FUNCTION: NcaOnPol - action of an element of the algebra on a polynomial
 
CALLING SEQUENCE:
-   NcaOnPol(e_1, exp)
-   NcaOnPol(e_1, exp, v)
-   NCA[NcaOnPol](e_1, exp)
-   NCA[NcaOnPol](e_1, exp, v)
-  
     
PARAMETERS:
- e_1 =  any element of the nilCoxeter algebra
- exp =  any expression
- v   =  any (extra) string
 
   
SYNOPSIS:
-  The  NcaOnPol  function  realizes  the  action  of  an  element  of  the
  nilCoxeter algebra, say e_1, on an  expression exp.
 
 
-  Simple divided differences Di are defined to be the operators:
 
             f(..., x_i, x_{i+1}, ...) - f(..., x_{i+1}, x_i, ...)
       f --> -----------------------------------------------------
                                   x_i - x_{i+1}
 
 
-  By default the algebra acts on the variables x1, x2, x3, ...
 
 
-  When called with a third  argument  v,  being,  say `y`, the  NcaOnPol
  function acts on the variables y1, y2, y3, ...
 
 
-  Whenever  there  is  a  conflict between  the function name NcaOnPol and
  another name used in the same session, use the long form NCA['NcaOnPol'].
 
 
EXAMPLES:
> with(NCA):
> NcaOnPol(q^2*A[3,1,2], x1^2*x2*y1^2*y2^3);
 
                                2      2   3
                               q  x1 y1  y2
 
> NcaOnPol(q^2*A[3,1,2], x1^2*x2*y1^2*y2^3, `y`);
 
                           2             2   2
                        - q  (y2 + y3) y1  x1  x2
 
SEE ALSO: