FUNCTION: SgaYang - compute a special element of the symmetric group
                    algebra 
CALLING SEQUENCE:
-   SgaYang(perm)
-   SGA[SgaYang](perm)
-  
   
PARAMETERS:
- perm =  any list denoting a permutation
 
 
SYNOPSIS:
-  The  SgaYang function  calculates  a  special  element of the  symmetric
  group algebra.
 
 
-  { SgaYang(perm), perm in ListPerm(n) }  is  a  linear   basis   of   the
  symmetric group algebra, as a free module  with coefficients in the xi's.
 
 
-  When  called  with  a  second  parameter, say  'y', one  specifies  that
  coefficients are in the yi's.
 
 
-  When this second parameter is 'num' then x1, x2, x3, ... are specialized
  to 1, 2, 3, ...
 
 
-  This basis is defined by the recursion: for  a simple  transposition  sk
  and a permutation perm, such  that length(perm sk) > length(perm),  then
  SgaYang(perm sk)   =  SgaYang(perm)  &!*  (1  +  (x_j - x_i) sk)   where
  i=perm[k] and j=perm[k+1].
 
 
-  Whenever  there  is  a  conflict  between the function  name SgaYang and
  another  name   used  in   the   same   session,  use   the   long  form
  SGA['SgaYang'].
 
 
EXAMPLES:
> with(SGA):
> SgaYang([3,1,2]);
 
         (x3 - x2) A[1, 3, 2] - (- x3 + x1) (x3 - x2) A[3, 1, 2]
 
       + A[1, 2, 3] + (x3 - x1) A[2, 1, 3]
 
> SgaYang([3,1,2], 'y');
 
         (y3 - y2) A[1, 3, 2] - (- y3 + y1) (y3 - y2) A[3, 1, 2]
 
       + A[1, 2, 3] + (y3 - y1) A[2, 1, 3]
 
SEE ALSO: