at the following web-sites:

Organisation: Description:

The Free Software Foundation http://www.fsf.org

The Open Source Initiative http://www.opensource.org

Please send e-mail to david.gilbert@object-refinery.com if you have any
questions about the licensing of JFreeChart.

A.2 The Licence

The following licence has been used for the distribution of the JFreeChart class
library:
GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts as the successor of the
GNU Library Public License, version 2, hence the version number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom to
share and change free software–to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated software
packages–typically libraries–of the Free Software Foundation and other authors who decide to
use it. You can use it too, but we suggest you first think carefully about whether this license
or the ordinary General Public License is the better strategy to use in any particular case,
based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies of
free software (and charge for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of it in new free programs;
and that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you
these rights or to ask you to surrender these rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give
the recipients all the rights that we gave you. You must make sure that they, too, receive or
can get the source code. If you link other code with the library, you must provide complete

152

object files to the recipients, so that they can relink them with the library after making changes
to the library and recompiling it. And you must show them these terms so they know their
rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we
offer you this license, which gives you legal permission to copy, distribute and/or modify the
library.

To protect each distributor, we want to make it very clear that there is no warranty for the
free library. Also, if the library is modified by someone else and passed on, the recipients
should know that what they have is not the original version, so that the original author’s
reputation will not be affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We
wish to make sure that a company cannot effectively restrict the users of a free program by
obtaining a restrictive license from a patent holder. Therefore, we insist that any patent
license obtained for a version of the library must be consistent with the full freedom of use
specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public
License. This license, the GNU Lesser General Public License, applies to certain designated
libraries, and is quite different from the ordinary General Public License. We use this license
for certain libraries in order to permit linking those libraries into non-free programs.

When a program is linked with a library, whether statically or using a shared library, the
combination of the two is legally speaking a combined work, a derivative of the original
library. The ordinary General Public License therefore permits such linking only if the entire
combination fits its criteria of freedom. The Lesser General Public License permits more lax
criteria for linking other code with the library.

We call this license the “Lesser” General Public License because it does Less to protect the
user’s freedom than the ordinary General Public License. It also provides other free software
developers Less of an advantage over competing non-free programs. These disadvantages are
the reason we use the ordinary General Public License for many libraries. However, the Lesser
license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible
use of a certain library, so that it becomes a de-facto standard. To achieve this, non-free
programs must be allowed to use the library. A more frequent case is that a free library does
the same job as widely used non-free libraries. In this case, there is little to gain by limiting
the free library to free software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater
number of people to use a large body of free software. For example, permission to use the GNU
C Library in non-free programs enables many more people to use the whole GNU operating
system, as well as its variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users’ freedom, it does
ensure that the user of a program that is linked with the Library has the freedom and the
wherewithal to run that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay close
attention to the difference between a “work based on the library” and a “work that uses
the library”. The former contains code derived from the library, whereas the latter must be
combined with the library in order to run.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODI-
FICATION

0. This License Agreement applies to any software library or other program which contains a
notice placed by the copyright holder or other authorized party saying it may be distributed
under the terms of this Lesser General Public License (also called “this License”). Each
licensee is addressed as “you”.

A “library” means a collection of software functions and/or data prepared so as to be con-
veniently linked with application programs (which use some of those functions and data) to

153

form executables.

The “Library”, below, refers to any such software library or work which has been distributed
under these terms. A “work based on the Library” means either the Library or any derivative
work under copyright law: that is to say, a work containing the Library or a portion of it, either
verbatim or with modifications and/or translated straightforwardly into another language.
(Hereinafter, translation is included without limitation in the term “modification”.)

“Source code” for a work means the preferred form of the work for making modifications to
it. For a library, complete source code means all the source code for all modules it contains,
plus any associated interface definition files, plus the scripts used to control compilation and
installation of the library.

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running a program using the Library is not restricted,
and output from such a program is covered only if its contents constitute a work based on the
Library (independent of the use of the Library in a tool for writing it). Whether that is true
depends on what the Library does and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish on each
copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices
that refer to this License and to the absence of any warranty; and distribute a copy of this
License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

* a) The modified work must itself be a software library. * b) You must cause the files modified
to carry prominent notices stating that you changed the files and the date of any change. *
c) You must cause the whole of the work to be licensed at no charge to all third parties under
the terms of this License. * d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses the facility, other than as
an argument passed when the facility is invoked, then you must make a good faith effort to
ensure that, in the event an application does not supply such function or table, the facility
still operates, and performs whatever part of its purpose remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is en-
tirely well-defined independent of the application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must be optional: if the applica-
tion does not supply it, the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Library, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Library, the distribution of the whole must be
on the terms of this License, whose permissions for other licensees extend to the entire whole,
and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative
or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or
with a work based on the Library) on a volume of a storage or distribution medium does not
bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of
this License to a given copy of the Library. To do this, you must alter all the notices that
refer to this License, so that they refer to the ordinary GNU General Public License, version

154

2, instead of to this License. (If a newer version than version 2 of the ordinary GNU General
Public License has appeared, then you can specify that version instead if you wish.) Do not
make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU
General Public License applies to all subsequent copies and derivative works made from that
copy.

This option is useful when you wish to copy part of the code of the Library into a program
that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above provided that
you accompany it with the complete corresponding machine-readable source code, which must
be distributed under the terms of Sections 1 and 2 above on a medium customarily used for
software interchange.

If distribution of object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place satisfies the requirement
to distribute the source code, even though third parties are not compelled to copy the source
along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to
work with the Library by being compiled or linked with it, is called a “work that uses the
Library”. Such a work, in isolation, is not a derivative work of the Library, and therefore falls
outside the scope of this License.

However, linking a “work that uses the Library” with the Library creates an executable that is
a derivative of the Library (because it contains portions of the Library), rather than a “work
that uses the library”. The executable is therefore covered by this License. Section 6 states
terms for distribution of such executables.

When a “work that uses the Library” uses material from a header file that is part of the
Library, the object code for the work may be a derivative work of the Library even though
the source code is not. Whether this is true is especially significant if the work can be linked
without the Library, or if the work is itself a library. The threshold for this to be true is not
precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors,
and small macros and small inline functions (ten lines or less in length), then the use of the
object file is unrestricted, regardless of whether it is legally a derivative work. (Executables
containing this object code plus portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for
the work under the terms of Section 6. Any executables containing that work also fall under
Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a “work that uses the
Library” with the Library to produce a work containing portions of the Library, and distribute
that work under terms of your choice, provided that the terms permit modification of the work
for the customer’s own use and reverse engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it
and that the Library and its use are covered by this License. You must supply a copy of
this License. If the work during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference directing the user to the
copy of this License. Also, you must do one of these things:

* a) Accompany the work with the complete corresponding machine-readable source code for
the Library including whatever changes were used in the work (which must be distributed
under Sections 1 and 2 above); and, if the work is an executable linked with the Library, with
the complete machine-readable “work that uses the Library”, as object code and/or source
code, so that the user can modify the Library and then relink to produce a modified executable
containing the modified Library. (It is understood that the user who changes the contents of
definitions files in the Library will not necessarily be able to recompile the application to use

155

the modified definitions.)

* b) Use a suitable shared library mechanism for linking with the Library. A suitable mech-
anism is one that (1) uses at run time a copy of the library already present on the user’s
computer system, rather than copying library functions into the executable, and (2) will op-
erate properly with a modified version of the library, if the user installs one, as long as the
modified version is interface-compatible with the version that the work was made with.

* c) Accompany the work with a written offer, valid for at least three years, to give the same
user the materials specified in Subsection 6a, above, for a charge no more than the cost of
performing this distribution.

* d) If distribution of the work is made by offering access to copy from a designated place,
offer equivalent access to copy the above specified materials from the same place.

* e) Verify that the user has already received a copy of these materials or that you have
already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must include any
data and utility programs needed for reproducing the executable from it. However, as a
special exception, the materials to be distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that component itself
accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary
libraries that do not normally accompany the operating system. Such a contradiction means
you cannot use both them and the Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a single
library together with other library facilities not covered by this License, and distribute such
a combined library, provided that the separate distribution of the work based on the Library
and of the other library facilities is otherwise permitted, and provided that you do these two
things:

* a) Accompany the combined library with a copy of the same work based on the Library,
uncombined with any other library facilities. This must be distributed under the terms of the
Sections above.

* b) Give prominent notice with the combined library of the fact that part of it is a work based
on the Library, and explaining where to find the accompanying uncombined form of the same
work. 8. You may not copy, modify, sublicense, link with, or distribute the Library except

as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense,
link with, or distribute the Library is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this License
will not have their licenses terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Library or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or
distributing the Library (or any work based on the Library), you indicate your acceptance of
this License to do so, and all its terms and conditions for copying, distributing or modifying
the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient
automatically receives a license from the original licensor to copy, distribute, link with or
modify the Library subject to these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations, then as

156

a consequence you may not distribute the Library at all. For example, if a patent license would
not permit royalty-free redistribution of the Library by all those who receive copies directly
or indirectly through you, then the only way you could satisfy both it and this License would
be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply, and the section as a whole is intended to apply
in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system which is implemented by
public license practices. Many people have made generous contributions to the wide range of
software distributed through that system in reliance on consistent application of that system;
it is up to the author/donor to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the
rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Library
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser
General Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number
of this License which applies to it and “any later version”, you have the option of following
the terms and conditions either of that version or of any later version published by the Free
Software Foundation. If the Library does not specify a license version number, you may choose
any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution
conditions are incompatible with these, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE LIBRARY “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFOR-
MANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR COR-
RECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LI-
ABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN

157

IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the public,
we recommend making it free software that everyone can redistribute and change. You can
do so by permitting redistribution under these terms (or, alternatively, under the terms of the
ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach them
to the start of each source file to most effectively convey the exclusion of warranty; and each
file should have at least the ”copyright” line and a pointer to where the full notice is found.

<one line to give the library’s name and a brief idea of what it does.>

Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or modify it

under the terms of the GNU Lesser General Public License as published by

the Free Software Foundation; either version 2.1 of the License, or (at

your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for

more details.

You should have received a copy of the GNU Lesser General Public License

along with this library; if not, write to the Free Software Foundation,

Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any, to
sign a ”copyright disclaimer” for the library, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the library

‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990

Ty Coon, President of Vice

That’s all there is to it!

158

	Introduction
	What is JFreeChart?
	This Document
	Acknowledgements
	Comments and Suggestions

	Sample Charts
	Introduction
	Pie Charts
	Bar Charts
	Line Chart
	XY Plots
	Area Charts
	Step Chart
	Gantt Chart
	Combined Charts
	Future Development

	Downloading and Installing JFreeChart
	Introduction
	Download
	Unpacking the Files
	Running the Demonstration Application
	Compiling the Source
	Generating the Javadoc Documentation

	Developing with JFreeChart
	Overview
	The Basic Structure
	Creating Your First Chart
	More about Datasets

	Customising Charts
	Introduction
	Customising Charts
	Customising Plots
	Customising Axes

	Charts Using Category Datasets
	Introduction
	Creating a Line Chart with Categorical Data

	Charts Using XYDatasets
	Introduction
	Creating a Line Chart with Numerical Data

	Combined Charts
	Introduction
	Creating an Overlaid XY Plot
	Creating a CombinedXYPlot

	Exporting Charts to Acrobat PDF
	Introduction
	What is Acrobat PDF?
	iText
	Graphics2D
	Getting Started
	The Application
	Viewing the PDF File
	Unicode Characters

	Exporting Charts to SVG Format
	Introduction
	What is SVG?
	Batik
	Batik and JFreeChart
	Getting Started
	The Application
	Viewing the SVG

	Packages
	Overview

	Package: com.jrefinery.chart
	Overview
	AbstractCategoryItemRenderer
	AbstractTitle
	AbstractXYItemRenderer
	AreaCategoryItemRenderer
	AreaXYItemRenderer
	Axis
	AxisConstants
	AxisNotCompatibleException
	BarRenderer
	CandlestickRenderer
	CategoryAxis
	CategoryItemRenderer
	CategoryPlot
	CategoryPlotConstants
	ChartFactory
	ChartFrame
	ChartMouseEvent
	ChartMouseListener
	ChartPanel
	ChartPanelConstants
	ChartRenderingInfo
	ChartUtilities
	CombinedXYPlot
	CrosshairInfo
	DateAxis
	DateTitle
	DateUnit
	DefaultShapeFactory
	HighLow
	HighLowRenderer
	HorizontalAxis
	HorizontalBarRenderer
	HorizontalCategoryAxis
	HorizontalCategoryPlot
	HorizontalDateAxis
	HorizontalIntervalBarRenderer
	HorizontalNumberAxis
	HorizontalNumberAxis3D
	HorizontalSymbolicAxis
	HorizontalValuePlot
	ImageTitle
	JFreeChart
	JFreeChartConstants
	JFreeChartInfo
	Legend
	LegendItem
	LegendItemCollection
	LegendItemLayout
	LineAndShapeRenderer
	Marker
	MeterLegend
	MeterPlot
	NumberAxis
	NumberTickUnit
	OverlaidVerticalCategoryPlot
	OverlaidXYPlot
	PeriodMarkerPlot
	PiePlot
	Plot
	PlotException
	PlotNotCompatibleException
	SeriesShapeFactory
	ShapeFactory
	SignalRenderer
	Spacer
	StackedHorizontalBarRenderer
	StackedVerticalBarRenderer
	StackedVerticalBarRenderer3D
	StandardLegend
	StandardXYItemRenderer
	TextTitle
	Tick
	TickUnit
	TickUnits
	ValueAxis
	VerticalAxis
	VerticalBarRenderer
	VerticalBarRenderer3D
	VerticalCategoryAxis
	VerticalCategoryPlot
	VerticalIntervalBarRenderer
	VerticalLogarithmicAxis
	VerticalNumberAxis
	VerticalNumberAxis3D
	VerticalSymbolicAxis
	VerticalValuePlot
	VerticalXYBarRenderer
	WindItemRenderer
	XYItemRenderer
	XYPlot
	XYStepRenderer

	Package: com.jrefinery.chart.data
	Introduction
	LinearPlotFitAlgorithm
	MovingAveragePlotFitAlgorithm
	PlotFit
	PlotFitAlgorithm

	Package: com.jrefinery.chart.entity
	Introduction
	CategoryItemEntity
	ChartEntity
	EntityCollection
	PieSectionEntity
	StandardEntityCollection
	XYItemEntity

	Package: com.jrefinery.chart.event
	Introduction
	AxisChangeEvent
	AxisChangeListener
	ChartChangeEvent
	ChartChangeListener
	LegendChangeEvent
	LegendChangeListener
	PlotChangeEvent
	PlotChangeListener
	TitleChangeEvent
	TitleChangeListener

	Package: com.jrefinery.chart.tooltips
	Introduction
	CategoryToolTipGenerator
	PieToolTipGenerator
	StandardCategoryToolTipGenerator
	StandardHighLowToolTipGenerator
	StandardPieToolTipGenerator
	StandardToolTips
	StandardXYToolTipGenerator
	ToolTip
	ToolTipGenerator
	ToolTips
	XYToolTipGenerator

	Package: com.jrefinery.chart.ui
	Introduction
	AxisPropertyEditPanel
	ChartPropertyEditPanel
	LegendPropertyEditPanel
	NumberAxisPropertyEditPanel
	PlotPropertyEditPanel
	TitlePropertyEditPanel

	Package: com.jrefinery.data
	Introduction
	AbstractDataset
	AbstractSeriesDataset
	BasicTimeSeries
	CategoryDataset
	CombinationDataset
	CombinedDataset
	Dataset
	DatasetChangeEvent
	DatasetChangeListener
	Datasets
	Day
	DefaultCategoryDataset
	DefaultPieDataset
	DefaultXYDataset
	DomainInfo
	HighLowDataset
	Hour
	IntervalXYDataset
	IntervalXYZDataset
	Millisecond
	Minute
	Month
	PieDataset
	Quarter
	RangeInfo
	Second
	SeriesChangeListener
	SeriesDataset
	SeriesException
	Statistics
	SubseriesDataset
	TimePeriod
	TimePeriodFormatException
	TimeSeriesCollection
	TimeSeriesDataPair
	TimeSeriesTableModel
	Values
	Week
	XYDatapair
	XYDataset
	XYSeries
	XYSeriesCollection
	XYZDataset
	Year

	The GNU Lesser General Public Licence
	Introduction
	The Licence

