FUNCTION: BnGaYang - Yang-Baxter element of the Bn-group algebra
 
CALLING SEQUENCE:
-   BnGaYang(code)
-   BNA[BnGaYang](code)
-  
   
PARAMETERS:
- code =  any list denoting a code
 
 
SYNOPSIS:
-  The  BnGaYang  function calculates a Yang-Baxter element of the Bn-group
  algebra.
 
 
-  The set of BnGaYang(code), for all codes in Bn, is a linear basis of the
  Bn-group algebra, as a free module with coefficients in the xi's.
 
 
-  When  called  with  a  second  parameter, say  'y', one  specifies  that
  coefficients are in the yi's.
 
 
-  When this second parameter is 'num' then x1, x2, x3, ... are specialized
  to 1, 2, 3, ...
 
 
-  This basis is defined by the recursion : for  a  simple  reflection   sk,
  k>0 and a code, such that length(code sk) > length(code), then  one  has
  BnGaYang(code sk)  =  BnGaYang(code)  &!!*  (1  +  (sign(perm[k])*x_j  -
  sign(perm[k+1])*x_i) sk) where i=abs(perm[k]), j=abs(perm[k+1]) and perm
  is the corresponding signed permutation. When k=0, one has:
  BnGaYang(code s0)  =  BnGaYang(code) &!!* (1 - 2*(sign(perm[1])*x_i) s0)
  in which i=abs(perm[1]).
 
 
-  Whenever  there  is  a conflict  between the function  name BnGaYang and
  another  name   used  in   the   same   session,  use   the   long  form
  BNA['BnGaYang'].
 
 
EXAMPLES:
> with(BNA):
> BnGaYang([0,2]);
 
    (x2 - x1) B[0, 1] + B[0, 0] - 2 (x2 - x1) x2 B[0, 2] - 2 x2 B[1, 0]
 
> BnGaYang([0,2], 'num');
 
                   B[0, 1] + B[0, 0] - 4 B[0, 2] - 4 B[1, 0]
 
SEE ALSO: BnIdcaYang BnNcaYang