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Abstract. A number of fields, including genome rearrangements and
interconnection network design, are concerned with sorting permutations
in “as few moves as possible”, using a given set of allowed operations.
These often act on just one or two segments of the permutation, e.g. by
reversing one segment or exchanging two segments. The cycle graph of
the permutation to sort is a fundamental tool in the theory of genome
rearrangements. In this paper, we present an algebraic reinterpretation
of the cycle graph as an even permutation, and show how to reformulate
our sorting problems in terms of particular factorisations of the latter
permutation. Using our framework, we recover known results in a simple
and unified way, and obtain a new lower bound on the prefix transposition
distance (where a prefix transposition displaces the initial segment of a
permutation), which is shown to outperform previous results. Moreover,
we use our approach to improve the best known lower bound on the
prefix transposition diameter from 2n/3 to

⌊ 3n+1
4

⌋
.

1 Introduction

We study the problem of computing edit distances between permutations, i.e.
the minimum number of operations needed to transform a permutation into
another, using a given set of allowed operations. Those operations satisfy the
property that the induced edit distance between any two permutations π and σ
of the same set equals the distance between σ−1 ◦π and the identity permutation
ι = 〈1 2 · · · n〉, thereby allowing us to restrict our attention to sorting per-
mutations using a minimum number of allowed operations. Two areas in which
these problems have applications are the fields of genome rearrangements and
interconnection network design, which we briefly review below.

In genome rearrangements (recently surveyed in [1]), the permutation to sort
represents an ordering of genes in a given genome, and the allowed operations
model mutations that are known to actually occur in evolution. Rearrangements
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studied in that context include reversals [2], which reverse a segment of the per-
mutation, block-interchanges [3], which exchange two not necessarily contiguous
segments, and transpositions [4], which displace a block of contiguous elements.
While the complexity of the sorting and distance computation problems is known
for the first two operations (NP-hard for reversals [5] and polynomial for block-
interchanges [3]), it is open for transpositions, and the best polynomial time
approximation algorithm to date has ratio 11/8 [6].

In interconnection network design (see [7] for a thorough survey), permutations
stand e.g. for processors and form the vertex set of a graph whose edges corre-
spond to physical connections between two devices. One wants to build a graph
with small degree and small diameter, among other desirable properties, and this
is often done by choosing a set of allowed operations on permutations, then con-
necting two permutations if there is an allowed operation that transforms one into
the other [8]. In that setting, sorting algorithms for permutations correspond to
routing algorithms for the corresponding networks. Two kinds of operations that
received much attention in that context are prefix reversals [9], which reverse the
initial segment of the permutation, and prefix exchanges [10], which swap the first
element of the permutation with another element. Those operations gave birth to
the pancake network and star graph topologies, respectively, which are extensively
studied models in that field. We also mention prefix transpositions [11], which dis-
place the initial segment of the permutation; they bear little relevance with biolog-
ical problems, but they are hoped to shed light and give insight on the seemingly
challenging problem of sorting by transpositions.

The cycle graph is a ubiquitous structure in the field of genome rearrange-
ments. In this paper, we present a way of encoding the cycle graph as an even
permutation, inspired by a previous work of ours [12], and show how to refor-
mulate any sorting problem of the form described above in terms of partic-
ular factorisations of the latter permutation. We first illustrate the power of
our framework by recovering known lower bounds on the block-interchange and
transposition distances, and then use it to prove a new lower bound on the prefix
transposition distance. We prove that our lower bound always outperforms the
one proved in [11], and show experimentally that it is a significant improvement
over both that result and the only other known lower bound [13]. Finally, we
use this new result to improve the previously best known lower bound on the
maximal value of the prefix transposition distance from 2n/3 to

⌊3n+1
4

⌋
.

2 Notation and Definitions

2.1 Basic Permutation Group Theory

Let us start with a quick reminder of basic notions on permutations (for de-
tails, see e.g. [14]). The symmetric group Sn is the set of all permutations
of {1, 2, . . . , n}, together with the usual function composition ◦, applied from
right to left. Permutations are denoted by lower case Greek letters, typically
π = 〈π1 π2 · · · πn〉, with πi = π(i). The usual graph Γ (π) of the permutation
π contains an arc (i, j) whenever πi = j, and decomposes in a single way into
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disjoint cycles, leading to another notation for π based on its disjoint cycle de-
composition. For instance, when π = 〈4 1 6 2 5 7 3〉, the disjoint cycle notation is
π = (1, 4, 2)(3, 6, 7)(5) (notice the parentheses and the commas). As in [15], we
order the vertices of Γ (π) by positions. The number of cycles in Γ (π) is denoted
by c(Γ (π)), and the length of a cycle is the number of elements it contains. It is
common to drop the 1-cycles from that representation, and to call the permuta-
tion a k-cycle if the resulting decomposition consists of a single cycle of length
k > 1. A permutation π is even if the number of even cycles in Γ (π) is even or,
equivalently, if it can be expressed as a product of an even number of 2-cycles.
The alternating group An is the set of all even permutations in Sn. Finally, the
conjugate of a permutation π by a permutation σ, both in Sn, is the permutation
πσ = σ ◦ π ◦ σ−1. It has the same disjoint cycle decomposition as π, and can
be obtained, if π = (c1,1, c1,2, . . . , c1,�1) · · · (cm,1, cm,2, . . . , cm,�m), by replacing
each element in each cycle of π with the element onto which it is mapped by σ,
i.e. πσ = (σc1,1 , σc1,2 , . . . , σc1,�1

) · · · (σcm,1 , σcm,2 , . . . , σcm,�m
). All permutations

that have the same disjoint cycle decomposition form a conjugacy class (of Sn).

2.2 Genome Rearrangements and Prefix Operations

We recall a number of operations on permutations, starting with the most general
one, introduced in [3]. For any π in Sn, the block-interchange β(i, j, k, l) with
1 ≤ i < j ≤ k < l ≤ n+1 applied to π exchanges the closed intervals determined
respectively by i and j −1 and by k and l−1. It transforms π into π ◦β(i, j, k, l),
where β(i, j, k, l) is the following permutation:

(
1 · · · i − 1 i · · · j − 1 j j + 1 · · · k − 1 k · · · l − 1 l l + 1 · · · n

1 · · · i − 1 k · · · l − 1 j j + 1 · · · k − 1 i · · · j − 1 l l + 1 · · · n

)

.

Two particular cases of block-interchanges are of interest: when j = k, the re-
sulting operation exchanges two adjacent intervals, and is called a transposition,
denoted by τ(i, j, l); when j = i + 1 and l = k + 1, the resulting operation
swaps two not necessarily adjacent elements in respective positions i and k, and
is called an exchange, denoted by ε(i, k). Two generic problems are studied in
connection to these operations: the problem of finding a sequence of transfor-
mations that sorts a permutation π and is of the shortest possible length, and
the related problem of merely computing the length of such a sequence, called
the distance of π (with respect to the given operation). It is easily seen that the
sorting problem on π is equivalent to factorising π into the product of permu-
tations that are allowed transformations, provided that the inverse of an edit
operation is still an allowed edit operation (which is easily shown to be the case
for all operations considered in this paper). Indeed, any sorting sequence for π,
i.e. π ◦ x1 ◦ x2 ◦ · · · ◦ xt = ι, where xi belongs to the set S of allowed operations
for 1 ≤ i ≤ t, immediately yields the factorisation π = x−1

t ◦x−1
t−1 ◦ · · · ◦x−1

1 , and
vice versa. We denote bid(π), td(π) and exc(π) the block-interchange distance,
transposition distance and exchange distance of π, respectively. Moreover, the
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diameter of Sn with respect to a given set of edit operations is the maximal
value that the corresponding edit distance can reach.

The following traditional tool introduced by Bafna and Pevzner [4] has proved
most useful in the study of genome rearrangements. The cycle graph of π in Sn is
the bicoloured directed graph G(π), whose vertex set (π0 = 0, π1, . . . , πn, πn+1 =
n + 1) is ordered by positions, and whose arc set consists of:

– black arcs (πi, πi−1) for 1 ≤ i ≤ n + 1;
– grey arcs (πi, πi + 1) for 0 ≤ i ≤ n.

The set of black and grey arcs decomposes in a single way into alternating
cycles, i.e. cycles which alternate black and grey arcs, and we note the number
of such cycles c(G(π)). The length of an alternating cycle in G(π) is the number
of black arcs it contains, and a k-cycle in G(π) is an alternating cycle of length
k. Fig. 1 shows an example of a cycle graph, together with its decomposition
into a 4-cycle and a 2-cycle.

0 4 2 1 5 3 6

(a)

0 4 2 1 5 3 6 0 4 2 1 5 3 6

(b) (c)

Fig. 1. (a) The cycle graph of 〈4 2 1 5 3〉, (b) and (c) the two cycles in its decomposition

Setting i = 1 in the rearrangement operations presented above turns them
into “prefix rearrangements”. The corresponding “prefix distances” are defined
as before, and we denote ptd(π) and pexc(π) the prefix transposition distance and
prefix exchange distance of π, respectively. While the computational complexity
of sorting by transpositions or by prefix transpositions is unknown, a polynomial
time algorithm for sorting by prefix exchanges is known [10], as well as a formula
for computing the associated distance.

Theorem 1. [10] For any π in Sn, we have

pexc(π) = n + c(Γ (π)) − 2c1(Γ (π)) −
{

0 if π1 = 1,
2 otherwise,

where c1(Γ (π)) denotes the number of 1-cycles in Γ (π), or equivalently the num-
ber of fixed points of π.
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Dias and Meidanis [11] initiated the study of sorting by prefix transpositions,
and derived a lower bound on the corresponding distance using the following con-
cepts. Given a permutation π in Sn, build the permutation π̃ = 〈0 π1 · · · πn n+
1〉; a pair (π̃i, π̃i+1) with 0 ≤ i ≤ n is a prefix transposition breakpoint if
π̃i+1 �= π̃i + 1 or if i = 0, and an adjacency otherwise. The number of pre-
fix transposition breakpoints of π is denoted by ptb(π). Noting that a prefix
transposition can create at most two adjacencies and that ι is the only permuta-
tion with one prefix transposition breakpoint, they obtained the following lower
bound.

Lemma 1. [11] For any π in Sn:

ptd(π) ≥
⌈

ptb(π) − 1
2

⌉
. (1)

Finally, Chitturi and Sudborough [13] recently obtained new bounds on the
prefix transposition distance. They used the following concepts, based on per-
mutations of {0, 1, 2, . . . , n − 1} rather than {1, 2, . . . , n}. For a permutation π,
an ordered pair (πi, πi+1) is an anti-adjacency if πi+1 = πi − 1 (mod n). A strip
in a permutation π is a maximal interval of π that contains only adjacencies,
and a clan is a maximal interval of π that contains only anti-adjacencies. They
prove the following lower bound.

Lemma 2. [13] For any π in Sn, let Υ (π) denote the set of all clans of π of
length at least 3, and s(π) denote the number of strips of π. Then

ptd(π) ≥
s(π) +

∑
C∈Υ (π)(|C|−2)

3

2
. (2)

Using Lemma 2, Chitturi and Sudborough prove a lower bound of 2n/3 on the
prefix transposition distance of the reverse permutation 〈n n − 1 · · · 2 1〉, and
therefore on the prefix transposition diameter. They also prove an upper bound
on the prefix transposition diameter.

Theorem 2. [13] For all π in Sn, we have ptd(π) ≤ n − log8 n .

3 A General Lower Bounding Technique

In a previous paper [12], we introduced the following mapping:

f : Sn → An+1 : π 	→ π = (0, πn, πn−1, . . . , π1) ◦ (0, 1, 2, . . . , n) , (3)

which in particular maps ι onto ι = 〈0 1 2 · · · n〉. That mapping allowed us to
encode a cycle graph G(π) using an even permutation π, as illustrated by the
following example: let π = 〈4 2 1 5 3〉, whose cycle graph is depicted in Fig. 1.
Then

π = (0, 3, 5, 1, 2, 4) ◦ (0, 1, 2, 3, 4, 5) = (0, 2, 5, 3)(1, 4) ,

and the two disjoint cycles of π correspond to the two alternating cycles of G(π),
whose elements they list in the order they are encountered; indeed:
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1. the first cycle of G(π) (Fig. 1(b)) starts with 0, then visits 2 after following
a grey-black path (i.e. a grey arc followed by a black arc), then visits 5 after
following a grey-black path, and in the same way visits 3 after following a
grey-black path before finally going back to 0, which corresponds to the first
cycle of π;

2. the second cycle of G(π) (Fig. 1(c)) starts with 4, then visits 1 after following
a grey-black path, which corresponds to the second cycle of π.

Consequently, speaking about cycles of π, of Γ (π) or of G(π) is equivalent. We
will now demonstrate how f can be used to obtain bounds on sorting problems.
The following result expresses how the action of any rearrangement operation σ
on π is translated on π. In the following, we identify permutations in Sn with
their extended versions in Sn+1 (i.e. we identify π with 〈0 π1 π2 · · · πn〉).

Lemma 3. For all π, σ in Sn, we have π ◦ σ = σπ ◦ π .

Proof. The following relation will be useful:

π = (0, πn, πn−1, . . . , π1) ◦ π ◦ (0, 1, . . . , n) . (4)

By definition, we have:

π ◦ σ = (0, (π ◦ σ)n, (π ◦ σ)n−1, . . . , (π ◦ σ)1) ◦ (0, 1, . . . , n)
= (0, πσn , πσn−1 , . . . , πσ1 ) ◦ (0, 1, . . . , n)
= π ◦ (0, σn, σn−1, . . . , σ1) ◦ π−1 ◦ (0, 1, . . . , n)
= π ◦ (0, σn, σn−1, . . . , σ1) ◦ (0, 1, . . . , n) ◦ (0, 1, . . . , n)−1 ◦ π−1

◦(0, 1, . . . , n)

= π ◦ σ ◦ (π ◦ (0, 1, . . . , n))−1 ◦ (0, 1, . . . , n)

= π ◦ σ ◦
(
(0, πn, . . . , π1)−1 ◦ π

)−1 ◦ (0, 1, . . . , n) (using (4))

= π ◦ σ ◦ π−1 ◦ (0, πn, . . . , π1) ◦ (0, 1, . . . , n)
= π ◦ σ ◦ π−1 ◦ π . 
�

We are now ready to prove our main result.

Theorem 3. Let X be a subset of Sn whose elements are mapped by f onto
X ′ ⊆ An+1. Moreover, let C be the union of the conjugacy classes (of Sn+1) that
intersect with X ′; then for any π in Sn, any factorisation of π into t elements
of X yields a factorisation of π into t elements of C .

Proof. Induction on t. The base case is π ∈ X , and clearly π ∈ X ′ ⊆ C . For
the induction, let π = gt ◦ gt−1 ◦ · · · ◦ g1, where gi ∈ X for 1 ≤ i ≤ t, and let
σ = gt−1 ◦ · · · ◦ g2 ◦ g1 ; by Lemma 3, we have:

π = gt ◦ gt−1 ◦ · · · ◦ g2 ◦ g1 = gt ◦ σ = gt ◦ σ ◦ g−1
t ◦ gt .
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By induction, σ = g′t−1 ◦ g′t−2 ◦ · · · ◦ g′1 , where g′i ∈ C for 1 ≤ i ≤ t; therefore:

gt ◦ σ ◦ g−1
t = gt ◦ g′t−1 ◦ g′t−2 ◦ · · · ◦ g′1 ◦ g−1

t

= gt ◦ g′t−1 ◦ g−1
t︸ ︷︷ ︸

ht

◦ gt ◦ g′t−2 ◦ g−1
t︸ ︷︷ ︸

ht−1

◦gt ◦ · · · ◦ g−1
t ◦ gt ◦ g′1 ◦ g−1

t︸ ︷︷ ︸
h1

,

and h1, . . . , ht−1 ∈ C , which completes the proof. 
�
As we briefly explain before applying our method in the next section, Theorem 3
allows us to prove lower bounds on our sorting problems: indeed, as we explained
in Section 2.2, any sorting sequence of length t for π made of elements of X yields
a factorisation of π into the product of t elements (of X , provided X contains
both the transformations and their inverses, which is easily shown to be the case
for all operations considered in this paper), which can in turn be converted, as in
the proof of Theorem 3, into a factorisation of π into the product of t elements
of C . Therefore, the length of a shortest such factorisation of π into the product
of elements of C is a lower bound on the length of a factorisation of π into the
product of elements of X .

4 Recovering Previous Results

We illustrate how to use Theorem 3 to recover two previously known results on
bid and td. First, we need to characterise the image of a block-interchange by
our mapping.

Lemma 4. For any block-interchange β(i, j, k, l), we have

β(i, j, k, l) = (j − 1, l − 1) ◦ (i − 1, k − 1) .

Proof. Using (3) and the definition of a block-interchange, we have

(0, n, n − 1, . . . , l, j − 1, j − 2, . . . , i, k − 1, k − 2, . . . , j, l − 1, l − 2, . . . ,

k, i − 1, i − 2, . . . , 1) ◦ (0, 1, 2, . . . , n)
= (0)(1) · · · (i − 2)(i − 1, k − 1)(i)(i + 1) · · · (j − 2)(j − 1, l − 1)(j)

(j + 1) · · · (k − 2)(k)(k + 1) · · · (l − 2)(l)(l + 1) · · · (n)
= (j − 1, l − 1) ◦ (i − 1, k − 1) . 
�

Note that (j−1, l−1) and (i−1, k−1) might not be disjoint, since by definition of
β(i, j, k, l) we may have j = k (hence the use of ◦ in the expression of β(i, j, k, l)).
We can now recover a known lower bound on the block-interchange distance,
which is actually the exact distance [3].

Theorem 4. [3] For all π in Sn, we have bid(π) ≥ n+1−c(Γ (π))
2 .

Proof. By Theorem 3 and Lemma 4, a lower bound on bid(π) is given by the
length of a minimum factorisation of π into pairs of exchanges. Since this length
equals (n + 1 − c(Γ (π)))/2 (see e.g. [16]), the proof follows. 
�
Let us now characterise the image of a transposition by our mapping.
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Lemma 5. For any transposition τ(i, j, l), we have

τ(i, j, l) = (i − 1, l − 1, j − 1) .

Proof. As noted in Section 2.2, we have τ(i, j, l) = β(i, j, j, l); Lemma 4 yields:

τ(i, j, l) = β(i, j, j, l) = (j − 1, l − 1) ◦ (i − 1, j − 1) = (i − 1, l − 1, j − 1) . 
�

We recover the following known lower bound on the transposition distance, where
codd(Γ (π)) denotes the number of odd cycles in Γ (π).

Theorem 5. [4] For all π in Sn, we have td(π) ≥ n+1−codd(Γ (π))
2 .

Proof. By Theorem 3 and Lemma 5, a lower bound on td(π) is given by the
length of a minimum factorisation of π into 3-cycles. Since this length equals
(n + 1 − codd(Γ (π)))/2 (see e.g. [16]), the proof follows. 
�

5 An Improved Lower Bound on the Prefix Transposition
Distance

Using our theory, we prove a new lower bound on ptd(π) and show that it
always outperforms (1). We will find it convenient to express ptb(π) (defined
after Theorem 1 page 638) as follows.

Lemma 6. For any π in Sn, we have

ptb(π) = n + 1 − c1(Γ (π)) +
{

1 if π1 = 1,
0 otherwise.

Proof. The formula results from the observation that, among the n + 1 pairs of
adjacent elements in π̃, each adjacency in π̃ gives rise to a 1-cycle in Γ (π), and
from the fact that if π1 = 1, then we counted the 1-cycle that corresponds to
(0, 1) as an adjacency, which we correct by adding 1. 
�

Let d1
3(π) denote the length of a minimum factorisation of π in Sn into a product

of 3-cycles, where each 3-cycle in the factorisation is further required to contain
the first element.

Proposition 1. For any π in Sn, we have ptd(π) ≥ d1
3(π) .

Proof. Replace i with 1 in Lemma 5, and mimic the proof of Theorem 5. 
�

Next, we show how to compute d1
3(π) for π in An. The following simple obser-

vation will be useful.

Observation 1. For any π in An, we have n ≡ c(Γ (π)) (mod 2) .

Lemma 7. For any π in An, we have

d1
3(π) =

n + c(Γ (π))
2

− c1(Γ (π)) −
{

0 if π1 = 1,
1 otherwise.
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Proof. Given a minimum factorisation of length 
 of an even permutation π into
prefix exchanges, we can construct a sequence of 
/2 3-cycles by noting that
(1, j) ◦ (1, i) = (1, i, j). Therefore d1

3(π) ≤ 
/2. On the other hand, assume there
exists a shorter sequence of 3-cycles acting on the first element whose product
is π; then one can split each of these 3-cycles into two prefix exchanges using
the relation above and find a shorter expression for π as a product of prefix
exchanges, a contradiction. The result follows from Theorem 1. 
�

As a corollary, we obtain the following lower bound on the prefix transposition
distance:

Theorem 6. For any π in Sn, we have

ptd(π) ≥ n + 1 + c(Γ (π))
2

− c1(Γ (π)) −
{

0 if π1 = 1,
1 otherwise. (5)

Proof. Follows from Proposition 1 and Lemma 7. 
�

We conclude this section by proving that our lower bound always outperforms
Dias and Meidanis’ (Lemma 1).

Theorem 7. Lower bound (5) is always at least as large as lower bound (1).

Proof. Assume π �= ι (otherwise the result trivially holds); this implies that Γ (π)
has at least one cycle of length at least 2, which means that c(Γ (π))−c1(Γ (π)) ≥
1. There are two cases to prove: if π1 = 1, then lower bound (1) becomes

⌈
(n + 1 − c1(Γ (π)) + 1) − 1

2

⌉
=

⌈
n + 1 − c1(Γ (π))

2

⌉
,

and lower bound (5) satisfies

n + 1 + c(Γ (π)) − 2c1(Γ (π))
2

≥ n + 2 − c1(Γ (π))
2

≥
⌈

n + 1 − c1(Γ (π))
2

⌉
.

On the other hand, if π1 �= 1, then lower bound (1) becomes

⌈
(n + 1 − c1(Γ (π))) − 1

2

⌉
=

⌈
n − c1(Γ (π))

2

⌉
,

and by Observation 1, lower bound (5) becomes

n + 1 + c(Γ (π))
2

− c1(Γ (π)) − 1 =
⌈

n + 1 + c(Γ (π)) − 2c1(Γ (π)) − 2
2

⌉

≥
⌈

n − c1(Γ (π))
2

⌉
. 
�
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6 A Tighter Lower Bound on the Prefix Transposition
Diameter

Dias and Meidanis [11] observed that the prefix transposition diameter lies be-
tween n/2 and n − 1, and conjectured that it is equal to n −

⌊
n
4

⌋
. Recently,

Chitturi and Sudborough [13] improved those bounds to 2n/3 and n − log8 n,
respectively. Using our new lower bound on the prefix transposition distance, we
further improve the lower bound on the prefix transposition diameter.

Theorem 8. For n ≥ 2, the prefix transposition diameter of Sn is at least⌊3n+1
4

⌋
.

Proof. We construct a family of permutations whose prefix transposition dis-
tance is at least

⌊3n+1
4

⌋
. Let π = 〈3 2 1 4 7 6 5 · · · n − 4 n n − 2 n − 3〉, or any

other 2-permutation, i.e. a permutation such that Γ (π) contains only cycles of
length 2 (this requires that n ≡ 3 (mod 4)). There are four cases to examine,
each of which relies on Theorem 6:

1. if n ≡ 3 (mod 4), we have ptd(π) ≥ (n + 1 + (n + 1)/2)/2 − 0 − 1 = 3n−1
4 .

2. if n ≡ 0 (mod 4), let σ be a permutation such that Γ (σ) is obtained by
inserting a fixed point at the beginning of Γ (π); since σ fixes 0 and has n/2
2-cycles, we have ptd(σ) ≥ (n + 1 + n/2 + 1)/2 − 1 − 0 = 3n

4 .
3. if n ≡ 1 (mod 4), let σ′ be a permutation such that Γ (σ′) is obtained by

inserting a fixed point anywhere in Γ (σ); we have ptd(σ′) ≥ (n+1+ n−2+1
2 +

2)/2 − 2 = 3n+1
4 .

4. if n ≡ 2 (mod 4), let σ′′ be a permutation such that Γ (σ′′) is obtained
by inserting a 3-cycle (a, c, b) with a < b < c anywhere in Γ (π). Since
σ′′ has (n + 1 − 3)/2 + 1 cycles of length at least 2, we have ptd(σ′′) ≥
(n + 1 + n+1−3

2 + 1)/2 − 0 − 1 = 3n−2
4 . 
�

7 Experimental Results

We generated all permutations in Sn, for 1 ≤ n ≤ 10, along with their prefix
transposition distance, and compared lower bounds (1), (2) and (5) to the ac-
tual distance. Table 1 shows the results. It can be observed that many more
permutations are tight with respect to our lower bound (column 5) than with
respect to Dias and Meidanis’ (column 3) or Chitturi and Sudborough’s
(column 4).

We also examined how large the gap between our lower bound and the ac-
tual prefix transposition distance can get. The remaining columns of Table 1
list the number of permutations whose prefix transposition distance equals our
lower bound plus Δ. We note that, for n ≤ 9, all permutations have a pre-
fix transposition distance that is at most our lower bound plus 2 (plus 3 for
n = 10).
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Table 1. Experimental results; column 3 lists the number of cases where (1) is tight [17],
column 4 lists the number of cases where (2) is tight, and columns 5 to 8 list the number
of cases where (5) underestimates ptd(π) by Δ

n n! tight w.r.t. (1) tight w.r.t. (2) Δ = 0 Δ = 1 Δ = 2 Δ = 3
1 1 1 1 1 0 0 0
2 2 2 2 2 0 0 0
3 6 4 4 6 0 0 0
4 24 13 15 22 2 0 0
5 120 41 48 106 14 0 0
6 720 196 255 574 143 3 0
7 5 040 862 1 144 3 782 1 234 24 0
8 40 320 5 489 7 737 27 471 12 310 539 0
9 362 880 31 033 44 187 229 167 128 576 5 137 0

10 3 628 800 247 006 369 979 2 103 510 1 427 966 97 321 3

8 Conclusions

We presented a new framework for reformulating any edit distance problem on
permutations as a minimum-length factorisation problem on a related even per-
mutation, under the implicit assumption that the edit operations are revertible.
This approach is based on a new representation of a structure known as the
cycle graph, which pervades the field of genome rearrangements in several dif-
ferent forms; it previously allowed us to enumerate permutations whose cycle
graph decomposes into a given number of alternating cycles [12], and allowed
us in this work to recover two previously known results in a simple and unified
way. Moreover, we used our approach to derive a new lower bound on the prefix
transposition distance that, as we showed both theoretically and experimentally,
is a significant improvement over previous results. From that result, we deduced
an improved lower bound on the prefix transposition diameter of the symmetric
group, whose exact value is still unknown.

Future research will need to focus on computational complexity issues, since
the complexity of sorting permutations by transpositions or by any prefix op-
eration (except prefix exchanges) is still open, as well as on finding improved
approximations and upper bounds on the corresponding distances. We hope that
our framework will provide further insight on various issues related to those edit
distance problems and their variants, and will allow us to characterise polynomial
time solvable cases, if the general problems indeed prove to be difficult.
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