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Abstract. We investigate a variant of the so-called Internet Shopping
problem introduced by Blazewicz et al. (2010), where a customer wants
to buy a list of products at the lowest possible total cost from shops which
offer discounts when purchases exceed a certain threshold. Although the
problem is NP-hard, we provide exact algorithms for several cases, e.g.
when each shop sells only two items, and an FPT algorithm for the num-
ber of items, or for the number of shops when all prices are equal. We
complement each result with hardness proofs in order to draw a tight
boundary between tractable and intractable cases. Finally, we give an
approximation algorithm and hardness results for the problem of max-
imising the sum of discounts.

1 Introduction

Blazewicz et al. [3] introduced and described the Internet Shopping problem
as follows: given a set of shops offering products at various prices and the delivery
costs for each set of items bought from each shop, find where to buy each product
from a shopping list at a minimum total cost. The problem is known to be NP-
hard in the strong sense even when all products are free and all delivery costs
are equal to one, and admits no polynomial (c ln n)-approximation algorithm
(for any 0 < c < 1) unless P = NP.

A more realistic variant takes into account discounts offered by shops in some
cases. These could be offered, for instance, when the shopper’s purchases exceed
a certain amount, or in the case of special promotions where buying several items
together costs less than buying them separately. Blazewicz et al. [4] investigated
such a variant, which features a concave increasing discount function on the
products’ prices. They showed that the problem is NP-complete in the strong
sense even if each product appears in at most three shops and each shop sells
exactly three products, as well as in the case where each product is available
at three different prices and each shop has all products but sells exactly three
of them at the same value. A variant where two separate discount functions
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are taken into account (one for the deliveries, the other for the prices) was also
recently introduced and studied by Blazewicz et al. [5].

In this work, we investigate the case where a shopper aims to buy n books
from m shops with free shipping; additionally, each shop offers a discount when
purchases exceed a certain threshold (discounts and thresholds are specific to
each shop). We show that the associated decision problem, which we call the
Clever Shopper problem, is already NP-complete when only two shops are
available, or when all books are available from two shops and each shop sells
exactly three books. We also obtain parameterised hardness results: namely,
that Clever Shopper is W[1]-hard when the parameter is m or the number of
shops in a solution, and that it admits no polynomial-size kernel. On the positive
side, we give a polynomial-time algorithm for the case where every shop sells at
most two books, an XP algorithm for the case where few shops sell books at
small prices, an FPT algorithm with parameter n, and another FPT algorithm
with parameter m.

Let us now formally define Clever Shopper. For n ∈ N, let [n] =
{1, 2, . . . , n}. Let B be a set of books to buy, S be a set of shops; E ⊆ B × S
encodes the availability of the books in the shops, and w : E → N encodes the
prices. A subset E′ ⊆ E describes from which shop each book should be bought;
each book is covered exactly once (i.e., any b ∈ B has degree 1 in E′). A discount
ds ∈ R

+ is associated to each shop s and offered when a threshold ts ∈ R
+ is

reached, which is formally defined using the following threshold function:

δ(s,E′, ds, ts) =
{

ds if
∑

(b,s)∈E′ w(e) ≥ ts,

0 otherwise.

We refer to the function D that maps each shop s to the pair (ds, ts) as the
discount function. The problem we study is formally stated below, and gener-
alises well-studied problems such as bin covering [1] and H-index manipu-
lation [12].

Clever Shopper

Input: an edge-weighted bipartite graph G = (B ∪ S,E,w); a discount func-
tion D ; a bound K ∈ N.

Question: is there a subset E′ ⊆ E that covers each element of B exactly once
and such that

∑
e∈E′ w(e) − ∑

s∈S δ(s,E′, ds, ts) ≤ K?

2 Hardness Results

We prove in this section several hardness results under various restrictions, both
with regards to classical complexity theory and parameterised complexity theory.
We show that Clever Shopper is NP-complete even if there are only two shops
to choose from. For this first hardness result, we need book prices to be encoded
in binary (i.e. they can be exponentially high compared to the input size).

Proposition 1. Clever Shopper is NP-complete in the weak sense ( i.e.,
prices are encoded in binary), even when |S| = 2.
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Proof (reduction from Partition). Recall the well-known NP-complete
Partition problem [11]: given a finite set A and a size ω(a) ∈ N for each ele-
ment in A, decide whether there exists a subset A′ ⊆ A such that

∑
a∈A′ ω(a) =∑

a∈A\A′ ω(a).
Let I = (A,ω) be an instance of Partition, and T =

∑
a∈A ω(a). We obtain

an instance I ′ of Clever Shopper as follows: introduce two shops s1 and s2
with (ds1 , ts1) = (ds2 , ts2) = (1, T/2). Each item a ∈ A is a book that shops s1
and s2 sell at the same price — namely, ω(a). It is now clear that there exists
a subset A′ ⊆ A such that

∑
a∈A′ ω(a) =

∑
a∈A\A′ ω(a) if and only if all books

can be purchased for a total cost of T − 2. �	
This NP-hardness result allows arbitrarily high prices (the reduction from

Partition requires prices of the order of 2|B|). In a more realistic setting, we
might assume a polynomial bound on prices, i.e., they can be encoded in unary.
As we show below, the problem remains hard for a few shops in the sense of W[1]-
hardness. We complement this result with an XP algorithm in Proposition 7.

Proposition 2. Clever Shopper is W[1]-hard for m = |S| in the strong sense
( i.e., even when prices are encoded in unary).

Proof (reduction from Bin Packing). Recall the well-known Bin Packing prob-
lem: given n items with weights w1, w2, . . . , wn and m bins with the same given
capacity W , decide whether each item can be assigned to a bin so that the total
weight of the items in any bin does not exceed W . Bin Packing is NP-complete
in the strong sense and W[1]-hard for parameter m, even when

∑n
i=1 wi = mW

and all weights are encoded in unary [10].
We build an instance I of Clever Shopper from an instance of Bin

Packing with the aforementioned restrictions as follows. Create m identical
shops, each with ts = W and ds = 1. Create n books, where book i is available
in every shop at price wi. The budget is m(W − 1). In other words, any solution
requires to obtain the discount from every shop, which is only possible if pur-
chases amount to a total of exactly W per shop before discount. Therefore, the
solutions to I correspond exactly to the solutions of the original instance of Bin
Packing. �	

We can obtain another hardness result under the assumption that all books
are sold at a unit price. Here we cannot bound the total number of shops (we give
an FPT algorithm for parameter m in Proposition 8 in that setting), but only
the number of chosen shops (i.e., shops where at least one book is purchased).

Proposition 3. Clever Shopper with unit prices is W[1]-hard for the param-
eter “ number of chosen shops”.

Proof (reduction from Perfect Code). Given a graph G = (V,E) and a pos-
itive integer k, Perfect Code asks for a size-k subset V ′ ⊆ V such that for
each vertex u ∈ V there is precisely one vertex in N [v] ∩ V ′ (where N [v] is the
closed neighbourhood of v, i.e., v and its adjacent vertices, as opposed to the



56 L. Bulteau et al.

u1

u2

u3

u4

u5

b1

s1

b2 s2

s3 b3

s4

b4

b5

s5

1

1

1

1 1
1

1

1

1
1 1

1

1

1

1

1

1

Fig. 1. Reducing Perfect Code to Clever Shopper. Left: the input graph with a
size-2 perfect code (bold). Right: the corresponding bipartite graph and a solution with
total cost 5 − 2 = 3 (bold).

open neighbourhood N(v) = N [v]\{v}). This problem is known to be W[1]-hard
for parameter k [7].

Let I = (G = (V,E), k) be an instance of Perfect Code. Write V =
{u1, u2, . . . , un}. We obtain an instance I ′ of Clever Shopper as follows. Let
us first define a bipartite graph G′ = (B ∪ S,E′) where B = {bi : ui ∈ V },
S = {si : ui ∈ V } and E′ = {{bj , si} : uj ∈ NG[ui]}. All shops sell books
at a unit price. As for the discount function, for each shop si ∈ S we have
D(si) = (1, dG(ui) + 1) (i.e., a unit discount will be applied, from dG(ui) + 1 of
purchase). Figure 1 illustrates the construction.

We claim that there exists a size-k perfect code for G if and only if all books
can be bought for a total cost of n − k.

⇒ Let V ′ ⊆ V be a size-k perfect code in G. For every ui ∈ V , let upc(i) be the
unique vertex in N [v] ∩ V ′ (pc is well-defined since V ′ is a perfect code). Then
buying each book bi ∈ B at shop bpc(i) yields a solution for I ′, and it is simple
to check that its cost is n − k.
⇐ Suppose that all books can be bought for a total cost of n − k. Since n

books must be bought at unit price and shops only offer a unit discount, k
shops must be chosen in the solution. Let S′ ⊆ S denote these k shops. Since
D(si) = (1, dG(ui) + 1) for each shop si ∈ S, we conclude that for each book
bi ∈ B there is precisely one shop in N [bi] ∩ S′. Then {ui : si ∈ S′} is a size-k
perfect code in G.

Note that the number of visited shops corresponds exactly to the total dis-
count received (i.e. to parameter k in the reduction). �	

We now prove1 the non-existence of polynomial kernels (under standard com-
plexity assumptions) for Clever Shopper parameterised by the number of
books. To this end, we use the or-composition technique [6]: given a problem
P and a parameterised problem Q, an or-composition is a reduction taking t
instances (I1, . . . , It) of P, and building an instance (J, k) of Q, with k bounded

1 Details will appear in the full version.
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by a polynomial on maxt′≤t |It′ | + log t, such that (J, k) is a yes-instance if and
only if there exists t′ ≤ t such that It′ is a yes-instance. If P is NP-hard, then
Q does not admit a polynomial kernel unless NP ⊆ coNP/poly [6].

Proposition 4. Clever Shopper admits no polynomial kernel unless NP ⊆
coNP/poly.

3 Positive Results

We now give exact algorithms for Clever Shopper: a polynomial-time algo-
rithm for the case where every shop sells at most two books, and three param-
eterised algorithms based respectively on the number of books, the number of
shops, and a bound on the prices.

We give a polynomial time algorithm for the case where each shop sells at
most two books. As we shall see in Sect. 4, this bound is best possible. Its running
time is dominated by the time required to find a maximum matching in a graph
with |B ∪ S| vertices.

Proposition 5. Clever Shopper is in P if every shop sells at most two books.

Proof. Let I be an instance of Clever Shopper given by an edge-weighted
bipartite graph G = (B ∪ S,E,w) and a pair (ds, ts) for each s ∈ S, where
ds, ts ∈ R

+. Vertices in S (resp. in B) have degree at most 2 (resp. at least
1). Note that vertices in S can be made to have degree exactly 2, by adding
dummy edges with arbitrarily high costs, with no impact on the solution. For
b ∈ B, let p(b) be the cheapest available price for book b (discount excluded),
i.e., p(b) = min{w({b, s}) | s ∈ S}.

Construct a new (non-bipartite) graph G′ = (B ∪ S,E′, w′), as follows: for
every shop s ∈ S, let {b1, b2} = NG(s) (i.e., the two books available at shop s).

– For each i ∈ {1, 2}, if w({bi, s}) ≥ ts, then add an edge {bi, s} to E′ with
weight w′({bi, s}) = ds + p(bi) − w({bi, s}).

– If w({b1, s}) + w({b2, s}) ≥ ts, add an edge {b1, b2} to E′ with weight
w′({b1, b2}) = ds + p(b1) − w({b1, s}) + p(b2) − w({b2, s}). If edge {b1, b2}
existed already, keep only the one with maximum weight.

Note that edges with negative weights may remain: they may be safely
ignored, but we keep them to avoid case distinctions in the rest of this proof.
Figure 2 illustrates the construction. Since a maximum weight matching for G′

can be found in polynomial time [8], it is now enough to prove the following
claim: G′ admits a matching of weight at least W if and only if instance I of
Clever Shopper admits a solution of total cost at most

∑
b∈B p(b) − W .

⇐ Assume that instance I admits a solution E∗ ⊆ E of total cost
∑

b∈B p(b)−
W . Note that W ≥ 0 (the sum of the minimum prices of the books is an upper
bound of the optimal solution). We build a matching M of G′ as follows. Let
s ∈ S be any discount shop, i.e., a shop whose discount is claimed, and let b1
and b2 be its neighbours. Then at least one of them has to be bought from s to
get the discount.
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Fig. 2. Each shop offers a discount of 3 on a purchase of value ≥10. Bold edges indicate
how to obtain optimal discounts: buy book b1 from shop s1, book b2 from shop s3, and
books b3 and b4 from shop s4. The remaining books are bought at their cheapest
available price (so here we buy b5 from s5). Our clever customer used the discounts to
buy all books for 6 less than if she had bought each book at its lowest price: 3 for b1,
1 for b2, 2 for b3 and b4 together.

– If {b1, s} ∈ E∗ and {b2, s} /∈ E∗, add {b1, s} to M . The amount spent at this
shop is w({b1, s}) − ds = p(b1) − w′({b1, s}).

– Similarly, if {b2, s} ∈ E∗ and {b1, s} /∈ E∗, add {b2, s} to M . The amount
spent at this shop is w({b2, s}) − ds = p(b2) − w′({b2, s}).

– Finally, if {b1, s} ∈ E∗ and {b2, s} ∈ E∗, then add {b1, b2} to M . The amount
spent at this shop is w({b1, s})+w({b2, s})−ds ≥ p(b1)+p(b2)−w′({b1, b2}).

Note that edges added to M are indeed present in E′, since in order to obtain the
discount from s, the book prices must satisfy the same condition as for creating
the corresponding edges. Note also that M is a matching, since each book can be
bought from at most one shop. Let B∗ be the set of books bought from discount
shops. Summing over all these shops, the total price paid for the books in B∗ is
at least

∑
b∈B∗ p(b) − ∑

e∈M w′(e).
The books in B \ B∗ do not yield any discount, so the total price paid

for them is at least
∑

b∈B\B∗ p(b). Overall, the cost of the books is at least∑
b∈B pb − ∑

e∈M w′(e), therefore
∑

e∈M w′(e) ≥ W .

⇒ Let M be a maximum weight matching of G′ of weight W . For each edge e ∈
M , let se be the shop for which e was introduced. For an edge e = {b, se} ∈ M ,
buy book b from shop se. The price is high enough to reach the threshold for the
discount, so we pay w({b, se})−de = p(b)−w′(e). For an edge e = {b1, b2} ∈ M ,
buy books b1 and b2 together from shop se. We again get the discount, and pay
w({b1, se}) + w({b2, se}) − de = p(b1) + p(b2) − w′(e). Note that for e 
= f ∈ M ,
se 
= sf , so we never count the same discount twice. For every other book, buy
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them at the cheapest possible price p(b), without expecting to get any discount.
The total price paid is at most

∑
b∈B p(b) − ∑

e∈M w′(e) =
∑

b∈B p(b) − W . �	
We now give a dynamic programming FPT algorithm with the number of

books as parameter.

Proposition 6. Clever Shopper admits an FPT algorithm for parameter n
with running time O(m3n).

Proof. Given j ∈ [m] and B′ ⊆ B, let pj(B′) be the price for buying all books
in B′ together from shop sj (discount included), and p≤j(B′) be the lowest
price that can be obtained when purchasing all books in B′ from a subset of
{s1, . . . , sj}. Our goal is to compute p≤m(B).

For j = 1, clearly p≤1(B′) = p1(B′) for every B′. For any other j, consider
an optimal way of buying the books in B′ from shops s1, . . . , sj . This way the
customer buys some (possibly empty) subset B′′ of books in sj , and the rest,
i.e., B′ \ B′′, at the lowest price from shops s1, . . . , sj−1. Therefore:

p≤j(B′) =
{

pj(B′) if j = 1,
minB′′⊆B′{pj(B′′) + p≤j−1(B′ \ B′′)} otherwise.

The values of pj(B′) for all j and B′ can be computed in O(m2n) time. Then
the dynamic programming table requires to enumerate, for all j, all subsets B′

and B′′ such that B′′ ⊆ B′ ⊆ B. Any such pair B′′, B′ can be interpreted as a
vector v ∈ {0, 1, 2}n, where i ∈ B′′ ⇔ vi = 2 and i ∈ B′ ⇔ vi ≥ 1. Therefore,
filling the dynamic table takes m3n steps, each requiring constant time. �	

As usual with dynamic programming, this algorithm yields the optimal price
that can be obtained. One gets the actual solution (i.e., where to buy each book)
with classic backtracing techniques.

The NP-hardness of Clever Shopper for two shops (using large prices,
encoded in binary) and its W[1]-hardness when the parameter is the number of
shops leave a very small opening for positive results: we can only consider small
prices (encoded in unary) for a constant number of shops. The following result
proves the tractability of this case.

Proposition 7. Clever Shopper admits an XP algorithm running in time
O(nmWm), where W is the sum of all the prices of the instance, n is the number
of books, and m is the number of shops.

Proof. We propose the following dynamic programming algorithm, which gener-
alises the classical pseudo-polynomial algorithm for Partition. Let i ∈ [n] and
ps ∈ [W] for s ∈ S. Define T [i, ps1 , . . . , psm ] as 1 if it is possible to buy books
1 to i by paying exactly ps (discount excluded) in shop s; and 0 otherwise. For
i = 0, T [0, ps1 , . . . , psm ] = 1 if and only if ps = 0 for all s ∈ S. The following
formula allows to fill the table recursively for i ≥ 1:

T [i, ps1 , . . . , psm ] = max
e∈E,i∈e

T [i − 1, p′
s1 , . . . , p

′
sm ] where p′

s =

{
ps − w(e) if s ∈ e,
ps otherwise.
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It remains to be checked whether the table contains a valid solution,
which requires us to take the discounts into account. Clearly, an entry
T [n, ps1 , . . . , psm ] = 1 leads to a solution if the following holds:

∑
s∈S

ps −
∑

s∈S,ps≥ts

ds ≤ K.

The running time corresponds exactly to the time needed to fill the table:
any of the nWm cells requires at most m look-ups, which yields the claimed
running time. �	
Proposition 8. Clever Shopper admits an FPT algorithm for parameter m
when all prices are equal.

Proof. We assume without loss of generality that all prices are equal to 1. Let
S′ ⊆ S. We write fS′ : B ∪ S → N for the following function:

fS′(b) = 1 for b ∈ B,

fS′(s) = ts for s ∈ S′,
fS′(s) = 0 for s /∈ S′.

We write dS′ =
∑

s∈S′ ds and tS′ =
∑

s∈S′ ts. An f-star subgraph of G =
(B ∪ S,E) is a subgraph G′ such that the degree of each vertex u ∈ B ∪ S is at
most f(u) in G′, and every connected component of G′ is isomorphic to K1,p for
some integer p.

Let I = (B∪S,E,w,D ,K) be an instance of Clever Shopper with w(e) =
1 for all e ∈ E. We show that I is a yes-instance if and only if there exists S′ ⊆ S
with |B| − dS′ ≤ K such that (B ∪ S,E) admits an fS′-star subgraph with tS′

edges. An FPT algorithm follows easily from this characterisation: enumerate all
subsets S′ of S in time 2|S|, and for each subset, compute a maximum fS′ -star
subgraph in time O(|E| log |B ∪ S|) [9].

⇒ Let E′ ⊆ E be a solution and S′ be the set of shops whose threshold ts is
reached. Since the total price is |B| − dS′ , we have |B| − dS′ ≤ K. Since every
weight equals 1, all vertices of S′ have degree at most ts in E′. Let E′′ ⊆ E′ be a
subset obtained by keeping exactly ts edges incident to each s ∈ S′ and no edge
incident to s /∈ S. Then E′′ is an fS′ -star subgraph of size tS′ .
⇐ Let G′ = (B ∪ S,E′) be an fS′ -star factor of G of size tS′ with S′ ⊆ S, and

|B| − dS′ ≤ K. The degree and size constraints force all vertices in S′ to have
degree exactly ts in G′. We build a solution as follows: for each book b ∈ B, if
E′ contains an edge (b, s) incident to b, then buy b from shop s, otherwise buy b
from any other shop. Overall, at least ts books are purchased from a shop s ∈ S′,
so the total price is at most |B| − dS′ . �	

4 Approximations

Since variants of Clever Shopper are, by and large, hard to solve exactly, it
is natural to look for approximation algorithms. However, our hardness proofs
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can be modified to imply the NP-hardness of deciding whether the total price
(including discounts) is 0 or more. For instance, in Proposition 1, we can set the
discounts to T/2 instead of 1, so the Partition instance reduces to checking
whether the optimal solution has cost 0. Therefore, we start with the following
bad news:

Corollary 1. Clever Shopper admits no approximation unless P=NP.

Since this result seems resilient to most natural restrictions on the input
structure (bounded prices, bounded degree, etc.), our proposed angle is to max-
imise the total discount rather than minimise the total cost. However, maximis-
ing the total discount is only relevant when the base price of the books is the
same in all solutions (otherwise the optimal solution might not be the one with
maximum discount), i.e., each book b has a fixed price wb, and w({b, s}) = wb

for every {b, s} ∈ E. We call this variant Max-Discount Clever Shopper.
This “fixed price” constraint is not strong (all reductions from Sect. 2 satisfy
it). In this setting, Proposition 1 shows that it is NP-hard to decide whether the
optimal discount is 1 or 2. This yields the following corollary:

Corollary 2. Max-Discount Clever Shopper is APX-hard: it does not
admit a (2 − ε)-approximation unless P=NP.

Whether or not Max-Discount Clever Shopper admits a fixed-ratio
approximation remains open.

Proposition 9. Max-Discount Clever Shopper is APX-hard even when
each shop sells at most 3 books, and each book is available in at most 2 shops.

Proof. We reduce from Max 3-Sat (the problem of satisfying the maximum
number of clauses in a 3-sat instance), known to be APX-hard when each literal
occurs exactly twice [2]. Let ϕ = C1 ∧ C2 ∧ · · · ∧ Cm be such a 3-CNF formula
over a set X = {x1, x2, . . . , xn} of boolean variables. For every 1 ≤ i ≤ m and
1 ≤ j ≤ 3, let �i,j be the j-th literal of clause Ci. We obtain an instance I of Max-
Discount Clever Shopper by first building a bipartite graph G = (B ∪S,E)
as follows (for ease of presentation, Ci, xi and �i,j will be used both to denote
respectively clauses, variables and literals in 3-CNF formula context, and the
corresponding vertices in G):

B = {�i,j : 1 ≤ i ≤ m and 1 ≤ j ≤ 3} ∪ {xi : 1 ≤ i ≤ n}
S = {Ci : 1 ≤ i ≤ m} ∪ {ti, fi : 1 ≤ i ≤ n}
E = E1 ∪ E2,p ∪ E2,n ∪ E3

where

E1 = {{�i,j , Ci} : 1 ≤ i ≤ m and 1 ≤ j ≤ 3}
E2,p = {{�i,j , ti} : 1 ≤ i ≤ m and �i,j is the positive literal xi}
E2,n = {{�i,j , fi} : 1 ≤ i ≤ m and �i,j is the negative literal xi}

E3 = {{xi, ti}, {xi, fi} : 1 ≤ i ≤ n}.
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Observe that each shop sells exactly 3 books and that each book is sold in exactly
2 shops. We now turn to defining the prices, the thresholds and the discounts.
All shops sell books at a unit price. For the shops Ci, 1 ≤ i ≤ m, a purchase
of value 1 yields a discount of 1. For the shops ti and fi, 1 ≤ i ≤ n, a purchase
of value 3 yields a discount of 2. This discount policy implies that, for every
1 ≤ i ≤ n, a customer cannot obtain a 2 discount both in shop ti and in shop fi
(this follows from the fact that the book xi is sold by both shops ti and fi).

First, it is easy to see that the largest discount that can be obtained is
2n + m (the upper bound is achieved by obtaining a discount in every shop Ci

for 1 ≤ i ≤ m, and in either the shop ti or the shop fi for 1 ≤ i ≤ n). On
the other side, for any truth assignment τ for ϕ satisfying k clauses, a 2n + k
discount can be obtained as follows.

– For any variable xi, 1 ≤ i ≤ n, if τ(xi) = false, then buy 3 books from
shop ti, and if τ(xi) = true then buy 3 books from shop fi. Intuitively, if a
variable is true, then all negative literals are “removed” by fi, and all positive
literals remain available for the corresponding clauses.

– For any clause Ci = �i,1 ∨ �i,2 ∨ �i,3 satisfied by the truth assignment τ , buy
book �i,j from shop Ci, where �i,j is a literal satisfying the clause Ci.

Then it follows that

opt(I) = 2n + opt(ϕ) = 3m/2 + opt(ϕ) (since 4n = 3m)
≤ 3 opt(ϕ) + opt(ϕ) (since 2 opt(ϕ) ≥ m)
≤ 4 opt(ϕ).

Suppose now that we buy all books in B for a total discount of k′. First, we
may clearly assume that k′ ≥ 2n since a total 2n discount can always be achieved
by buying 3 books either from shop ti or from shop fi, for every 1 ≤ i ≤ n.
Second, we may also assume that, for every 1 ≤ i ≤ n, we buy either exactly 3
books from shop ti or exactly 3 books from shop fi. Indeed, if there exists an
index 1 ≤ i ≤ n for which this is false, then buying either exactly 3 books from
shop ti or exactly 3 books from shop fi instead results in a total k′′ discount
with k′′ ≥ k′ (this follows from the fact that we can get a 2 discount from ti or
fi but only a 1 discount from any shop Cj , 1 ≤ j ≤ m). We now obtain a truth
assignment τ for ϕ as follows: for any variable xi, 1 ≤ i ≤ n, set τ(xi) = false
if we buy 3 books from shop ti, and set τ(xi) = true if we buy 3 books from
shop fi (the truth assignment τ is well-defined since, for 1 ≤ i ≤ n, we cannot
simultaneously buy 3 books from shop ti and 3 books from shop fi because of
book xi). Therefore, a clause Ci is satisfied by τ if and only if the corresponding
shop Ci contains at least one book li,j which is not bought from some other shop
ti or fi. If we let k stand for the number of clauses satisfied by τ , then we obtain
k ≥ k′ − 2n. It then follows that

opt(ϕ) − k = opt(I) − 2n − k ≤ opt(I) − 2n − k′ + 2n = opt(I) − k′.

Therefore, our reduction is an L-reduction (i.e., opt(I) ≤ α1 opt(ϕ) and opt(ϕ)−
k ≤ α2 (opt(I) − k′)) with α1 = 4 and α2 = 1. �	
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Proposition 10. Max-Discount Clever Shopper where each shop sells at
most k books admits a k-approximation.

Proof. Let Bs be the set of books sold by shop s. Our approximation algorithm
proceeds as follows: start with a set of selected shops S′ = ∅, a set of available
books B′ = B and sort the shops by decreasing value of ds. Then for each shop s,
let B′

s = Bs∩B′. If the books in B′
s are enough to get the discount (

∑
b∈B′

s
≥ ts),

then assign all books of B′
s to shop s, add s to S′ and set B′ = B′ \ B′

s. Finally,
assign the remaining books to arbitrary shops that sell them.

We now prove the approximation ratio. For any b ∈ B, if b ∈ B′
s for some

s ∈ S′ then let δ(b) = ds, and δ(b) = 0 otherwise. Thus, for any shop s ∈ S′,
ds = 1

|B′
s|

∑
b∈B′

s
δ(b) ≥ 1

k

∑
b∈B′

s
δ(b) due to the degree-k constraint. Note that

for each shop of S′, the amount spent at s is at least ts, so the total discount
obtained with this algorithm is D ≥ ∑

s∈S′ ds ≥ 1
k

∑
b∈B δ(b).

We now compare the result of the algorithm with any optimal solution. For
such a solution, let D∗ be its total discount, S∗ be the set of shops where pur-
chases reach the threshold, and, for any s ∈ S∗, let B∗

s be the (non-empty) set
of books purchased in shop s. Note that D∗ =

∑
s∈S∗ ds.

Consider a shop s ∈ S∗. We show that there exists a book b∗(s) ∈ B∗
s with

δ(b∗(s)) ≥ ds. If s ∈ S∗ ∩ S′, then we take b∗(s) to be any book in B∗
s . Either

b∗(s) ∈ B′
s, in which case δ(b∗(s)) = ds, or b∗(s) /∈ B′

s, in which case b∗(s) was
assigned by the algorithm to a shop with a larger discount, i.e., δ(b∗(s)) ≥ ds. If
s ∈ S∗ \ S′, since s /∈ S′, at least one book in B∗

s is not available at the time the
algorithm considers shop s; let b∗(s) be such a book. Since it is not available, it
has been selected as part of B′

s′ for some earlier shop s′ (i.e., ds ≤ ds′). Therefore,
b∗(s) ∈ B∗

s ∩ B′
s′ and δ(b∗(s)) = ds′ ≥ ds. Since the sets B∗

s are pairwise disjoint
for s ∈ S∗, we have

∑
s∈S∗ δ(b∗(s)) ≤ ∑

b∈B δ(b). Putting it all together, we
obtain:

D∗ =
∑
s∈S∗

ds ≤
∑
s∈S∗

δ(b∗(s)) ≤
∑
b∈B

δ(b) ≤ kD.

�	

5 Conclusion

We introduced the Clever Shopper problem, a variant of Internet Shopping
with free deliveries and shop-specific discounts based on shop-specific thresholds.
We proved a number of hardness results, both in the classical complexity set-
ting and from a parameterised complexity point of view. We also gave efficient
algorithms for particular cases where restrictions apply to the number of books,
the number of shops, or the nature of prices.

An interesting angle for future work is that of designing efficient exact algo-
rithms for the general cases in which our FPT algorithms are not sufficient. Fur-
thermore, it would be of interest to determine whether the Clever Shopper
problem is FPT for parameter maximum price + number of shops.
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