FUNCTION: BnNcaOnPol - action of an element of the Bn-nilCoxeter algebra
 
CALLING SEQUENCE:
-   BnNcaOnPol(e_1, exp)
-   BnNcaOnPol(e_1, exp, v)
-   BNA[BnNcaOnPol](e_1, exp)
-   BNA[BnNcaOnPol](e_1, exp, v)
-  
     
PARAMETERS:
- e_1 =  any element of the Bn-nilCoxeter algebra
- exp =  any expression
- v   =  any (extra) string
 
   
SYNOPSIS:
-  The BnNcaOnPol function realizes the action of an  element  of  the Bn-
  nilCoxeter algebra, say e_1, on an expression exp.
 
 
-  Simple divided differences Di are the operators:
 
          f(..., x_i, x_{i+1}, ...) - f(..., x_{i+1}, x_i, ...)
    f --> -----------------------------------------------------,     i<>0
                                x_i - x_{i+1}
 
          f(..., x_i, ...) - f(..., -x_{i}, ...)
    f --> --------------------------------------,                     i=0
                          2*x_i
 
 
-  By default the algebra acts on the variables x1, x2, x3, ...
 
 
-  When called with a third  argument  v,  being,  say `y`, the BnNcaOnPol
  function acts on the variables y1, y2, y3, ...
 
 
-  Whenever there  is  a conflict between the function name BnNcaOnPol and
  another  name   used   in   the   same   session, use   the  long  form
  BNA['BnNcaOnPol'].
 
 
EXAMPLES:
> with(BNA):
> BnNcaOnPol(B[1,0,1], x1^3*x2^2*y3^2);
 
                                          2   2
                              (x3 + x2) x1  y3
 
> BnNcaOnPol(B[1,0,1], x1^3*x2^2*y3^2, `y`);
 
                                      0
 
SEE ALSO: BnGaOnPol BnIdcaOnPol