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1. Introduction

An ever-growing body of research has been devoted to the study of various measures 
of disorder on permutations, with the intention of expressing how many elementary 
operations (whose type may vary but which are fixed beforehand) they should un-
dergo in order to become sorted. One of the earliest examples of such a measure 
is the Cayley distance, which corresponds to the minimum number of transpositions 
that must be applied to a permutation in order to obtain the identity permutation. 
This distance is easily expressed in terms of the number of cycles of the permuta-
tion [6], and the signless Stirling numbers of the first kind can be used to charac-
terise exactly the distribution of the Cayley distance — i.e., the number of permuta-
tions of n elements with Cayley distance k. Motivations for studying these distances 
and their distributions outside pure mathematical fields include the study of sort-
ing algorithms [10], genome comparison [11], and the design of interconnection net-
works [16].

We focus in this paper on the prefix exchange operation, a restricted kind of trans-
position that swaps any element of a permutation with its first element. This operation 
was introduced by Akers and Krishnamurthy [1], who also gave a formula for computing 
the associated prefix exchange distance, i.e., the minimum number of prefix exchanges 
required to transform a given permutation into the identity permutation. Portier and 
Vaughan [18] later succeeded in obtaining the generating function of the corresponding 
distribution, which they then used to derive an explicit formula (with subsequent correc-
tions by Shen and Qiu [21]) as well as recurrence formulas for computing the so-called 
“Whitney numbers of the second kind for the star poset”, i.e., the number of permuta-
tions of size n with prefix exchange distance k (see Portier [17] for a table with the first 
few terms).

We revisit in this paper the results obtained by Portier and Vaughan [18] by tak-
ing the opposite direction: we first obtain new proofs for their exact and recurrence 
formulas, and then use these formulas to recover their expression for the generating 
function. Our proofs are purely combinatorial, a desirable property since such proofs 
are often simpler in addition to providing new insight into the underlying objects 
[5,22].

We then proceed to obtaining the mean and the variance of the distribution, and 
finally, we examine the behaviour of this distribution when n tends to infinity: in partic-
ular, we show that the normalised prefix exchange distribution converges in distribution 
to the standard normal distribution. Our result enriches the family of combinatorial 
sequences which were previously shown to behave asymptotically normally, like the 
(signless) Stirling numbers of first and second kind, the Eulerian numbers, the adja-
cent transposition distance distribution and the related distribution of the number of 
inversions in a permutation — for precise definitions of these sequences and asymptotic 
normality results, as well as other examples, see [9,3,12].
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2. Background and known results

We recall some basic notions and notation (see e.g. Bóna [5]) that will be useful 
throughout the text.

2.1. Permutations and cycles

For n ≥ 1, we let Sn denote the symmetric group, i.e., the set of all permutations 
of {1, 2, . . . , n} together with the usual function composition operation ◦ applied from 
right to left. We view permutations as sequences and denote them using lower case Greek 
letters, i.e., π = 〈π1 π2 · · · πn〉, where πi = π(i) for 1 ≤ i ≤ n. We will sometimes find 
it convenient to reduce permutations in the following sense.

Definition 2.1. [15] The reduced form of a permutation σ of a set {j1, j2, . . . , jr} with 
j1 < j2 < · · · < jr is the permutation red(σ) ∈ Sr obtained by replacing ji with i in σ
for all i such that 1 ≤ i ≤ r.

As is well-known, every permutation π decomposes in a single way into disjoint cycles 
(up to the ordering of cycles and of elements within each cycle). For instance, when 
π = 〈4 1 6 2 5 7 3〉, the disjoint cycle decomposition is π = (1, 4, 2)(3, 6, 7)(5) (notice the 
parentheses and the commas). We use c1(π) to denote the number of cycles of length 1, 
or fixed points, of π, and c≥2(π) to denote the number of cycles of length at least 2 of π.

Let dcd(π) denote the disjoint cycle decomposition of π. It will sometimes be conve-
nient to abuse notation by writing, for some permutation π ∈ Sn, σ = dcd(π) ∪ (n + 1), 
to express the fact that the disjoint cycle decomposition of π and σ differ only by the 
fixed point σn+1 = n + 1, which does not exist in π.

Recall that, for 0 ≤ k ≤ n, the signless Stirling number of the first kind
[ n
k

]
counts the 

number of permutations of n elements with k cycles, with the convention that 
[ n

0
]

= 0
for n > 1 and 

[ 0
0

]
= 1. These numbers are well-known to appear in the following series 

expansion of the ascending factorial:

xn = x(x + 1) · · · (x + n− 1) =
n∑

k=0

[
n
k

]
xk. (1)

The signed Stirling number of the first kind is s(n, k) = (−1)n−k
[ n
k

]
.

2.2. Prefix exchanges

For every i = 2, 3, . . . , n, the prefix exchange (1, i) applied to a permutation π in Sn

transforms π into π ◦ (1, i) by swapping elements π1 and πi. The prefix exchange distance
of π, denoted by pexc(π), is the minimum number of prefix exchanges needed to sort the 
permutation π, i.e., to transform it into the identity permutation ι = 〈1 2 · · · n〉. Akers 
et al. [2] proved the following formula for computing the prefix exchange distance:
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Theorem 2.1. (See [2].) The prefix exchange distance of π in Sn is equal to

pexc(π) = n + c≥2(π) − c1(π) −
{

0 if π1 = 1,
2 otherwise.

(2)

Akers et al. [2] referred to the Cayley graph of Sn generated by prefix exchanges as 
the “n-star graph”. They proved that the diameter of that graph, or equivalently the 
largest value that the distance can reach, is 	3(n− 1)/2
.

Let n ≥ 1 be fixed. For k ≥ 0, we let Wn,k denote the number of permutations in Sn

which are at prefix exchange distance k from the identity permutation. These numbers 
are called in the literature “Whitney numbers of the second kind for the star poset” or 
“surface areas for the star graph”. An explicit formula for these numbers was first given 
by Portier and Vaughan [18], and later corrected by Shen and Qiu [21]:

Theorem 2.2. (See [21].) The Whitney numbers of the second kind for the star poset 
are given as follows. Let n ≥ 1 and k such that 0 ≤ k ≤ 	3(n− 1)/2
 and denote, for 
0 ≤ i ≤ min(n − 1, k + 1):

Ti = max
{

0,
⌈
k − 2i

2

⌉}
, Si = min

{
n− 1 − i,

⌊
k + 1 − i

2

⌋}
.

With these notation, we have:

Wn,k =
min(n−1,k+1)∑

i=0

Si∑
t=Ti

(
n− 1
i

)(
n− 1 − i

t

)
s(i + 1, k − i + 1 − 2t)(−1)k+2−t.

Using different approaches, Imani et al. [14] and Imani et al. [8] give alternative explicit 
formulas for Wn,k. The following recurrence relations are also known (see Portier and 
Vaughan [18] for the first one and Qiu and Akl [19] for the second and the third):

Theorem 2.3. The Whitney numbers of the second kind for the star poset obey the fol-
lowing recurrence relations: for n ≥ 1 and 3 ≤ k ≤ 	3(n− 1)/2
, we have:

Wn,k = Wn−1,k + (n− 1)Wn−1,k−1 − (n− 2)Wn−2,k−1 + (n− 2)Wn−2,k−3, (3)

Wn,k = (n− 1)Wn−1,k−1 +
n−2∑
j=1

jWj,k−3, (4)

with Wn,0 = 1, Wn,1 = n − 1 and Wn,2 = (n − 1)(n − 2). We also have, for n ≥ 1 and 

0 ≤ k ≤
⌊

3(n−1)
2

⌋
:

Wn+k+1,k =
k+1∑
i=1

(−1)i+1
(
k + 1
i

)
Wn+k+1−i,k. (5)
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3. Combinatorial derivation of the formula for Wn,k

The explicit formula for Wn,k given in Theorem 2.2 was obtained by Portier and 
Vaughan [18] (notwithstanding some errors later corrected by Shen and Qiu [21]) using a 
generating function technique: they first derived the generating function of these numbers 
and then used it to deduce a formula for Wn,k. We give here a direct combinatorial 
derivation of the formula in Theorem 2.2 based on derangements, i.e., permutations 
without any fixed point. We proceed in two steps, by first computing the number W (1)

n,k

of permutations at distance k that fix 1 and then the number W (2)
n,k of permutations at 

distance k that do not fix 1. We will need the following preliminary result, which counts 
the number d(n, k) of derangements in Sn with k cycles.

Lemma 3.1. (See [20].) For 1 ≤ k ≤ n, we have

d(n, k) =
k∑

j=0
(−1)j

(
n

j

)[
n− j
k − j

]
,

with the convention d(n, 0) = 0.

The following well-known relation (see e.g. Graham et al. [13, p. 167]) will also be 
useful: (

r

m

)(
m

p

)
=
(
r

p

)(
r − p

m− p

)
(6)

for any m, p, r ∈ N.

Proposition 3.1. The number of permutations π in Sn with pexc(π) = k and π1 = 1 is

W
(1)
n,k =

�(2n−k−2)/2�∑
�=max(n−k−1,0)

k−n+�+1∑
j=0

(
n− 1
� + j

)(
� + j

j

)
(−1)j

[
n− �− j − 1

k − n + �− j + 1

]
. (7)

Proof. We sum over all possible values i for the number of fixed points of π. For a 
permutation π with pexc(π) = k and c1(π) = i, Equation (2) implies that c≥2(π) =
k − n + i. From the conditions k − n + i ≥ 0 and n − i ≥ k − n + i we easily obtain the 
following bounds for i: max(n − k, 1) ≤ i ≤ 	(2n − k)/2
.

Since π1 = 1, there are 
(
n−1
i−1

)
choices for the other i − 1 fixed points. The remaining 

n − i elements must form k − n + i cycles of length at least 2, and there are exactly 
d(n − i, k − n + i) ways to do this. We obtain

W
(1)
n,k =

�(2n−k)/2�∑ (
n− 1
i− 1

)
d(n− i, k − n + i)
i=max(n−k,1)
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=
�(2n−k)/2�∑

i=max(n−k,1)

(
n− 1
i− 1

) k−n+i∑
j=0

(−1)j
(
n− i

j

)[
n− i− j

k − n + i− j

]

(using Lemma 3.1).

Setting � = i − 1, we have

W
(1)
n,k =

�(2n−k−2)/2�∑
�=max(n−k−1,0)

(
n− 1
�

) k−n+�+1∑
j=0

(−1)j
(
n− �− 1

j

)[
n− �− j − 1

k − n + �− j + 1

]
,

and using Equation (6) with r = n − 1, m = � + j and p = j allows us to complete the 
proof. �
Proposition 3.2. The number of permutations π in Sn with pexc(π) = k and π1 �= 1 is

W
(2)
n,k =

�(2n−k−2)/2�∑
i=max(n−k−2,0)

k−n+i+2∑
j=0

(
n− 1
i + j

)(
i + j

j

)
(−1)j

[
n− i− j

k − n + i + 2 − j

]

+
�(2n−k−2)/2�∑

i=max(n−k−1,0)

k−n+i+2∑
j=1

(
n− 1

i + j − 1

)(
i + j − 1
j − 1

)
(−1)j

[
n− i− j

k − n + i + 2 − j

]
.

Proof. As in the proof of Proposition 3.1, we sum over all possible values i for the number 
of fixed points of π. In this case, if a permutation π has i fixed points and is at distance 
k, then Equation (2) implies that c≥2(π) = k − n + i + 2. From the two conditions: 
k − n + i + 2 ≥ 0 and n − i ≥ k − n + i + 2, we derive the following bounds for i: 
max(n − k − 2, 0) ≤ i ≤ 	(2n − k − 2)/2
.

Since π1 �= 1, we have 
(
n−1
i

)
choices for the i fixed points. Furthermore, the remaining 

n − i elements must form k − n + i + 2 cycles of length at least 2. We obtain:

W
(2)
n,k =

�(2n−k−2)/2�∑
i=max(n−k−2,0)

(
n− 1
i

)
d(n− i, k − n + i + 2)

=
�(2n−k−2)/2�∑

i=max(n−k−2,0)

(
n− 1
i

) k−n+i+2∑
j=0

(−1)j
(
n− i

j

)[
n− i− j

k − n + i + 2 − j

]

(using Lemma 3.1).

One can easily check that the following relations hold:(
n− 1
i

)(
n− i

j

)
=
(
n− 1
i + j

)(
i + j

j

)
n− i

n− i− j
(using Equation (6))

=
(
n− 1

)(
i + j

)(
1 + j

)

i + j j n− i− j
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=
(
n− 1
i + j

)(
i + j

j

)
+
(

n− 1
i + j − 1

)(
i + j − 1
j − 1

)
,

where for the last line we have used the fact that(
n− 1
i + j

)(
i + j

j

)
j

n− i− j
=
(

n− 1
i + j − 1

)(
i + j − 1
j − 1

)
.

This allows us to obtain the formula in the statement, and the proof is complete. �
Propositions 3.1 and 3.2 allow us to recover the expression in Theorem 2.2 as follows. 

First, decompose the expression in Proposition 3.2 into S1 and S2:

W
(2)
n,k =

S1︷ ︸︸ ︷
�(2n−k−2)/2�∑

i=max(n−k−2,0)

k−n+i+2∑
j=0

(
n− 1
i + j

)(
i + j

j

)
(−1)j

[
n− i− j

k − n + i + 2 − j

]

+
�(2n−k−2)/2�∑

i=max(n−k−1,0)

k−n+i+2∑
j=1

(
n− 1

i + j − 1

)(
i + j − 1
j − 1

)
(−1)j

[
n− i− j

k − n + i + 2 − j

]
︸ ︷︷ ︸

S2

,

and set u = j − 1 in S2 to obtain

S2 = −
�(2n−k−2)/2�∑

i=max(n−k−1,0)

k−n+i+1∑
u=0

(
n− 1
i + u

)(
i + u

u

)
(−1)u

[
n− i− u− 1

k − n + i− u + 1

]
.

Using Equation (7), we note that S2 = −W
(1)
n,k, so Wn,k = W

(1)
n,k +W

(2)
n,k = S1. If we then 

set � = n − i − j − 1 in S1, we obtain

Wn,k =
min(n−1,k+1)∑

�=0

min(n−1−�,�(k+1−�)/2�)∑
j=max(�(k−2�)/2�,0)

(
n− 1
�

)(
n− 1 − �

j

)
(−1)j

[
� + 1

k − �− 2j + 1

]
,

and the fact that s(n, k) = (−1)n−k
[ n
k

]
yields the formula in Theorem 2.2.

4. Combinatorial proof of the recurrence relations

We now turn to the recurrence relations in Theorem 2.3. We will find it convenient 
to introduce the following additional notation:

Sn,k = {π ∈ Sn | pexc(π) = k} (so Wn,k = |Sn,k|); and

Sn,k,i = {π ∈ Sn,k | πi = i}.
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4.1. Proof of Equation (3)

Portier and Vaughan [18] prove the recurrence relation in Equation (3) using a gener-
ating function technique. We give here a direct combinatorial proof, again distinguishing 
between permutations that fix the first element and those that do not.

Proof. Let n ≥ 1 and k such that 3 ≤ k ≤ 	3(n− 1)/2
 be fixed.

1. permutations π in Sn,k with π1 �= 1: we compute W (2)
n,k by summing over all permu-

tations π which are at distance k and verify π1 = i for a given i ∈ {2, 3, . . . , n}. For 
a given i verifying 2 ≤ i ≤ n, we introduce the following mappings:

φi : {π ∈ Sn,k | π1 = i} → Sn,k−1,i : π 
→ σ = π ◦ (1, i),

ψi : Sn,k−1,i → Sn−1,k−1 : σ 
→ τ = red(dcd(σ) \ (i)).

Both mappings are bijective and allow us to associate any element π ∈ Sn,k with 
π1 = i to an element τ = ψi(φi(π)) ∈ Sn−1,k−1. Therefore,

|{π ∈ Sn,k | π1 = i}| = Wn−1,k−1. (8)

Since this holds for every i such that 2 ≤ i ≤ n, we obtain

W
(2)
n,k = |{π ∈ Sn,k | π1 �= 1}| = (n− 1)Wn−1,k−1, (9)

which in turn yields

Wn,k = W
(1)
n,k + W

(2)
n,k = W

(1)
n,k + (n− 1)Wn−1,k−1. (10)

2. permutations π in Sn,k with π1 = 1: in order to compute W (1)
n,k, we further distinguish 

permutations in Sn,k,1 based on the value of their last element. More precisely, for 
i = 2, 3, . . . , n, let W (1,i)

n,k denote the number of permutations π in Sn,k,1 with πn = i. 
We have

W
(1)
n,k = W

(1,n)
n,k +

n−1∑
i=2

W
(1,i)
n,k .

We first note that W (1,n)
n,k = W

(1)
n−1,k, since any permutation π ∈ Sn,k,1 with πn = n

can be bijectively mapped onto a permutation τ ∈ Sn−1,k,1 by deleting πn = n.
For i ∈ {2, 3, . . . , n −1}, we will next compute W (1,i)

n,k . Let π ∈ Sn,k,1 be a permutation 
with πn = i. Then deleting π1 = 1 and renaming element n into 1 maps π bijectively 
onto a permutation τ ∈ Sn−1 with τ1 = i and having the same cycle structure as 
π except for the deleted singleton (1). Using Equation (2), we can easily see that 
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pexc(τ) = k− 2, so τ ∈ Sn−1,k−2 and Equation (8) implies that the number of such 
permutations τ equals Wn−2,k−3. Therefore, the number of permutations π in Sn,k,1
with πn = i is (n − 2)Wn−2,k−3.

From the above discussion, we deduce

W
(1)
n,k = W

(1)
n−1,k + (n− 2)Wn−2,k−3. (11)

Using Equation (10) for W (1)
n−1,k we further obtain

W
(1)
n,k = Wn−1,k − (n− 2)Wn−2,k−1 + (n− 2)Wn−2,k−3,

from which we finally recover Equation (3) by replacing the left-hand side using again 
Equation (10). �
4.2. Proof of Equation (4)

Proof. Let again n ≥ 1 and k such that 3 ≤ k ≤
⌊

3(n−1)
2

⌋
be fixed. With the same 

notation as in the previous subsection, and using Equation (10), we see that it suffices 
to prove

W
(1)
n,k =

n−2∑
i=1

iWi,k−3. (12)

For 1 ≤ i ≤ n − 2, let Fi denote the set of permutations π ∈ Sn,k,1 with i + 2 =
argmax1≤j≤n{πj �= j}. We thus have πi+2 �= i + 2 and π fixes all elements from i + 3
to n. Note that max{j = 1, 2, . . . , n : πj �= j} /∈ {1, 2} since we assume k ≥ 3. Therefore,

W
(1)
n,k =

n−2∑
i=1

|Fi|. (13)

To any permutation π ∈ Fi, we can bijectively associate a permutation τ ∈ Si+1
obtained from π by deleting singletons (1), (i + 3), (i + 4), . . . , (n) and renaming element 
i + 2 into 1. The resulting permutation τ verifies τ1 �= 1, and pexc(τ) = k − 2 by 
Equation (2). Using this bijection and Equation (9), we obtain

|Fi| = Wi+1,k−2 −W
(1)
i+1,k−2 = iWi,k−3,

and Equation (13) allows us to complete the proof. �
We note that Qiu and Akl [19] gave an alternative combinatorial proof for Equa-

tion (11) and then derived Equation (12) by recurrence.
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4.3. Proof of Equation (5)

We give here a combinatorial proof for Equation (5), which was proved by Qiu and 
Akl [19] by induction, in a direct computational manner.

Proof. For every i such that 1 ≤ i ≤ k + 1, we let Bi = Sn+k+1,k,n+i. We first prove 
that

Wn+k+1,k = |B1 ∪B2 ∪ · · · ∪Bk+1| . (14)

To achieve this, we show that any permutation π ∈ Sn+k+1,k fixes at least one ele-
ment among n + 1, n + 2, . . . , n + k + 1, and therefore π ∈

⋃k+1
i=1 Bi, which will imply 

Equation (14).

• If π1 = 1, from Equation (2) we deduce c1(π) = n + 1 + c≥2(π) ≥ n + 1. Therefore, 
at least one element among n + 1, n + 2, . . . , n + k + 1 must be a singleton.

• If π1 �= 1, then Equation (2) implies c1(π) = n + c≥2(π) − 1 ≥ n. Since 1 is not a 
singleton, there must also be at least one singleton among the elements n + 1, n +
2, . . . , n + k + 1.

Since the roles of the elements n + 1, . . . , n + k + 1 are perfectly interchangeable, 
we have |Bj1 ∩ Bj2 ∩ · · · ∩ Bji | = |B1 ∩ B2 ∩ · · · ∩ Bi|, for every j1, j2, . . . , ji such that 
1 ≤ j1 < j2 < · · · < ji ≤ n and every i such that 1 ≤ i ≤ k + 1. From Equation (14) and 
the inclusion–exclusion rule, we deduce

Wn+k+1,k =
k+1∑
i=1

(−1)i+1
(
k + 1
i

)
|B1 ∩B2 ∩ · · · ∩Bi|.

In order to prove Equation (5), it must be noted that for every i such that 1 ≤ i ≤
k + 1:

|B1 ∩B2 ∩ · · · ∩Bi| = Wn+k+1−i,k. (15)

Indeed, for every i such that 1 ≤ i ≤ k + 1, we can define the following bijection,

ξi : B1 ∩B2 ∩ · · · ∩Bi → Sn+k+1−i,k

: π 
→ τ = red(dcd(π) \ {(n + 1), . . . , (n + i)}),

which proves Equation (15). �
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5. Generating function, mean and variance of the distance distribution

We obtain in this section expressions for the mean μn and the variance σ2
n of the 

prefix exchange distance distribution. More precisely, for a uniform random permutation 
π in Sn, we have P(pexc(π) = k) = Wn,k/n! and

μn = E(pexc(π)) = 1
n!

∞∑
k=0

kWn,k,

σ2
n = Var(pexc(π)) = 1

n!

∞∑
k=0

k2Wn,k − μ2
n.

We start by computing the ordinary generating function

Wn(x) =
∞∑
k=0

Wn,kx
k.

As is well-known (see e.g. Wilf [24]), the mean and the variance can be obtained by 
derivating Wn(x):

μn = W ′
n(1)
n! ; (16)

σ2
n = W ′′

n (1)
n! + μn − μ2

n = W ′′
n (1)
n! − μn(μn − 1). (17)

5.1. The generating function

We give here an alternative proof of a formula known to Portier and Vaughan [18]
for computing the ordinary generating function Wn(x) of the sequence (Wn,k)k≥0. Our 
proof uses Theorem 2.2 as a starting point, whereas Portier and Vaughan [18] (with 
subsequent corrections by Shen and Qiu [21]) first computed the generating function, 
then used it to derive the expression in Theorem 2.2.

Theorem 5.1. The ordinary generating function for the prefix exchange distance distri-
bution is given, for every x ∈ C, by the following formula:

Wn(x) =
n−1∑
i=0

(
n− 1
i

)
(1 − x2)n−1−ixi

i∏
j=1

(x + j). (18)

Proof. Let n ≥ 1 be fixed. Interchanging the order of summation in the formula of 
Theorem 2.2 yields

Wn(x) =
n−1∑(

n− 1
i

) n−1−i∑ (
n− 1 − i

t

) 2t+2i∑
s(i + 1, k − i + 1 − 2t)(−1)k+2−txk,
i=0 t=0 k=2t+i−1
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with the convention s(1, −1) = 0. Given i and t such that 0 ≤ i ≤ n − 1 and 0 ≤ t ≤
n − i − 1, the bounds on k come from the conditions �k−2i

2 � ≤ t ≤ 	k+1−i
2 
 appearing in 

Theorem 2.2. Setting j = k − 2t − i + 1, we obtain

Wn(x)

=
n−1∑
i=0

(
n− 1
i

) n−1−i∑
t=0

(
n− 1 − i

t

)
(−1)tx2t+i−1

i+1∑
j=0

s(i + 1, j)(−1)i+1+jxj

=
n−1∑
i=0

(
n− 1
i

) n−1−i∑
t=0

(
n− 1 − i

t

)
(−1)tx2t+i−1

i+1∑
j=0

[
i + 1
j

]
xj

=
n−1∑
i=0

(
n− 1
i

) n−1−i∑
t=0

(
n− 1 − i

t

)
(−1)tx2t+i−1xi+1 (using Equation (1))

=
n−1∑
i=0

(
n− 1
i

)
xi−1xi+1

n−1−i∑
t=0

(
n− 1 − i

t

)
(−1)tx2t.

The expression in the statement then follows from Newton’s binomial formula, with the 
convention that 

∏0
j=1(x + j) = 1. �

5.2. Mean and variance of the distance distribution

Let π be a uniform random permutation in Sn. We will derive expressions for its 
mean μn and variance σ2

n which will involve the n-th harmonic number Hn =
∑n

k=1 1/k.
Let n ≥ 3. Using Equation (18), we can write:

Wn(x) =
n−1∏
j=1

[x(x + j)] + (n− 1)(1 − x2)
n−2∏
j=1

[x(x + j)] + g(x) + (1 − x2)3h(x), (19)

where h(x) is some polynomial function and

g(x) = (n− 1)(n− 2)
2 (1 − x2)2

n−3∏
j=1

[x(x + j)].

5.2.1. Computation of the mean
We now derive an expression for the expected prefix exchange distance. We note that 

the value of μn can be obtained as a particular case of Theorem 6.1, p. 203 of Cheng et 
al. [7] by setting k = n − 1 in the formula they derive. We give here a direct proof of 
that expression, which provides elements that will prove useful in obtaining the variance 
of the prefix exchange distance.
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Theorem 5.2. Let n ≥ 1. The expected value μn of the prefix exchange distance for a 
uniform random permutation in Sn equals

μn = n + Hn − 4 + 2
n
. (20)

Proof. We evaluate the derivative of Wn(x) at x = 1 using the simplified expression in 
Equation (19). For n ≥ 3, we have

W ′
n(x) =

n−1∑
i=1

2x + i

x(x + i)

n−1∏
j=1

[x(x + j)] + (n− 1)
(
−2x + (1 − x2)

n−2∑
i=1

2x + i

x(x + i)

)

×
n−2∏
j=1

[x(x + j)] + g′(x) + [(1 − x2)3h(x)]′.

When x = 1, both g′(x) and [(1 − x2)3h(x)]′ vanish, and we obtain:

W ′
n(1) = n!

n−1∑
i=1

i + 2
i + 1 − 2(n− 1)(n− 1)!

= n!
(
n− 1 +

n−1∑
i=1

1
i + 1

)
− 2(n− 1)(n− 1)!

= n!(n + Hn − 2) − 2(n− 1)(n− 1)!.

Using Equation (16), we deduce

μn = n + Hn − 2 − 2
(

1 − 1
n

)
= n + Hn − 4 + 2

n
.

Note that this expression remains valid for n = 1 and n = 2; the above assumption n ≥ 3
was forced on us by Equation (19). �
5.2.2. Computation of the variance

We will prove the following:

Theorem 5.3. Let n ≥ 2. The variance σ2
n of the prefix exchange distance for a uniform 

random permutation in Sn equals

σ2
n = Hn + 4

n
− 8

n2 −
n∑

j=1

1
j2 . (21)

Proof. We evaluate the second derivative of Wn(x) at x = 1. We first note that we can 
rewrite the previous expression for W ′

n(x) as
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W ′
n(x) =

{
n−1∑
i=1

2x + i

x(x + i) − 2(n− 1)
x + n− 1

}
n−1∏
j=1

[x(x + j)]

+ (n− 1)(1 − x2)
n−2∑
i=1

2x + i

x(x + i)

n−2∏
j=1

[x(x + j)] + g′(x) + [(1 − x2)3h(x)]′.

Using the fact that

2x + i

x(x + i) = 1
x

+ 1
x + i

and derivating a second time, we obtain

W ′′
n (x) =

{
−

n−1∑
i=1

(
1
x2 + 1

(x + i)2

)
+ 2(n− 1)

(x + n− 1)2

}
n−1∏
j=1

[x(x + j)]

+
{

n−1∑
i=1

(
1
x

+ 1
x + i

)
− 2(n− 1)

x + n− 1

}
n−1∑
k=1

(
1
x

+ 1
x + k

) n−1∏
j=1

[x(x + j)]

− 2(n− 1)x
n−2∑
i=1

(
1
x

+ 1
x + i

) n−2∏
j=1

[x(x + j)] + (1 − x2)u(x)

+ g′′(x) + [(1 − x2)3h(x)]′′,

where u(x) is some polynomial function. Since [(1 −x2)3h(x)]′′ vanishes when x = 1, we 
have

W ′′
n (1) =

{
−

n−1∑
i=1

(
1 + 1

(1 + i)2

)
+ 2(n− 1)

n2

}
n−1∏
j=1

(1 + j)

+
{

n−1∑
i=1

(
1 + 1

1 + i

)
− 2(n− 1)

n

}
n−1∑
k=1

(
1 + 1

1 + k

) n−1∏
j=1

(1 + j)

− 2(n− 1)
n−2∑
i=1

(
1 + 1

1 + i

) n−2∏
j=1

(1 + j).

Replacing 
∏n−1

j=1 (1 + j) with n! and 
∑n−1

i=1

(
1 + 1

1+i

)
with n + Hn − 2 yields

W ′′
n (1) = n!

⎧⎨
⎩−n + 2 + 2

n
− 2

n2 −
n∑

j=1

1
j2 +

(
n + Hn − 4 + 2

n

)
(n + Hn − 2)

⎫⎬
⎭

− 2(n− 1)(n− 1)!
(
n + Hn − 3 − 1

n

)
+ g′′(1).
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We must now compute g′′(1). We have, with f(x) being some polynomial function:

g′(x) = 2(n− 1)(n− 2)

⎧⎨
⎩−(1 − x2)xn−2

n−3∏
j=1

(x + j) + (1 − x2)2f(x)

⎫⎬
⎭ .

When derivating a second time and taking x = 1 we obtain

g′′(1) = 4(n− 2)(n− 1)!.

Injecting this expression in the previous formula for W ′′
n (1) and dividing by n! gives

W ′′
n (1)
n! = −n + 2 + 2

n
− 2

n2 −
n∑

j=1

1
j2 +

(
n + Hn − 4 + 2

n

)
(n + Hn − 2)

− 2
(

1 − 1
n

)(
n + Hn − 3 − 1

n

)
+ 4 − 8

n
.

Using Equation (17), we obtain that the variance of the distance distribution equals

σ2
n = −n + 6 − 6

n
− 2

n2 −
n∑

j=1

1
j2 +

(
n + Hn − 4 + 2

n

)
(n + Hn − 2)

− 2
(

1 − 1
n

)(
n + Hn − 3 − 1

n

)
−
(
n + Hn − 4 + 2

n

)(
n + Hn − 5 + 2

n

)

= −n + 6 − 6
n
− 2

n2 −
n∑

j=1

1
j2 +

(
n + Hn − 4 + 2

n

)(
3 − 2

n

)

− 2
(

1 − 1
n

)(
n + Hn − 3 − 1

n

)
,

which finally gives the formula in Equation (21). �
6. Asymptotic behaviour of the distance distribution

We now study asymptotic properties of the prefix exchange distance distribution, 
namely, the value of its mean and its variance as well as its convergence as n → ∞.

Proposition 6.1. We have the following asymptotics for the mean and the variance of the 
prefix exchange distribution when n is large:

μn = n + log n + γ − 4 + o(1);

σ2
n = logn + γ − π2

+ o(1),
6
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where γ ≈ 0.577 is the Euler–Mascheroni constant and o(1) denotes a sequence converg-
ing to 0 as n → ∞.

Proof. Immediate from Equations (20) and (21), using the well-known results (see, e.g., 
Graham et al. [13]):

Hn − log n −→ γ when n → ∞

and

∞∑
n=1

1
n2 = π2

6 . �

We further show that, for large n, the distribution of the prefix exchange distance 
for a uniform random permutation π ∈ Sn is approximately normal, with mean μn and 
variance σ2

n. More precisely, we prove the following:

Theorem 6.1. The normalised prefix exchange distance for a uniform random permuta-
tion π ∈ Sn, i.e.,

Dn = pexc(π) − μn

σn

converges in distribution, when n → ∞, to the standard normal distribution N (0, 1), 
which means that

P(a < Dn < b) −→ 1√
2π

b∫
a

e−x2/2dx

when n → ∞, for every real numbers a < b.

Remark 6.1. Using the asymptotics for μn and σ2
n derived in Proposition 6.1, the above 

convergence is equivalent to the following convergence in distribution

pexc(π) − n− logn√
log n

−→ N (0, 1) when n → ∞,

which means that the distribution of the prefix exchange distance for a uniform random 
permutation π ∈ Sn is asymptotically normal, with mean n + log n and variance logn.

Proof of Theorem 6.1. We will show that the sequence of characteristic functions of 
the random variables (Dn)n≥1 converges pointwise, when n → ∞, to the characteristic 
function of the standard normal distribution, given by ϕ(t) = e−t2/2. Lévy’s convergence 
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theorem (see e.g. Billingsley [4]) will then imply that the sequence (Dn)n≥1 converges in 
distribution to the standard normal distribution N (0, 1).

Let ϕn denote the characteristic function of the random variable Dn, defined for t ∈ R

by ϕn(t) = E(eitDn). We have

ϕn(t) = e−
itμn
σn

∞∑
k=0

e
itk
σn P(pexc(π) = k).

Since π in chosen uniformly at random in Sn, we have

P(pexc(π) = k) = Wn,k

n! ,

which yields

ϕn(t) = e−
itμn
σn

Wn(e
it
σn )

n! , (22)

where Wn(·) is the generating function obtained in Equation (18). For every x ∈ C, 
Equation (18) reads

Wn(x) =
n−1∑
k=0

(n− 1)!
(n− k − 1)!k! (1 − x2)n−1−kxk

k∏
j=1

(x + j). (23)

Equations (22) and (23) then yield, for any t ∈ R:

ϕn(t) = e−
itμn
σn

1
n

n−1∑
k=0

e
itk
σn

(1 − e
2it
σn )n−k−1

(n− k − 1)!

∏k
j=1(e

it
σn + j)

k! .

We will show that the dominant term is obtained for k = n − 1 and converges to 
e−t2/2 when n → ∞, while all other terms vanish at the limit. To that end, let us isolate 
in ϕn(t) the term obtained for k = n − 1 (which we denote An) and let Rn denote the 
sum of all other terms; we obtain:

ϕn(t) = An + Rn, (24)

with

An = exp
(
− it(μn − n + 1)

σn

) ∏n−1
j=1 (e

it
σn + j)

n! (25)

and
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|Rn| ≤
1
n

n−2∑
k=0

|1 − e
2it
σn |n−k−1

(n− k − 1)!

∏k
j=1(1 + j)

k! =
n−2∑
k=0

k + 1
n

|1 − e
2it
σn |n−k−1

(n− k − 1)! ,

using the fact that |eix| = 1, for x ∈ R.
Let us first show that Rn converges to 0 when n → ∞. Setting j = n − k − 1 in the 

above inequality, we obtain:

|Rn| ≤
n−1∑
j=1

|1 − e
2it
σn |j

j! ≤
∞∑
j=1

|1 − e
2it
σn |j

j! = exp(|1 − e
2it
σn |) − 1,

using the MacLaurin series, and therefore Rn −→ 0 as n → ∞.
To show that ϕn(t) −→ e−t2/2, in light of Equation (24), we must check that

An = exp
(
− it(μn − n + 1)

σn

) ∏n−1
j=1 (e

it
σn + j)

n! −→ e−t2/2.

Note that the product 
∏n−1

j=1 (e
it
σn + j) can be written as a ratio of two Gamma func-

tions. We recall that for z ∈ C with Re(z) > 0, the Gamma function is defined as

Γ(z) =
∞∫
0

xz−1e−xdx.

By integration by parts, it is easy to see that the Gamma function satisfies the recurrence 
relation Γ(z + 1) = zΓ(z), which implies, in particular, that for n ∈ N

∗ we have Γ(n) =
(n − 1)!.

The same recurrence relation allows us to write:

n−1∏
j=1

(e
it
σn + j) = Γ(n + e

it
σn )

Γ(e
it
σn )

,

for n sufficiently large to have Re(e
it
σn ) > 0.

We further use the following asymptotic approximation (see e.g. Tricomi and Erdé-
lyi [23]):

Γ(n + eix)
n! = neix−1(1 + o(1)),

for x ∈ R and n = 2, 3, . . ., to deduce

∏n−1
j=1 (e

it
σn + j)

n! = Γ(n + e
it
σn )

it
σ

= ne
it
σn −1

it
σ

(1 + o(1)).

n!Γ(e n ) Γ(e n )
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As a consequence, and based on the asymptotic approximation of μn from Proposi-
tion 6.1, we deduce from Equation (25) that for n → ∞:

An = exp
(
− it logn

σn

)
ne

it
σn −1

Γ(e
it
σn )

(1 + o(1)). (26)

We further write

ne
it
σn −1 = exp

(
log

(
ne

it
σn −1

))
= exp

(
(e

it
σn − 1) logn

)
.

The second order series expansion of the exponential, together with the asymptotic 
approximation of σ2

n from Proposition 6.1 yield

e
it
σn − 1 = it

σn
− t2

2σ2
n

+ o

(
1

log n

)
,

and

ne
it
σn −1 = exp

(
it logn
σn

− t2

2

)
(1 + o(1)).

Further replacing in Equation (26) implies

An = exp
(
− t2

2

)
(1 + o(1)).

We have also used the fact that, by continuity, the denominator Γ(e
it
σn ) converges to 

Γ(1) = 1 as n → ∞. Since ϕn(t) = An + Rn and Rn −→ 0, it finally follows that ϕn(t)
converges to e−t2/2 as n → ∞, which ends the proof. �
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