FUNCTION: SfAOmega - apply the omega-automorphism
 
CALLING SEQUENCE:
-   SfAOmega(sfa)
-   SfAOmega(sfa, alist)
-   SFA[SfAOmega](sfa)
-   SFA[SfAOmega](sfa, alist)
-  
     
PARAMETERS:
- sfa   =  any valid expression in SFA
- alist =  a list of alphabets
 
  
SYNOPSIS:
-  The omega-automorphism  is  an involution defined on symmetric functions
  by:
- h[I](A) <-> e[I](A)
- s[I](A) <-> s[I~](A)
- p[I](A) <-> -1^(length(I)+|I|) p[I](A),
  where  I~ is the conjugate partition of I, and |I| is the  weight  of  I.
 
    
-  One can apply SfAOmega  solely on symmetric functions over the alphabets
  given in the second parameter alist.
 
 
-  Whenever  there is a conflict between the function name   SfAOmega   and
  another   name   used   in   the   same   session,  use  the  long  form
  SFA['SfAOmega'].
 
 
EXAMPLES:
> with(SFA):
> SfAOmega( p[3,1](A1) - q*s[3](A2) );
 
                         p[3, 1](A1) - q s[1, 1, 1](A2)
 
> SfAOmega( p[3,1](A1) - q*s[3](A2), [ A1 ]);
 
                            p[3, 1](A1) - q s[3](A2)
 
SEE ALSO: SYMF[SfOmega] PART[Part2Conjugate]