FUNCTION: HekaJucis - Jucis-Murphy element of the Hecke algebra
 
CALLING SEQUENCE:
-   HekaJucis(i)
-   HEKA[HekaJucis](i)
-  
   
PARAMETERS:
- i =  any positive integer
 
 
SYNOPSIS:
-  The HekaJucis function computes the i-th Jucis-Murphy element inside the
  Hecke  algebra  of  the  symmetric  group of degree n (i<=n), where n is
  taken to be i by default or the second argument if available.
 
 
-  The  algebra  generated  by  the  Jucis-Murphy  elements  is  a  maximal
  commutative sub-algebra of the Hecke algebra.
 
 
-  More explicitly, denoting t(i,j) the transposition exchanging  i  and  j,
  we  have:  HekaJucis(1) = 0,   HekaJucis(2)  =  (q1+q2)*t(1,2)  -  q1*q2,
  HekaJucis(3) = (q1+q2)t(1,3)  -  (q1+q2)*q1*q2*t(2,3)  +  q1^2*q2^2  and
  HekaJucis(4) = (q1+q2)t(1,4) - (q1+q2)*q1*q2*t(2,4) +  (q1+q2)*q1^2*q2^2
  t(3,4) - q1^3*q2^3.
 
 
-  Whenever there  is  a conflict between  the  function name HekaJucis and
  another   name   used   in   the   same   session, use   the  long  form
  HEKA['HekaJucis'].
 
 
EXAMPLES:
> with(HEKA):
> HekaJucis(2);
 
                    (q1 + q2) A[2, 1] - q1 q2 A[1, 2]
 
> HekaJucis(4, 6);
 
    (q1 + q2) A[4, 2, 3, 1, 5, 6] - (q1 + q2) q1 q2 A[1, 4, 3, 2, 5, 6]
 
                2   2                         3   3
  + (q1 + q2) q1  q2  A[1, 2, 4, 3, 5, 6] - q1  q2  A[1, 2, 3, 4, 5, 6]
 
SEE ALSO: SG[SgTranspo] SGA[SgaJucis]