FUNCTION: BnIdcaYang - Yang-Baxter element of the Bn-idCoxeter algebra
 
CALLING SEQUENCE:
-   BnIdcaYang(code)
-   BNA[BnIdcaYang](code)
-  
   
PARAMETERS:
- code =  any list denoting a code
 
 
SYNOPSIS:
-  The  BnIdcaYang   function   calculates  a Yang-Baxter  element  of  the
  Bn-idCoxeter algebra.
 
 
-  The set BnIdcaYang(code), for all codes in Bn is a linear basis  of  the
  Bn-idCoxeter algebra,  as  a  free  module with coefficients in the xi's.
 
 
-  When  called  with  a  second  parameter, say  'y', one  specifies  that
  coefficients are in the yi's.
 
 
-  When this second parameter is 'num' then x1, x2, x3, ... are specialized
  to q^1, q^2, q^3, ...
 
 
-  This basis is defined by the  recursion : for  a  simple  reflection  sk,
  k>0 and a code of B(n), such that length(code sk)>length(code), then one
  has BnIdcaYang(code sk) = BnIdcaYang(code)  &!$* (1 + (1 - (x_j1*x_j2) /
  (x_i1*x_i2)) Pk)  where  i1=palin[n-k],  i2=palin[n+k],  j1=palin[n-k+1],
  j2=palin[n+k-1] and palin is the BnCode2Palin(code). If  k=0,  then  the
  expression becomes BnIdcaYang(code sk) = BnIdcaYang(code) &!$* (1 + (1 -
  (x_j/x_i)) P0) where i=palin[n] and j=palin[n+1]. P0, P1, P2, ... denote
  the generators of the Bn-idCoxeter algebra.
 
 
-  Whenever  there  is  a conflict between the function name BnIdcaYang and
  another  name   used  in   the   same   session,  use   the   long  form
  BNA['BnIdcaYang'].
 
 
EXAMPLES:
> with(BNA):
> BnIdcaYang([0,2]);
 
     (- x1 x3 + x2 x4) B[0, 1]   (- x1 + x4) (- x1 x3 + x2 x4) B[0, 2]
   - ------------------------- + -------------------------------------
               x1 x3                               2
                                                 x1  x3
 
          (- x1 + x4) B[1, 0]
        - ------------------- + B[0, 0]
                   x1
 
> BnIdcaYang([0,2], 'num');
 
         2                    3          2                  3
   (1 - q ) B[0, 1] + (- 1 + q ) (- 1 + q ) B[0, 2] + (1 - q ) B[1, 0]
 
   + B[0, 0]
 
SEE ALSO: BnGaYang BnNcaYang