FUNCTION: BnNcaYang - Yang-Baxter element of the Bn-nilCoxeter algebra
 
CALLING SEQUENCE:
-   BnNcaYang(code)
-   BNA[BnNcaYang](code)
-  
   
PARAMETERS:
- code =  any list denoting a code
 
 
SYNOPSIS:
-  The   BnNcaYang   function   calculates  a Yang-Baxter  element  of  the
  Bn-nilCoxeter algebra.
 
 
-  The set BnNcaYang(code), for all codes in Bn is a linear basis   of  the
  Bn-nilCoxeter algebra, as  a  free  module with coefficients in the xi's.
 
 
-  When  called  with  a  second  parameter, say  'y', one  specifies  that
  coefficients are in the yi's.
 
 
-  When this second parameter is 'num' then x1, x2, x3, ... are specialized
  to 1, 2, 3, ...
 
 
-  This basis is defined by the  recursion : for  a  simple  reflection  sk,
  k>0 and a code, such that length(code sk) > length(code), then  one  has
  BnNcaYang(code sk) = BnNcaYang(code)  &!@*  (1  +  (sign(perm[k])*x_j  -
  sign(perm[k+1])*x_i) Dk) where i=abs(perm[k]), j=abs(perm[k+1]) and perm
  is the corresponding signed permutation. When k=0, one has:
  BnNcaYang(code s0) = BnNcaYang(code) &!@* (1 - 2*(sign(perm[1])*x_i) D0)
  in which i=abs(perm[1]). D0, D1, D2, ... denote the  generators  of  the
  Bn-nilCoxeter algebra.
 
 
-  Whenever  there  is  a conflict between the function  name BnNcaYang and
  another  name   used  in   the   same   session,  use   the   long  form
  BNA['BnNcaYang'].
 
 
EXAMPLES:
> with(BNA):
> BnNcaYang([0,2]);
 
  - 2 (x2 - x1) x2 B[0, 2] + (x2 - x1) B[0, 1] - 2 x2 B[1, 0] + B[0, 0]
 
> BnNcaYang([0,2], 'num');
 
                 - 4 B[0, 2] + B[0, 1] - 4 B[1, 0] + B[0, 0]
 
SEE ALSO: BnGaYang BnIdcaYang