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Abstract
We initiate the study of sorting permutations using prefix block-interchanges, which exchange any
prefix of a permutation with another non-intersecting interval. The goal is to transform a given
permutation into the identity permutation using as few such operations as possible. We give a
2-approximation algorithm for this problem, show how to obtain improved lower and upper bounds
on the corresponding distance, and determine the largest possible value for that distance.
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1 Introduction

The problem of transforming two sequences into one another using a specified set of operations
has received a lot of attention in the last decades, with applications in computational biology
as (genome) rearrangement problems [13] as well as interconnection network design [21]. In
the context of permutations, it can be equivalently formulated as follows: given a permutation
π of [n] = {1, 2, . . . , n} and a generating set S (also consisting of permutations of [n]), find
a minimum-length sequence of elements from S that sorts π. The problem is known to be
NP-hard in general [15] and W[1]-hard when parameterised by the length of a solution [6],
but some families of operations that are important in applications lead to problems that
can be solved in polynomial time (e.g. exchanges [17], block-interchanges [10] and signed
reversals [14]), while other families yield hard problems that admit good approximations (e.g.
11/8 for reversals [3] and for block-transpositions [12]).

Several restrictions of these families have also been studied, one of which stands out in the
field of interconnection network design: the so-called prefix constraint, which forces operations
to act on a prefix of the permutation rather than on an arbitrary interval. Those restrictions
were introduced as a way of reducing the size of the generated network while maintaining a
low value for its diameter, thereby guaranteeing a low maximum communication delay [21].
The most famous example is perhaps the restriction of reversals (which reverse the order
of elements along an interval) to prefix reversals, and the corresponding problem known
as pancake flipping, introduced in [16] and whose complexity was only settled thirty years
later [5].

As Table 1 shows (see [13] for undefined terms), although sorting problems using interval
transformations are now fairly well understood, progress on the corresponding prefix sorting
problems has been lacking, with only two families whose status has been settled and no
approximation ratio smaller than 2 for those problems not known to be in P. As a result,
while the topology of the Cayley graph generated by those operations might present attractive
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properties, efficient routing algorithms (which achieve exactly the same task as the sorting
algorithms in genome rearrangements) are still needed for the network to be of practical
interest.

Table 1 Complexity of some sorting problems on permutations in the unrestricted setting and
under the prefix constraint.

Operation Unrestricted Prefix-constrained
reversal NP-hard [7] NP-hard [5]
signed reversal in P [14] open
double cut-and-join NP-hard [8] open
signed double cut-and-join in P [22] open
exchange in P [17] in P [1]
block-transposition NP-hard [4] open
block-interchange in P [10] open

In this work, we choose to focus on the family of block-interchanges for the following
reasons:
1. Along with double cut-and-joins, they constitute one of the most general kind of operations

on permutations, including both exchanges and block-transpositions as special cases;
2. Their behaviour in the unrestricted setting is understood well enough that we can hope

for the corresponding prefix sorting problem to be in P;
3. Knowledge about these operations in the prefix setting is lacking and will be needed

for more general studies; for instance, rearrangement problems on strings are usually
NP-hard, and efficient algorithms to solve them exactly or approximately routinely rely
on techniques developed for permutations [13, part II], which currently do not exist for
prefix block-interchanges.

To the best of our knowledge, the only published work on prefix block-interchanges is by
[9], who studied them on strings and showed that binary strings can be sorted in linear
time, whereas transforming two binary strings into one another using the minimum number
of prefix block-interchanges is NP-complete. Our contributions are as follows: we prove
tight upper and lower bounds on the so-called prefix block-interchange distance; we give
an approximation algorithm which we prove to be a 2-approximation with respect to two
different measures; we show how to tighten those bounds; and finally, we prove that the
maximum value of the distance, an important parameter in some applications [21], is b2n/3c.

2 Notation and definitions

A permutation is a bijective application of a set (usually [n] = {1, 2, . . . , n} in this work)
onto itself. The symmetric group Sn is the set of all permutations of [n] together with the
usual function composition applied from right to left. We write permutations using lower
case Greek letters, viewing them as sequences π = 〈π1 π2 · · · πn〉, where πi = π(i), and
occasionally rely on the two-line notation to denote them. The permutation ι = 〈1 2 · · · n〉
is the identity permutation.

Permutations are well-known to decompose in a single way into disjoint cycles (up to
the ordering of cycles and of elements within each cycle), leading to another notation for π
based on its disjoint cycle decomposition. For instance, when π = 〈7 1 4 5 3 2 6〉, the disjoint
cycle notation is π = (1, 7, 6, 2)(3, 4, 5). The conjugate of a permutation π by a permutation
σ, both in Sn, is the permutation πσ = σπσ−1. All permutations in Sn that can be obtained
from one another using this operation form a conjugacy class (of Sn), and have the same
cycle structure.
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I Definition 1 ([10]). The block-interchange β(i, j, k, `) with 1 ≤ i < j ≤ k < ` ≤ n+ 1 is
the permutation that exchanges the closed intervals determined respectively by i and j − 1
and by k and `− 1:〈

1 · · · i− 1 i · · · j − 1 j j + 1 · · · k − 1 k · · · `− 1 ` `+ 1 · · · n

1 · · · i− 1 k · · · `− 1 j j + 1 · · · k − 1 i · · · j − 1 ` `+ 1 · · · n

〉
.

Block-interchanges generalise several well-studied operations: when j = k, the resulting
operation exchanges two adjacent intervals, and is known as a (block-)transposition [2]; when
j = i+ 1 and ` = k + 1, the resulting operation swaps elements in respective positions i and
k, and is called an exchange (or (algebraic) transposition); finally, when i = 1, the resulting
operation is called a prefix block-interchange; prefix block-transpositions and prefix exchanges
are defined analogously. We study the following problem.

sorting by prefix block-interchanges (sbpbi)
Input: a permutation π in Sn, a number K ∈ N.
Question: is there a sequence of at most K prefix block-interchanges that sorts π?

The length of a shortest sorting sequence of prefix block-interchanges for a permutation π
is its (prefix block-interchange) distance, which we denote pbid(π). Distances based on other
operations are defined similarly.

3 A 2-approximation based on the breakpoint graph

We give in this section a 2-approximation algorithm for sbpbi based on the breakpoint graph.
We first use this structure in Subsection 3.1 to derive an upper bound on pbid and present
our algorithm, then derive a lower bound in Subsection 3.2 which allows us to prove its
performance guarantee. The breakpoint graph is well-known to be equivalent [18] to another
structure known as the cycle graph [2], which allows us to use results based on either graph
indifferently.

I Definition 2 ([14]). For any π in Sn, let π′ be the permutation of {0, 1, 2, . . . , 2n + 1}
defined by π′0 = 0, π′2n+1 = 2n + 1, and (π′2i−1, π

′
2i) = (2πi − 1, 2πi) for 1 ≤ i ≤ n. The

breakpoint graph of π is the undirected edge-bicoloured graph G(π) = (V,Eb ∪ Eg) whose
vertex set is formed by the elements of π′ ordered by position and whose edge set consists of:

Eb = {{π′2i, π′2i+1} | ∀ 0 ≤ i ≤ n}, called the set of black edges;
Eg = {{2i, 2i+ 1} | ∀ 0 ≤ i ≤ n}, called the set of grey edges.

Figure 1 shows an example of a breakpoint graph. Since G(π) is 2-regular, it decomposes
in a single way into edge-disjoint cycles which alternate black and grey edges. The length of
a cycle in G(π) is the number of black edges it contains, and a k-cycle in G(π) is a cycle of
length k. We let c(G(π)) (resp. ck(G(π))) denote the number of cycles (resp. k-cycles) in
G(π), and refer to cycles of length one as trivial cycles.

A crucial insight of strategies based on the breakpoint graph is the observation that the
transformations that we apply never affect grey edges, whereas they “cut” black edges and
replace them with new black edges. This point of view conveniently allows us to define
block-interchanges in terms of the black edges on which they act: using the notation bi =
{π2i−2, π2i−1} for a black edge, a quadruplet (bi, bj , bk, b`) of black edges with i < j ≤ k < `

naturally defines the block-interchange β(i, j, k, `) and conversely.

ISAAC 2020
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0 13 14 1 2 7 8 9 10 5 6 3 4 11 12 15

Figure 1 The breakpoint graph of 〈7 1 4 5 3 2 6〉.

3.1 An upper bound based on the breakpoint graph
The following quantity, defined for any π in Sn, has been shown to be a tight1 lower bound
on the prefix block-transposition distance [19] :

g(π) = n+ 1 + c(G(π))
2 − c1(G(π))−

{
0 if π1 = 1,
1 otherwise. (1)

We prove in Theorem 5 that this quantity is also an upper bound on the prefix block-
interchange distance. To that end, we use the following notation, based on the one introduced
in [2]; for any two permutations π and σ, define:

∆c(π, σ) = c(G(σ))− c(G(π)),
∆c1(π, σ) = c1(G(σ))− c1(G(π)),
∆f(π, σ) = f(σ)− f(π), where f(π) = 0 if π fixes 1 (i.e. π1 = 1) and 1 otherwise, and
∆g(π, σ) = g(σ)− g(π).

These parameters allow us to obtain the following expression, which will be useful in our
proofs:

∆g(π, σ) = ∆c(π, σ)/2−∆c1(π, σ)−∆f(π, σ). (2)

We start by proving in Lemma 4 the existence of a prefix block-interchange that decreases
g(π) by at least one if π1 6= 1. The proof uses the following structural result, where grey
edges {π′a, π′b} and {π′c, π′d} (with a < b and c < d) are said to intersect if a < c < b < d or
c < a < d < b.

I Lemma 3 ([14]). For every permutation π, let e be a grey edge in a nontrivial cycle of
G(π); then there exists another grey edge e′ in G(π) that intersects e.

We refer to the grey edge of G(π) that contains π′1 as the first grey edge, and to the cycle
that contains 0 as the leftmost cycle. Our figures represent alternating subpaths (i.e., paths
that alternate black and grey edges) as dotted edges; therefore, such a dotted edge might
correspond to a single grey edge, or to a black edge framed by two grey edges, and so on.

I Lemma 4. For any π in Sn: if π1 6= 1, then there exists a prefix block-interchange β such
that ∆c(π, πβ) = 2, ∆c1(π, πβ) ≥ 2, and ∆g(π, πβ) ≤ −1.

Proof. Lemma 3 guarantees the existence of a grey edge e′ that intersects the first grey edge;
moreover, the endpoints of e′ ordered by position connect elements whose values are either
in decreasing (case 1 below) or increasing (case 2 below) order. In both cases, if e′ belongs
to the leftmost cycle, then there exists a prefix block-interchange that extracts two 1-cycles
(we distinguish an additional third case where e′ and the first grey edge share the endpoints
of a black edge):

1 Here and in the rest of the text, “tight” means that equality is achieved by some but not all instances.
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1.
0 π′1 π′2i−2 π′2i−1 π′2j−2 π′2j−1 π

′
2k−2 π

′
2k−1 0 π′1 π′2i−2π′2i−1 π′2j−2π′2j−1 π

′
2k−2 π′2k−1

2.
0 π′1 π′2i−2 π′2i−1 π′2j−2 π′2j−1 π

′
2k−2 π

′
2k−1 0 π′1 π′2i−2π′2i−1 π′2j−2π′2j−1 π

′
2k−2 π′2k−1

3.
0 π′1 π′2i−2 π′2i−1 π′2j−2 π′2j−1 0 π′1 π′2i−2π′2i−1 π′2j−2 π′2j−1

Otherwise, all edges that intersect the first grey edge belong to cycles other than the
leftmost cycle. One of those edges, which belongs to some cycle C, must be in the same
configuration as in case 1 above: indeed, if C contains a grey edge that takes us from the
interval covered by the first grey edge (1, y) to a vertex located after y, then C must also
contain a grey edge that takes us back before y. Without loss of generality, we thus assume
that e′ is such an edge, and therefore a prefix block-interchange that extracts two new 1-cycles
can also be applied:

4.
0 π′1 π′2i−2 π′2i−1 π′2j−2 π′2j−1 π

′
2k−2 π

′
2k−1 0 π′1 π′2i−2π′2i−1 π′2j−2π′2j−1 π

′
2k−2 π′2k−1

In all four cases, we have ∆c(π, πβ) = 2 and ∆c1(π, πβ) ≥ 2. The exact value of ∆g(π, πβ)
will vary depending on the above configurations and is computed using Equation 2:
1. the leftmost cycle in G(πβ) is nontrivial, so ∆c1(π, πβ) = 2, ∆f(π, πβ) = 0 and

∆g(π, πβ) = −1;
2. for exactly the same reasons as case 1, we obtain ∆g(π, πβ) = −1;
3. we have two possible subcases:

a. if the leftmost cycle in G(πβ) is nontrivial, then ∆c(π, πβ) = 2 and ∆f(π, πβ) = 0, so
∆g(π, πβ) = −1;

b. otherwise, ∆c1(π, πβ) = 3 and ∆f(π, πβ) = −1, which in turn implies ∆g(π, πβ) = −1.
4. we have three possible subcases:

a. ∆c1(π, πβ) = 2: the leftmost cycle in G(πβ) is nontrivial, so ∆f(π, πβ) = 0 and
∆g(π, πβ) = −1;

b. ∆c1(π, πβ) = 3: the leftmost cycle in G(πβ) may or may not be trivial, so ∆f(π, πβ) ≤
0 and ∆g(π, πβ) ≤ −1;

c. ∆c1(π, πβ) = 4: the leftmost cycle in G(πβ) is trivial, so ∆f(π, πβ) = −1 and
∆g(π, πβ) = −2. J

We handle the case where π1 = 1 in the proof of our upper bound below.

I Theorem 5. For any π in Sn, we have pbid(π) ≤ g(π).

Proof. If π1 6= 1, then we apply Lemma 4 to decrease g(π) by at least 1. Otherwise, {π′0, π′1}
is a 1-cycle in G(π) and f(π) = 0. Assume π 6= ι to avoid triviality; then G(π) contains
a nontrivial cycle, from which we select a grey edge {π′2i−2, π

′
2j−1} with j > i. Applying

the prefix block-interchange β(1, i, i, j) then makes πi and πi + 1 contiguous in πβ, and
that pair corresponds to a new 1-cycle in G(πβ). On the other hand, β merges the 1-cycle
{π′0, π′1} in G(π) with the cycle that contains {π′2i−2, π

′
2j−1}, so ∆c(π, πβ) = 0 = ∆c1(π, πβ),

∆f(π, πβ) = 1 and Equation 2 yields ∆g(π, πβ) = 0/2− 0− 1 = −1. J

ISAAC 2020



55:6 Sorting by Prefix Block-Interchanges

The smallest example of a permutation for which the inequality in Theorem 5 is strict is
π = 〈3 2 1〉, with pbid(π) = 1 < g(π) = 2. Algorithm 1 implements the strategy described in
Theorem 5. We prove in the next subsection that Algorithm 1 is a 2-approximation.

Algorithm 1 ApproximateSbpbi(π).

Input: A permutation π of [n].
Output: A sorting sequence of prefix block-interchanges for π.

1 S ← empty sequence;
2 while π 6= ι do
3 if π1 6= 1 then
4 j ← the position of π1 − 1;
5 if there exists a pair (πi, πk = πi + 1) such that i ≤ j ≤ k and the

corresponding grey arc belongs to the leftmost cycle of G(π) then
6 σ ← β(1, i, j, k); // Lemma 4 cases 1–3
7 else
8 i, k ← positions such that i ≤ j ≤ k and πk = πi − 1;
9 σ ← β(1, i, j, k); // Lemma 4 case 4

10 else // Theorem 5
11 i← smallest index such that πi+1 6= πi + 1;
12 j ← the position of πi + 1;
13 σ ← β(1, i, i, j);
14 π ← πσ;
15 S.append(σ);
16 return S;

3.2 A lower bound based on the breakpoint graph
We now prove a lower bound on pbid that allows us to show that Algorithm 1 is a 2-
approximation for sbpbi. To that end, we use a framework introduced in [19]. The starting
point is the following mapping, in which the symmetric group on [n+ 1] is identified with
the symmetric group on {0} ∪ [n] and where An is the subgroup of Sn formed by the set of
all even permutations, i.e. permutations with an even number of even cycles:

ψ : Sn → An+1 : π 7→ π = (0, 1, 2, . . . , n)(0, πn, πn−1, . . . , π1). (3)

This mapping associates to every permutation π another permutation π whose disjoint
cycles are in one-to-one correspondence with the cycles of G(π). As a result, terminology
based on the disjoint cycle decomposition of π or on the alternating cycle decomposition
of G(π) can conveniently be used indifferently, including the notation introduced at the
beginning of Section 3 (e.g. c(π) = c(G(π)), and therefore ∆c(π, πσ) = c(πσ) − c(π) =
c(G(πσ))− c(G(π)) = ∆c(π, πσ)). The following result will be our main tool for proving our
lower bound.

I Theorem 6 ([19]). Let S be a subset of Sn whose elements are mapped by ψ(·) onto
S′ ⊆ An+1. Moreover, let C be the union of the conjugacy classes (of Sn+1) that intersect
with S′; then for any π in Sn, any factorisation of π into t elements of S yields a factorisation
of π into t elements of C.
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Consequently, if we let dS(σ) denote the length of a shortest sorting sequence for σ
consisting solely of elements from S, then Theorem 6 implies that for any π in Sn and any
choice of S ⊆ Sn, we have dS(π) ≥ dS′(π). In order to use Theorem 6, we need a translation
of the effect of an operation on π in terms of a transformation on π, as well as a precise
characterisation of the image of a prefix block-interchange under the mapping ψ. Both are
provided, respectively, by the following results.

I Lemma 7 ([19]). For all π, σ in Sn, we have πσ = π(σπ).

I Lemma 8 ([19]). For any block-interchange β(i, j, k, `) in Sn, we have β(i, j, k, `) =
(j, `)(i, k).

As is well-known, a 2-cycle in a permutation σ containing elements from different cycles
in a permutation π merges those cycles in πσ, while a 2-cycle in σ containing elements from
the same cycle in π splits that cycle into two cycles in πσ. Lemma 7 and Lemma 8 therefore
provide us with a very simple way of analysing the effects of a block-interchange: the effect
of β on the cycles of G(π) is the same as the effect of βπ on the cycles of π, and therefore
bounds on the (prefix) block-interchange distance of π can be obtained by studying the
effects of pairs of 2-cycles on π. The following lemma will be useful in restricting the number
of cases in the proof of our lower bound (Theorem 11).

I Lemma 9. For any π in Sn and any block-interchange β, we have ∆c(π, πβ) ∈ {−2, 0, 2}.

Proof. By Lemma 8, β consists of two 2-cycles, each of which might split a cycle into two
cycles or merge two cycles into one (Lemma 7). Combining all possible cases yields the set
{−2, 0, 2} as possible values for ∆c(π, πβ) = ∆c(π, πβ). J

Finally, the following technical observation will be useful in ruling out impossible values
for ∆f(π, σ), whose set of possible values is {−1, 0, 1} when no restrictions apply.

I Lemma 10. For any π in Sn and every prefix block-interchange β: if ∆c1(π, πβ) ≥ 2,
then ∆f(π, πβ) 6= 1.

Proof. If ∆c1(π, πβ) ≥ 2, then the new 1-cycles are obtained in one of the following ways:
1. if at least one of them is the result of a split of the leftmost cycle of G(π), then that cycle

is nontrivial and therefore f(π) = 1, thereby forbidding the value ∆f(π, πβ) = 1;
2. otherwise, all new 1-cycles are extracted from a cycle in G(π) other than the leftmost

cycle; since that cycle can only be split into at most two new cycles (Lemma 7 and
Lemma 8), we have ∆c1(π, πβ) ≤ 2 in this case. Moreover, we also have π1 = 1, otherwise
the 1-cycle containing π1 would vanish in G(πβ) and contradict our assumption that
∆c1(π, πβ) ≥ 2. Therefore, the value ∆f(π, πβ) = 1 is also excluded in this case. J

We now have everything we need to prove our lower bound on pbid.

I Theorem 11. For any π in Sn, we have pbid(π) ≥ g(π)/2.

Proof. By Theorem 6 and Lemma 8, we have pbid(π) ≥ d(π), where d(π) is the length of a
shortest sorting sequence for π where the only nontrivial cycles of each transformation in the
sequence are two 2-cycles, exactly one of which contains 1. As a result, any lower bound on
d(π) is a lower bound on pbid(π), and therefore we only need to show that a transformation
of the kind we have just described can decrease the value of g(π) by at most 2.

Let β = (1, a)(b, c) be the image of a prefix block-interchange under the mapping ψ(·).
By Lemma 9, we only need to distinguish between the following three cases; in each situation,
we aim to minimise the value of ∆g(π, πβ).

ISAAC 2020
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1. If ∆c(π, πβ) = −2, then clearly ∆c1(π, πβ) ≤ 0, and Equation 2 allows us to conclude
that ∆g(π, πβ) ≥ −1− 0− 1 = −2.

2. If ∆c(π, πβ) = 0, then either 2-cycle of β merges two cycles while the other splits a cycle
into two. The lengths of the involved cycles in π and in πβ may vary, but this observation
is enough to deduce that ∆c1(π, πβ) ≤ 2. The lowest value of ∆g(π, πβ) is obtained when
∆c1(π, πβ) = 2, in which case Equation 2 and Lemma 10 yield ∆g(π, πβ) ≥ 0−2−0 = −2,
or when ∆c1(π, πβ) = 1, in which case Equation 2 yields ∆g(π, πβ) ≥ 0− 1− 1 = −2.

3. If ∆c(π, πβ) = 2, then both elements of β each split one cycle into two cycles. As in
the previous case, the lengths of the involved cycles in π and in πβ may vary, but this
observation is enough to deduce that ∆c1(π, πβ) ≤ 4, and as a result ∆f(π, πβ) ∈ {−1, 0}
(Lemma 10). The lowest value of ∆g(π, πβ) is obtained in two cases:
a. when ∆c1(π, πβ) = 4, in which case the leftmost cycle of π splits into two 1-cycles;

therefore ∆f(π, πβ) = −1 and Equation 2 yields ∆g(π, πβ) ≥ 1− 4 + 1 = −2;
b. or when ∆c1(π, πβ) = 3, in which case Equation 2 and Lemma 10 yield ∆g(π, πβ) ≥

1− 3 + 0 = −2. J

Theorem 11 implies that Algorithm 1 is a 2-approximation for sbpbi.

4 Tightening the bounds

Although obtaining better approximation guarantees for sbpbi seems as nontrivial as for
other prefix sorting problems, the bounds obtained in the previous section can be improved.
We show in this section how to tighten them, and then use those improved results in Section 5
to compute the maximal value that the distance can reach.

4.1 A tighter upper bound
By Theorem 11, the largest value by which the upper bound of Theorem 5 can decrease
with a single prefix block-interchange is 2. In this section, we characterise all permutations
which admit such a prefix block-interchange. Other nontight permutations exist (see e.g.
Proposition 14), but they do not admit such an operation as the first step of an optimal sorting
sequence. As a consequence, we obtain an improved upper bound on pbid in Theorem 15.

I Lemma 12. For any π in Sn: if G(π) contains a 2-cycle that intersects the first grey edge,
then there exists a prefix block-interchange β such that ∆g(π, πβ) = −2.

Proof. Follows from cases 4b and 4c of the proof of Lemma 4, when the cycle that contains
grey edge f has length 2. J

Following [2], we say that a cycle C with bi and bk as black edges of minimum and
maximum indices, respectively, spans a black edge bj if i < j < k.

I Lemma 13. For any π in Sn: if G(π) contains a 2-cycle which is not the leftmost cycle
and which spans a black edge that belongs to a nontrivial cycle different from the leftmost
cycle, then there exists a prefix block-interchange β such that ∆g(π, πβ) = −2.

Proof. We apply a prefix block-interchange defined by the first black edge, both black edges
of the 2-cycle, and any black edge spanned by the 2-cycle:

0 π′1 π′2i−2 π′2i−1 π′2j−2 π′2j−1 π
′
2k−2 π

′
2k−1 0 π′1 π′2i−2π′2i−1 π′2j−2π′2j−1 π

′
2k−2 π′2k−1
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The number of cycles does not change, so ∆c(π, πβ) = 0. Either π1 = 1, and then
∆c1(π, πβ) = 1 and ∆f(π, πβ) = 1; or π1 6= 1, and then ∆c1(π, πβ) = 2 and ∆f(π, πβ) = 0.
In both cases, Equation 2 yields ∆g(π, πβ) = −2. J

2-cycles other than the leftmost cycle and in a different configuration from our characterisa-
tions are still helpful. We show that even though they do not allow a prefix block-interchange
that decreases g(·) by 2 right away, they make it possible to obtain such an operation
eventually.

I Proposition 14. For any π in Sn: if G(π) contains a 2-cycle which is not the leftmost cycle,
then π admits a sequence S of prefix-block interchanges that turns π into a permutation σ
with ∆g(π, σ) = |S| and which admits a prefix block-interchange β such that ∆g(σ, σβ) = −2.

Proof. Let C denote the 2-cycle of interest. If C intersects the first grey edge or a cycle
different from the leftmost cycle, then we are done (see respectively Lemma 12 and Lemma 13).
Otherwise, C intersects another grey edge of the leftmost cycle, and Lemma 4 allows us
to reduce g(π) by one while reducing the length of the leftmost cycle without affecting C.
Repeated applications of Lemma 4 eventually yield a permutation σ which satisfies one of
the following conditions:
1. σ1 = 1, in which case C necessarily spans a black edge that does not belong to the

leftmost cycle and therefore we can apply Lemma 13;
2. σ1 6= 1 and C intersects another cycle than the leftmost cycle, in which case we can again

apply Lemma 13; or
3. σ1 6= 1 and C intersects the first grey edge, in which case we can apply Lemma 12. J

The above results allow us to easily identify other nontight permutations (with respect
to Theorem 5) whose breakpoint graph contains no 2-cycle. For instance, if the first grey
edge intersects a 3-cycle C, then applying a prefix-block interchange selected according to
Lemma 12 decreases the lengths of both the leftmost cycle and C, which becomes a 2-cycle
and which therefore eventually allows for a prefix block-interchange that decreases g(·) by 2
according to Proposition 14.

The interactions between 2-cycles prevent us from simply reducing the upper bound of
Theorem 5 by the number of 2-cycles in G(π): indeed, the black edge spanned by the 2-cycle
described in Lemma 13 may belong to a 2-cycle whose length will increase in the resulting
permutation. Therefore, we can only conclude the following.

I Theorem 15. For any π in Sn, we have pbid(π) ≤ g(π)− dc∅2(G(π))/2e, where c∅2(G(π))
denotes the number of 2-cycles in G(π) excluding the leftmost cycle.

Proof. We repeatedly apply Proposition 14 to take advantage of suitable 2-cycles. Each
prefix block-interchange we use transforms a 2-cycle into two 1-cycles without affecting the
other 2-cycles, except possibly in the case of Lemma 13 when the edge spanned by the
2-cycle we focus on belongs to another 2-cycle. In the worst case, every 2-cycle we try to
split forces us to increase the length of a 2-cycle it intersects, hence the improvement of only
dc∅2(G(π))/2e over Theorem 5. J

Theorem 15 again yields a tight upper bound, as shown by the permutation 〈1 4 3 2〉 for
which the value of the improved upper bound matches its distance.
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4.2 A tighter lower bound
A trivial lower bound on pbid is given by the value of the block-interchange distance (denoted
by bid(π)), which can be computed in O(n) time thanks to the following result.

I Theorem 16 ([10]). For any π in Sn, we have bid(π) = (n+ 1− c(G(π)))/2.

This lower bound often outperforms that of Theorem 11, but cases exist where the
opposite holds (〈1 4 3 2〉 is the smallest example). As we show below, it is possible to build
on this trivial lower bound to obtain a much better and useful lower bound. The resulting
lower bound also allows us to compute the maximum value that the prefix block-interchange
can reach, a problem we address in Section 5.

I Definition 17 ([14]). Let π be a permutation. Two cycles C and D of G(π) intersect if C
contains a grey edge e that intersects with a grey edge f of D. A component of G(π) is a
connected component of the intersection graph of the nontrivial cycles of G(π).

For instance, the breakpoint graph of Figure 1 page 4 has two components: the leftmost
cycle, and the pair of intersecting 2-cycles. Let CC(G(π)) denote the number of components
of G(π). We show in Lemma 20 that prefix block-interchanges that merge components of
the breakpoint graph cannot decrease the number of cycles it contains. To achieve this, we
first show that if a prefix block-interchange β reduces the number of connected components
of G(π), then it cannot act on a single cycle of G(π). This is important for the proof of
Lemma 20, because some prefix block-interchanges acting on a single cycle increase the
number of cycles and therefore may decrease the value of bid(π) regardless of their effect on
pbid(π) or g(π). The following concepts will be helpful.

I Definition 18. For any permutation π, let e = (e1, e2) and f = (f1, f2) be two grey edges
in G(π), with e1 < e2 and f1 < f2. We say that e and f are independent if they are:

nested, i.e. e1 < f1 < f2 < e2 (written f ⊂π e) or f1 < e1 < e2 < f2 (written e ⊂π f);
or
ordered, i.e. e1 < e2 < f1 < f2, in which case we say that e precedes f (written e <π f),
or f1 < f2 < e1 < e2 (i.e. f precedes e).

Grey edges naturally define intervals in π′, so we use the same notation to compare
intervals, or grey edges with intervals. We will sometimes need to distinguish proper block-
interchanges, i.e. of the form β(i, j, k, `) with j < k, from prefix block-transpositions, which
are of the form β(i, j, j, `).

I Lemma 19. For any π in Sn, let β be a prefix block-interchange with CC(G(πβ)) <
CC(G(π)); then β cannot act on a single cycle of G(π).

Proof. Let e = (e1, e2) and f = (f1, f2) with e1 < e2 and f1 < f2 be two grey edges of G(π).
We show that if e and f are independent in G(π), then they remain independent in G(πβ).
For readability, we assume that the indices of e and f correspond to positions in π rather
than π′. The connections between the black edges of G(π) on which β(1, i, j, k) acts imply
the following:

both e1 and f1 lie in the interval [1, k], otherwise β would not affect e or f ;
at least e or f has both endpoints in [1, i], [i, j] (which is empty if β is not proper) or
[j, k], otherwise they both intersect the cycle on which β acts and therefore CC(G(πβ)) ≥
CC(G(π));
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if x ⊂π I holds for all possible combinations of x in {e, f} and I in {[1, i], [i, j], [j, k]},
then β trivially preserves the order of endpoints and therefore the interactions between e
and f as well, so that their independence in G(π) is preserved in G(πβ).

Without loss of generality, the only cases left to examine are those where e ⊂π f and
e ⊂π [1, i], e ⊂π [i, j], or e ⊂π [j, k]. The only two ways of making e and f intersect in G(πβ)
are therefore either to exchange e2 and f2 without moving e1 and f1, which is impossible
because β is a prefix block-interchange; or to exchange f1 and e1 without moving e2 and f2,
which is impossible as well since β must act on the four black edges of the cycle. J

We can now prove Lemma 20.

I Lemma 20. For any π in Sn, let β be a prefix block-interchange with CC(G(πβ)) <
CC(G(π)); then ∆c(G(π, πβ)) ∈ {−2, 0}.

Proof. By Lemma 19, we have the following three cases to analyse:

1. if β acts on two cycles from different components, then two or three of the black edges
on which β acts belong to the same cycle. In all resulting cases, we have ∆c(π, πβ) = 0;
omitted cases are symmetric, and only proper block-interchanges are considered since
the property we seek to prove is already known to hold for block-transpositions (see [2,
Lemma 3.2 page 228]):

a.
0 π′1 π′2i−2 π′2i−1 π′2j−2 π′2j−1 π

′
2k−2 π

′
2k−1 0 π′1 π′2i−2π′2i−1 π′2j−2π′2j−1 π

′
2k−2 π′2k−1

b.
0 π′1 π′2i−2 π′2i−1 π′2j−2 π′2j−1 π

′
2k−2 π

′
2k−1 0 π′1 π′2i−2π′2i−1 π′2j−2π′2j−1 π

′
2k−2 π′2k−1

c.
0 π′1 π′2i−2 π′2i−1 π′2j−2 π′2j−1 π

′
2k−2 π

′
2k−1 0 π′1 π′2i−2π′2i−1 π′2j−2π′2j−1 π

′
2k−2 π′2k−1

d.
0 π′1 π′2i−2 π′2i−1 π′2j−2 π′2j−1 π

′
2k−2 π

′
2k−1 0 π′1 π′2i−2π′2i−1 π′2j−2π′2j−1 π

′
2k−2 π′2k−1

e.
0 π′1 π′2i−2 π′2i−1 π′2j−2 π′2j−1 π

′
2k−2 π

′
2k−1 0 π′1 π′2i−2π′2i−1 π′2j−2π′2j−1 π

′
2k−2 π′2k−1

f.
0 π′1 π′2i−2 π′2i−1 π′2j−2 π′2j−1 π

′
2k−2 π

′
2k−1 0 π′1 π′2i−2π′2i−1 π′2j−2π′2j−1 π

′
2k−2 π′2k−1

2. if β acts on three cycles, then exactly two of the black edges on which β acts belong
to the same cycle. In all cases, we have ∆c(π, πβ) ∈ {−2, 0}; again, omitted cases are
symmetric, and only proper block-interchanges are considered since block-transpositions
acting on three cycles decrease the number of cycles by two [2, Lemma 2.1 page 227]:

a.
0 π′1 π′2i−2 π′2i−1 π′2j−2 π′2j−1 π

′
2k−2 π

′
2k−1 0 π′1 π′2i−2π′2i−1 π′2j−2π′2j−1 π

′
2k−2 π′2k−1

b.
0 π′1 π′2i−2 π′2i−1 π′2j−2 π′2j−1 π

′
2k−2 π

′
2k−1 0 π′1 π′2i−2π′2i−1 π′2j−2π′2j−1 π

′
2k−2 π′2k−1
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c.
0 π′1 π′2i−2 π′2i−1 π′2j−2 π′2j−1 π

′
2k−2 π

′
2k−1 0 π′1 π′2i−2π′2i−1 π′2j−2π′2j−1 π

′
2k−2 π′2k−1

d.
0 π′1 π′2i−2 π′2i−1 π′2j−2 π′2j−1 π

′
2k−2 π

′
2k−1 0 π′1 π′2i−2π′2i−1 π′2j−2π′2j−1 π

′
2k−2 π′2k−1

e.
0 π′1 π′2i−2 π′2i−1 π′2j−2 π′2j−1 π

′
2k−2 π

′
2k−1 0 π′1 π′2i−2π′2i−1 π′2j−2π′2j−1 π

′
2k−2 π′2k−1

3. if β acts on four cycles, then all black edges on which β acts belong to their own distinct
cycle and ∆c(π, πβ) = −2:

0 π′1 π′2i−2 π′2i−1 π′2j−2 π′2j−1 π
′
2k−2 π

′
2k−1 0 π′1 π′2i−2π′2i−1 π′2j−2π′2j−1 π

′
2k−2 π′2k−1

J

I Theorem 21. For any π in Sn, we have pbid(π) ≥ bid(π)+CC(G(π))−
{

0 if π1 = 1,
1 otherwise.

Proof. The expression for the lower bound corresponds to the following strategy: for each
component C of G(π), sort the corresponding subpermutation if C contains 0, or use a prefix
block-interchange to make it contain 0 and then sort it. Trivially, the number of steps in the
sorting stage cannot be lower than the number or unrestricted block-interchanges it would
require. Any other strategy would have to merge components; however, by Lemma 20, a
prefix block-interchange β that merges connected components cannot increase the number
of cycles, and therefore bid(πβ) ≥ bid(π) for any permutation π and any such prefix block-
interchange. J

5 The maximum value of the prefix block-interchange distance

The diameter of Sn is the maximum value that a distance can reach for a particular family
of operations. In this section, we use our results to compute its exact value in the case of
prefix block-interchanges, and show along the way that our 2-approximation algorithm based
on the breakpoint graph is also a 2-approximation with respect to the following notion.

I Definition 22 ([11]). Let π be a permutation of {0, 1, 2, . . . , n + 1} with π0 = 0 and
πn+1 = n+ 1. The pair (πi, πi+1) with 0 ≤ i ≤ n is a breakpoint if i = 0 or πi+1 − πi 6= 1,
and an adjacency otherwise. The number of breakpoints in a permutation π is denoted by
b(π).

For readability, we slightly abuse notation by using b(π) for π in Sn, with the understanding
that it refers to b(〈0 π1 π2 · · · πn n + 1〉). We let ∆b(π, σ) = b(σ) − b(π), and say that a
prefix block-interchange β with ∆b(π, πβ) < 0 removes breakpoints, or creates adjacencies.

I Lemma 23. For any π in Sn and any prefix block-interchange β, we have |∆b(π, πβ)| ≤ 3.

Proof. A prefix block-interchange β acts on at most four pairs of adjacent elements, including
the pair (0, π1) which always counts as a breakpoint. Therefore, the number of breakpoints
that β can remove or create lies in the set {0, 1, 2, 3}. J
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Since ι is the only permutation with exactly one breakpoint, Lemma 23 immediately
implies the following corollary.

I Corollary 24. For any π in Sn : pbid(π) ≥
⌈
b(π)−1

3

⌉
.

I Lemma 25. For any π in Sn, we have pbid(π) ≤ 2
⌈
b(π)−1

3

⌉
.

Proof. Assume π 6= ι to avoid triviality, and observe that adjacencies in 〈0 π1 π2 · · · πn n+1〉
are in one-to-one correspondence with trivial cycles in G(π) (except for the pair (0, π1) which
by Definition 22 is always a breakpoint). If π1 6= 1, then Lemma 4 guarantees the existence
of a prefix block-interchange β with ∆c1(π, πβ) ≥ 2 and in turn implies ∆b(π, πβ) ≥ 2. If
π1 = 1, then we select β as in the proof of Theorem 5, which creates a new trivial cycle in
G(πβ) that corresponds to a new adjacency in πβ. Since πβ1 6= 1, the previous case provides
the next operation, and the number of breakpoints decreases by at least three using two
prefix block-interchanges. J

Since b(π) ≤ n+ 1 for all π in Sn, we immediately obtain the following.

I Corollary 26. For any π ∈ Sn, we have pbid(π) ≤ 2n/3.

I Theorem 27. The diameter of Sn under prefix block-interchanges is b2n/3c.

Proof. The cases where n ≤ 2 are easily verified. We build tight families of permutations for
any n ≥ 3, starting with permutations π = 〈1 3 2〉, σ = 〈1 4 3 2〉, and τ = 〈1 3 2 5 4〉 as base
cases for the values of n, n− 1 and n− 2 that are multiples of 3, respectively. Theorem 21
yields pbid(π) ≥ 2, pbid(σ) ≥ 2 and pbid(τ) ≥ 3, while Corollary 26 yields pbid(π) ≤ 2,
pbid(σ) < 3 and pbid(τ) < 4, thereby matching the lower bounds.

To obtain tight permutations for larger values of n, we concatenate the sequence 〈n +
1 n + 3 n + 2〉 to π, σ or τ , and repeat the process as many times as needed. Each
concatenation preserves the congruence of n and adds a new component to G(·) which
consists of an isolated 3-cycle. The lower bound of Theorem 21 thereby increases by 2 with
each concatenation, as does the upper bound of Corollary 26. As a result, a permutation
with prefix block-interchange distance b2n/3c exists for every value of n in N. J

While many permutations reach the diameter when n 6≡ 0 (mod 3), the permutation
〈1 3 2 4 6 5 · · · n− 2 n n− 1〉 seems to be the only tight permutation when n ≡ 0 (mod 3).

6 Conclusions and future work

We initiated in this work the study of sorting permutations by prefix block-interchanges,
an operation that generalises several well-studied operations in genome rearrangements and
interconnection network design. We gave tight upper and lower bounds on the corresponding
distance, and derived a 2-approximation algorithm for the problem. We then showed how to
obtain better bounds on the distance using a finer analysis of cycles and components of the
breakpoint graph, and determined the maximum value that the distance can reach.

Several questions remain open, most notably the complexity of sbpbi, and its approxim-
ability if it turns out to be NP-complete. We note that improving the ratio of 2 will require
improved lower bounds, since for all three upper bounds we have obtained (Theorem 5,
Theorem 15 and Lemma 25) there are permutations whose actual distance match those
bounds. A number of leads seem promising in that regard, the most obvious one being the
computation of the exact value of the “special purpose distance” introduced in the proof of
Theorem 11, as well as a more intricate analysis of the cycles of the breakpoint graph as well
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as their interactions as initiated in Section 4. Given how helpful 2-cycles are in decreasing
the upper bound of Theorem 5, it would seem natural to focus on simple permutations
(i.e. permutations whose breakpoint graph contains no cycle of length > 2). This strategy
eventually led to a polynomial-time algorithm for sorting by signed reversals [14], but we do
not expect such an outcome for prefix block-interchanges since the simplification process does
not preserve the prefix block-interchange distance (whereas it did preserve the signed reversal
distance): the smallest counterexample is π = 〈3 1 4 2〉, which simplifies to σ = 〈5 2 7 4 1 6 3〉,
and for which pbid(π) = 2 6= pbid(σ) = 3.

In a broader context, we also hope that our results and the strategies we designed to
tackle sbpbi can be applied to other prefix sorting problems (for instance, a generalisation
of the lower bounding strategy of Theorem 21 to any distance would be of interest). The
breakpoint graph approach provides a clear strategy for unrestricted sorting problems, which,
informally, usually consists in increasing the number of cycles in as few steps as possible. As
our bounds show, and as has been observed for most prefix sorting problems [1, 19, 20], this
no longer works under the prefix constraint since operations that decrease or do not affect the
number of cycles can also decrease the value of our bounds. Nevertheless, bounds obtained
for prefix exchanges, prefix block-transpositions, prefix block-interchanges and prefix signed
reversals are all based on g(·), which seems to indicate common underlying features that
could be taken advantage of, and possibly lead to a common framework for approximating
these problems or solving them exactly.
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