FUNCTION: SgaJucis - Jucis-Murphy element of the symmetric group algebra
 
CALLING SEQUENCE:
-   SgaJucis(i)
-   SGA[SgaJucis](i)
-  
   
PARAMETERS:
- i =  any positive integer
 
 
SYNOPSIS:
-  The SgaJucis function computes the i-th Jucis-Murphy  element inside the
  algebra of the symmetric group of degree  n  (i<=n), where n is taken to
  be i by default or the second argument if available.
 
 
-  The  algebra  generated  by  the  Jucis-Murphy  elements  is  a  maximal
  commutative sub-algebra of the symmetric group algebra.
 
 
-  More explicitly, denoting T(i,j) the transposition exchanging  i  and  j,
  we have: SgaJucis(1) = 0, SgaJucis(2) = T(1,2),   SgaJucis(3) = T(1,3) +
  T(2,3), ..., SgaJucis(k) = T(1,k) + T(2,k) + ... + T(k-1,k).
 
 
-  Whenever there  is  a conflict between  the  function  name SgaJucis and
  another name used in the same session, use the long form SGA['SgaJucis'].
 
 
EXAMPLES:
> with(SGA):
> SgaJucis(2);
 
                                   A[2, 1]
 
> SgaJucis(4, 6);
 
       A[4, 2, 3, 1, 5, 6] + A[1, 4, 3, 2, 5, 6] + A[1, 2, 4, 3, 5, 6]
 
SEE ALSO: SG[SgTranspo]