FUNCTION: IdcaYang - compute a special element of the idCoxeter algebra
 
CALLING SEQUENCE:
-   IdcaYang(perm)
-   IDCA[IdcaYang](perm)
-  
   
PARAMETERS:
- perm =  any list denoting a permutation
 
 
SYNOPSIS:
-  The  IdcaYang function  calculates a  special  element of the  idCoxeter
  algebra.
 
 
-  { IdcaYang(perm), perm in ListPerm(n) }  is a  linear   basis   of   the
  idCoxeter  algebra,  as a free module  with  coefficients  in  the  xi's.
 
 
-  When  called  with  a  second  parameter, say  'y', one  specifies  that
  coefficients are in the yi's.
 
 
-  When this second parameter is 'num' then x1, x2, x3, ... are specialized
  to q^1, q^2, q^3, ...
 
 
-  This basis is defined by the recursion : for a simple  transposition  sk
  and a permutation perm, such that  length(perm sk) > length(perm),  then
  IdcaYang(perm sk)  =  IdcaYang(perm) &$* (1 + (1 - x_j / x_i)  sk) where
  i=perm[k] and j=perm[k+1].
 
 
-  Coefficients in the expansion are specializations of double Grothendieck
  polynomials.
 
 
-  Whenever  there is  a  conflict  between the function  name IdcaYang and
  another  name   used  in   the   same   session,  use   the   long  form
  IDCA['IdcaYang'].
 
 
EXAMPLES:
> with(IDCA):
> IdcaYang([3,1,2]);
 
           (x1 - x3) A[2, 1, 3]   (x2 - x3) A[1, 3, 2]
           -------------------- + -------------------- + A[1, 2, 3]
                    x1                     x2
 
                (x1 - x3) (x2 - x3) A[3, 1, 2]
              + ------------------------------
                             x1 x2
 
SEE ALSO: