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Département de Mathématique, c.p. 216
Bd du Triomphe
B-1050 Bruxelles

Belgium
doignon@ulb.ac.be

alabarre@ulb.ac.be

Abstract

Finding a sequence of transpositions that transforms a given permutation into the

identity permutation and is of the shortest possible length is an important problem in

bioinformatics. Here, a transposition consists in exchanging two contiguous intervals of

the permutation. Bafna and Pevzner introduced the cycle graph as a tool for working

on this problem. In particular, they took advantage of the decomposition of the cycle

graph into so-called alternating cycles. Later, Hultman raised the question of deter-

mining the number of permutations with a cycle graph containing a given quantity of

alternating cycles. The resulting number is therefore similar to the Stirling number of

the first kind. We provide an explicit formula for computing what we call the Hultman

numbers, and give a few numerical values. We also derive formulae for related cases, as

well as for a much more general problem. Finally, we indicate a counting result related

to another operation on permutations called the “block-interchange”.

1 Introduction

Bafna and Pevzner [1] introduced the biologically related problem of finding a sequence
of “transpositions” that transforms a given permutation into the identity permutation and
is of the shortest possible length. Here, a transposition consists in exchanging two con-
tiguous intervals of the permutation. The length of such a sequence is called the distance
of the permutation. The computational complexity of this problem is open, and the best
polynomial-time approximation algorithm, by Elias and Hartman [3], has a ratio of 11

8
.

In order to study this problem, Bafna and Pevzner introduced an equivalent representa-
tion of a permutation using a bicoloured directed graph, called the cycle graph and hereafter
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denoted by G. Later, Eriksson et al. [4] introduced an equivalence relation on the symmetric
group, which is of great interest to the sorting problem described above, because two permu-
tations that are equivalent with respect to this relation have the same distance. Hultman [8]
enumerated the corresponding equivalence classes (Sequence A002619 of The On-line Ency-
clopedia of Integer Sequences [10] – OEIS for short). He also noticed that the structure of
G is preserved under this equivalence relation, whereas the classical disjoint cycle decompo-
sition of the permutation is in general not preserved. This led him to propose an analogue
of the Stirling number of the first kind based on G, and to ask for a determination of the
resulting number.

We present a bijection between the set of permutations of n elements whose cycle graph
G contains k alternating cycles, on the one hand, and, on the other hand, the set of factori-
sations of a given (n+1)-cycle into the product of an (n+1)-cycle and a permutation whose
disjoint cycle decomposition contains k cycles. As a corollary, the cardinalities of the two
sets are equal, and an explicit formula for the Hultman numbers follows for instance from
Goupil and Schaeffer [6]. In fact, our approach leads to more general counting results for
permutations whose cycle graph G has a given cycle type.

Our paper is organised as follows. In Section 2, we introduce the notions and notation we
will use, and state the counting problem raised by Hultman. Section 3 presents a bijection
that leads to an explicit formula for the Hultman numbers, which we derive in Section 4
together with the solution of a more general problem. We provide a few explicit values of
the Hultman numbers in Section 5, as well as simple expressions for a few particular cases.
Finally, we briefly consider another distance on permutations, called the “block-interchange
distance”, and indicate how to count permutations at any given distance.

2 Notation and Definitions

The notation Sn stands for Sym({1, 2, . . . , n}). A permutation π in Sn can be described

in the two row notation

(
1 2 · · · n
π1 π2 · · · πn

)

, where πi = π(i). We shorten the writing

by keeping only the second row within angle brackets, i.e., π = 〈π1 π2 · · · πn〉. The usual
graph Γ(π) of the permutation π contains an edge (i, j) whenever πi = j. The graph Γ(π)
decomposes in a unique way into disjoint cycles, leading to another notation for π based
on its disjoint cycle decomposition. For instance, when π = 〈4 1 6 2 5 7 3〉, the disjoint
cycle notation is π = (1, 4, 2)(3, 6, 7)(5) (notice the parentheses and commas). The number
of cycles in Γ(π) is denoted by c(Γ(π)).

We also work with Sym({0, 1, 2, . . . , n}), abbreviated to S(1+n), whose elements will be
described by their disjoint cycle decomposition. Product of permutations (both in Sn or in
S(1 + n)) is denoted by ◦ and applied from right to left: when writing π ◦ σ, we first apply
σ, then π.

Definition 1. The Stirling number of the first kind S(n, k) counts the number of permuta-
tions π in Sn whose disjoint cycle decomposition contains k cycles (i.e., c(Γ(π)) = k).

A more general counting situation occurs when the “(conjugacy) class” of the relevant
permutations is completely specified.
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Definition 2. A partition λ = (λ1, λ2, . . . , λl) is a finite sequence of integers called parts

such that λ1 ≥ λ2 ≥ · · · ≥ λl > 0. Its length is l, and we write λ ⊢ n if
∑l

i=1 λi = n;
then λ is a partition of n. A permutation π in Sn is of class λ if λ is obtained by writing in
non-increasing order the various lengths of the disjoint cycles in G(π); we then set λ = C(π).

The number of permutations π in Sn of a given class λ is easily derived (see for instance
Proposition 4.1 in [12]): let αi denote the number of λj’s that are equal to i (for 1 ≤ i ≤ n),
and set zλ =

∏

i αi! i
αi ; then the number of permutations of class λ equals n! / zλ.

The reader may be less familiar with the following structure, introduced by Bafna and
Pevzner [1]. Our definition slightly differs from theirs, but the minor modification we make
does not affect the features of interest here.

Definition 3. The cycle graph of a permutation π in Sn is the bicoloured directed graph
G(π) with vertex set {π0 = 0, π1, . . . , πn} and whose edge set consists of

• black edges (πi, π(i−1) mod (n+1)) for 0 ≤ i ≤ n, and

• grey edges (i, (i + 1) mod (n + 1)) for 0 ≤ i ≤ n.

Quite often we list the vertices of G(π) in the order π0, π1, . . . , πn. The set of black and grey
edges decomposes in a unique way into edge-disjoint alternating cycles, i.e., cycles in G(π)
which alternate black and grey edges. The number of alternating cycles in G(π) is denoted
by c(G(π)). Figure 1 shows an example of a cycle graph, together with its decomposition,
where black edges are drawn using continuous arrows and grey edges are drawn using dashed
arrows.

Hultman [8] proposed an analogue of the Stirling number of the first kind based on the
cycle graph.

Definition 4. The Hultman number SH(n, k) counts the number of permutations in Sn

whose cycle graph decomposes into k alternating cycles. Thus:

SH(n, k) = |{π ∈ Sn | c(G(π)) = k}|.

Hultman does not obtain a full characterisation of these numbers, but notes that SH(n, n+
1) = 1 and SH(n, n − 1) =

(
n+2

4

)
. It is also obvious that SH(n, k) = 0 for all k 6∈ [1, n + 1],

since G(π) always contains at least one alternating cycle and at most n+1 alternating cycles.

Lemma 5. [8] For all π in Sn, we have c(G(π)) ≡ n + 1 (mod 2).

Lemma 5 immediately yields the following corollary.

Corollary 6. For all k ≡ n (mod 2), we have SH(n, k) = 0.

We will provide a solution to the more general problem of counting permutations in Sn

whose cycle graph has a given structure. The length of an alternating cycle is the number
of its black edges (or equivalently, grey edges).

Definition 7. A permutation π in Sn has Hultman class λ if λ is obtained by writing in
non-increasing order the various lengths of the edge-disjoint alternating cycles in G(π). We
then set CH(π) = λ.
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Figure 1: (a) The cycle graph of 〈4 1 6 2 5 7 3〉; (b), (c) its decomposition into two alternating
cycles
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3 The Bijection

We now construct a bijection from the set of permutations π in Sn with c(G(π)) = k and
the set of factorisations in S(1+n) of a given (n+1)-cycle into some (n+1)-cycle and some
permutation σ with c(Γ(σ)) = k.

Let first π be any permutation in Sn, and consider the edges of the cycle graph G(π).
The grey edges are the pairs (i, (i + 1) mod (n + 1)), for 0 ≤ i ≤ n, which form the following
(n + 1)-cycle (independent of π) in S(1 + n):

α = (0, 1, . . . , n).

Similarly, the black edges (πi, π(i−1) mod (n+1)), for 0 ≤ i ≤ n, form the following (n+1)-cycle
in S(1 + n):

π̇ = (0, πn, πn−1, . . . , π1).

Notice that the mapping Sn → S(1 + n) : π 7→ π̇ is injective. Moreover, its co-domain is
the set of all (n + 1)-cycles in S(1 + n). By Definition 3, the alternating cycles in the graph
G(π) build up a permutation π̊ in S(1 + n) that maps i onto j when there is a black edge
from (i + 1) mod (n + 1) to j (remember that (i, (i + 1) mod (n + 1)) is always a grey edge).
Thus we have π̊ = π̇ ◦ α, that is

α = π̇−1 ◦ π̊. (1)

As an example, the alternating cycle decomposition of the cycle graph of Figure 1 yields
the permutation

π̊ = (0, 4, 2, 7, 3) (1, 6, 5)

= (0, 3, 7, 5, 2, 6, 1, 4) ◦ (0, 1, 2, 3, 4, 5, 6, 7).

Theorem 8. Let α = (0, 1, . . . , n). The mapping

F : {π ∈ Sn | c(G(π)) = k} →

{σ ∈ S(1 + n) | c(Γ(σ)) = k and ∃ ρ ∈ S(1 + n) : c(Γ(ρ)) = 1 and α = ρ ◦ σ}

: π 7→ π̊

is bijective.

Proof. First note that F is well defined. If π ∈ Sn, then π̊ satisfies α = ρ ◦ π̊, where ρ = π̇−1

is an (n + 1)-cycle (cf. Equation (1)). Moreover, we have c(G(π)) = c(Γ(̊π)).
Since the mapping Sn → S(1 + n) : π 7→ π̇ is injective, the injectivity of F follows from

Equation (1). On the other hand, every (n + 1)-cycle ρ in S(1 + n) is of the form π̇−1 for
some π in Sn; because α = ρ ◦ σ, Equation (1) implies σ = π̊. Therefore F is also surjective
(remember c(G(π)) = c(Γ(̊π))).

Given any (n + 1)-cycle β in S(1 + n), define D(n + 1, k) as the number of factorisations
of β into the product ρ◦σ, where ρ is some (n+1)-cycle and σ some permutation in S(1+n)
having c(Γ(σ)) = k. We get the following result.

Corollary 9. For all n, k in N, we have SH(n, k) = D(n + 1, k).
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The bijection F in Theorem 8 is induced by a much more general bijection, which is
established along the same arguments.

Theorem 10. Let λ be a partition of n + 1. The mapping

F : {π ∈ Sn | CH(π) = λ} →

{σ ∈ S(1 + n) | C(σ) = λ and ∃ ρ ∈ S(1 + n) : c(Γ(ρ)) = 1 and α = ρ ◦ σ}

: π 7→ π̊

is bijective.

We finish this section by noting that using a very similar approach, although working
with another conjugacy class of S(1 + n), Hultman [8] characterises what he calls “valid
decompositions” of the cycle graph.

4 An Explicit Formula for the Hultman Numbers

Several authors give formulae for the number D(n, k) of factorisations of an n-cycle into the
product ρ ◦ σ, where ρ, σ ∈ Sn, ρ is an n-cycle, and c(Γ(σ)) = k (see, e.g., Goupil [5] or
Stanley [11]). Goupil and Schaeffer [6] give a general formula for the number of factorisations
of an n-cycle into two permutations of given classes, expressed as a summation of only non-
negative terms. We will use their result and Theorem 8 to derive a formula for computing
SH(n, k).

Definition 11. A composition λ = (λ1, λ2, . . . , λl) is a finite sequence of non-negative in-
tegers. Its length is l. If

∑l

i=1 λi = n, we say that λ is a composition of n and we write
λ |= n.

Denote c
(n)
λµ the number of ways to express a given n-cycle as the product of two permu-

tations whose classes are given respectively by partitions λ and µ.

Theorem 12. [6] Let λ = (λ1, . . . , λl) and µ = (µ1, . . . , µk) be any two partitions of n, and

set g = n+1−l(λ)−l(µ)
2

. Then

c
(n)
λµ =

n

zλzµ22g

∑

(g1,g2)|=g

(l+2g1−1)! (k+2g2−1)!
∑

(i1,...,il)|=g1

(j1,...,jk)|=g2

l∏

h1=1

(
λh1

2ih1
+ 1

) k∏

h2=1

(
µh2

2jh2
+ 1

)

.

From the previous section, we need to count the number of factorisations of a given n-
cycle into an n-cycle and a permutation with k disjoint cycles. In the present notation, this
number is the sum of c

(n)
(n)µ over all partitions µ of n with l(µ) = k.

Lemma 13. The number of ways to express a given n-cycle as the product of an n-cycle and
a permutation of class given by µ = (µ1, . . . , µk) is

c
(n)
(n)µ =

n!

zµ2n−k

n−k

2∑

i=0

1

2i + 1

∑

(j1,...,jk)|=n−k

2
−i

k∏

h=1

(
µh

2jh + 1

)

.
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Proof. Simplification of the formula of Theorem 12 in the case where λ = (n). As we have
l = 1, there is a unique composition (g1) |= g1. Therefore

∑

(i1,...,il)|=g1

(j1,...,jk)|=g2

l∏

h1=1

(
λh1

2ih1
+ 1

) k∏

h2=1

(
µh2

2jh2
+ 1

)

=

(
n

2g1 + 1

)
∑

(j1,...,jk)|=g2

k∏

h2=1

(
µh2

2jh2
+ 1

)

.

On the other hand, l(µ) = k, so g = n−k
2

, also g2 = g − g1, and we have

(l + 2g1 − 1)! (k + 2g2 − 1)! = (2g1)! (n − 2g1 − 1)!,

which simplifies further when both sides are multiplied by
(

n

2g1+1

)
:

(l + 2g1 − 1)! (k + 2g2 − 1)!

(
n

2g1 + 1

)

=
(2g1)! (n − 2g1 − 1)! n!

(2g1 + 1)! (n − 2g1 − 1)!
=

n!

2g1 + 1
.

Finally, note that zλ =
∏

i αi! i
αi = 1! n1 = n. Hence

n

zλzµ22g
=

n

nzµ2n−k
=

1

zµ2n−k
.

All these operations lead to the following simplification of the formula in Theorem 12:

c
(n)
(n)µ =

n!

zµ2n−k

∑

(g1,g2)|=g

1

2g1 + 1

∑

(j1,...,jk)|=g2

k∏

h2=1

(
µh2

2jh2
+ 1

)

.

Setting g1 = i, we obtain g2 = n−k
2

− i and then the required equality.

We can now give an explicit formula for computing the Hultman number SH(n, k).

Theorem 14. For all n, k in N:

SH(n, k) =
(n + 1)!

2n+1−k

∑

(µ1,...,µk)⊢(n+1)

1

zµ

n+1−k

2∑

i=0

1

2i + 1

∑

(j1,...,jk)|=n+1−k

2
−i

k∏

h=1

(
µh

2jh + 1

)

. (2)

Proof. Clearly, D(n + 1, k) =
∑

(µ1,...,µk)⊢(n+1) c
(n+1)
(n+1)µ. Equation (2) follows from Corollary 9

and Lemma 13.

Using this time Theorem 10 together with Lemma 13, we similarly derive

Theorem 15. The number of permutations π in Sn having Hultman class µ = (µ1, . . . , µk)
equals

c
(n+1)
(n+1)µ =

(n + 1)!

zµ2n+1−k

n+1−k

2∑

i=0

1

2i + 1

∑

(j1,...,jk)|=n+1−k

2
−i

k∏

h=1

(
µh

2jh + 1

)

.

We now turn to particular cases, where simpler formulae can be obtained.
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5 Consequences

A first consequence of Theorem 8 is the derivation of two simple formulae for particular
values of SH(n, k) and D(n + 1, k):

1. for all even n, we have SH(n, 1) = 2 n!
n+2

;

2. for all n in N, we have D(n + 1, n − 1) =
(

n+2
4

)
.

On the other hand, Theorem 15 paves the way for some other counting formulae. “Sim-
ple” permutations, “2-permutations” and “3-permutations” in Sn play an important role in
genome rearrangement (see for instance Hannenhalli and Pevzner [7], or Elias and Hart-
man [3]). As in the work of Labarre [9], these permutations can be defined as follows.

Definition 16. A permutation π in Sn is simple if G(π) has no alternating cycle of length
greater than three.

Definition 17. A permutation π in Sn is a 2-permutation (resp. 3-permutation) if all alter-
nating cycles in G(π) have length 2 (resp. 3).

Note that 2-permutations (resp. 3-permutations) only exist when 4 (resp. 3) divides n+1.
The number of simple permutations can be obtained by restricting partitions (µ1, . . . , µk) of
n + 1 in Theorem 15 to those made up only of 1’s, 2’s and 3’s. More compact formulae for
counting elements of the two other classes are derived as follows.

1. The number of 2-permutations in Sn is

(n + 1)!
(

n+1
2

+ 1
)
! 2

n+1

2

.

Proof. In Theorem 15, let µ = (2, 2, . . . , 2
︸ ︷︷ ︸

n+1

2

). Thus k = n+1
2

and the number of 2-

permutations in Sn is therefore

(n + 1)!
(

n+1
2

)
! 2

n+1

2 2n+1−n+1

2

n+1−
n+1

2
2∑

i=0

1

2i + 1

∑

(j1,...,j n+1
2

)|=

„

n+1−
n+1

2
2

−i

«

n+1

2∏

h=1

(
2

2jh + 1

)

=
(n + 1)!

(
n+1

2

)
! 2n+1

n+1

4∑

i=0

1

2i + 1

∑

(j1,...,j n+1
2

)|=(n+1

4
−i)

n+1

2∏

h=1

(
2

2jh + 1

)

.

Since n+1
4

≥ i, we have two cases:

(a) if n+1
4

> i, then there exists 1 ≤ h0 ≤ h such that jh0
≥ 1, which implies

(
2

2jh0
+1

)
= 0 =

∏n+1

2

h=1

(
2

2jh+1

)
.
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(b) if n+1
4

= i, then the only composition of 0 being obviously (0, . . . , 0) we derive
∏n+1

2

h=1

(
2

2jh+1

)
= 2

n+1

2 .

Consequently, the number of 2-permutations in Sn equals

(n + 1)!
(

n+1
2

)
! 2n+1

1

2n+1
4

+ 1
2

n+1

2 ,

which gives the wanted expression.

Removing all 0’s from the resulting sequence yields Sequence A035319 in OEIS, which
counts certain maps on orientable surfaces. A bijection relating those maps to special
factorisations of cycles is derived from Proposition 4.1 in [6]. In turn, our Theorem 15
explains why Sequence A035319 also counts 2-permutations.

2. The number of 3-permutations in Sn is

(n + 1)!
(

n+1
3

)
! 12

n+1

3

n+1

3∑

i=0

(
n+1

3

i

)
3i

2i + 1
.

Proof. In Theorem 15, let this time µ = (3, 3, . . . , 3
︸ ︷︷ ︸

n+1

3

). Thus k = n+1
3

and the number

of 3-permutations in Sn is therefore

(n + 1)!
(

n+1
3

)
! 3

n+1

3 2n+1−n+1

3

n+1−
n+1

3
2∑

i=0

1

2i + 1

∑

(j1,...,j n+1
3

)|=
n+1−

n+1
3

2
−i

n+1

3∏

h=1

(
3

2jh + 1

)

=
(n + 1)!

(
n+1

3

)
! 12

n+1

3

n+1

3∑

i=0

1

2i + 1

∑

(j1,...,j n+1
3

)|=n+1

3
−i

n+1

3∏

h=1

(
3

2jh + 1

)

.

The binomial coefficient at the end of the last expression takes value 1 when jh = 1,
value 3 when jh = 0, and value 0 otherwise. In the last summation, we may thus
assume jh ∈ {0, 1} for all h. Then the number of jh equal to 1 in every composition

of n+1
3

− i is n+1
3

− i, the number of jh equal to 0 is i, and there are exactly
(n+1

3

i

)
such

compositions. Therefore the number of 3-permutations in Sn is

(n + 1)!
(

n+1
3

)
! 12

n+1

3

n+1

3∑

i=0

(
n+1

3

i

)
3i

2i + 1
.
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Table 1 gives a few values of the number of simple permutations, 2-permutations, and
3-permutations. The sequences for simple or 3-permutations do not appear in the OEIS.

n 1 2 3 4 5 6 7 8 9 10 11
simple 1 2 6 16 48 204 876 3 636 18 756 105 480 561 672

2- 0 0 1 0 0 0 21 0 0 0 1 485
3- 0 1 0 0 12 0 0 464 0 0 38 720

Table 1: Number of simple permutations, 2-permutations, and 3-permutations in Sn

Finally, our counting results may also be used to infer the distribution of those rearrange-
ment distances based on the cycle graph. For instance, Christie [2] generalised transpositions,
which exchange contiguous intervals in a permutation, to the case where the exchanged in-
tervals need not be contiguous, resulting in an operation called a block-interchange. By
contrast with transpositions, finding an optimal sorting sequence of block-interchanges can
be done in polynomial time, and the induced distance of a permutation π in Sn is given by
(n + 1 − c(G(π)))/2 (see Christie [2]). Therefore the number of permutations in Sn whose
block-interchange distance is k is exactly SH(n, n + 1 − 2k), which can be computed as in
Theorem 14.

We conclude with a few numerical values of SH(n, k), shown in Table 2. Note that the
successive values of SH(n, 1) (n = 2, 4, . . .) form Sequence A060593 in OEIS [10] (in the
context of cycle factorisations), whereas the other values do not appear in OEIS (except of
course for

(
n+2

4

)
).
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n\k 1 2 3 4 5 6 7 8 9 10 11 12

1 0 1
2 1 0 1
3 0 5 0 1
4 8 0 15 0 1
5 0 84 0 35 0 1
6 180 0 469 0 70 0 1
7 0 3 044 0 1 869 0 126 0 1
8 8 064 0 26 060 0 5 985 0 210 0 1
9 0 193 248 0 152 900 0 16 401 0 330 0 1

10 604 800 0 2 286 636 0 696 905 0 39 963 0 495 0 1
11 0 19 056 960 0 18 128 396 0 2 641 925 0 88 803 0 715 0 1

T
ab

le
2:

A
few

valu
es

of
S

H
(n

,k
)
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hand, Discrete Math., 241 (2001), 289–300.

[5] A. Goupil, On products of conjugacy classes of the symmetric group, Discrete Math.,
79 (1989/90), 49–57.

[6] A. Goupil and G. Schaeffer, Factoring n-cycles and counting maps of given genus, Eu-
ropean J. Combin., 19 (1998), 819–834.

[7] S. Hannenhalli and P. A. Pevzner, Transforming cabbage into turnip: Polynomial algo-
rithm for sorting signed permutations by reversals, J. ACM, 46 (1999), 1–27.

[8] A. Hultman, Toric permutations, Master’s thesis, Department of Mathematics, KTH,
Stockholm, Sweden, 1999.

[9] A. Labarre, New bounds and tractable instances for the transposition distance,
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 3 (2006), 380–
394.

[10] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. Published electroni-
cally at http://www.research.att.com/∼njas/sequences/.

[11] R. P. Stanley, Factorization of permutations into n-cycles, Discrete Math., 37 (1981),
255–262.

[12] R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, Cam-
bridge, Great Britain, 1999.

12

http://www.research.att.com/~njas/sequences/
http://www.research.att.com/~njas/sequences/


2000 Mathematics Subject Classification: Primary 05A15 ; Secondary 05A05.
Keywords: permutations, Stirling numbers of the first kind, Hultman numbers.

(Concerned with sequences A002619, A035319, and A060593.)

Received December 23 2005; revised versions received August 21 2006; June 9 2007. Pub-
lished in Journal of Integer Sequences, June 10 2007.

Return to Journal of Integer Sequences home page.

13

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A002619
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A035319
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A060593
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	Notation and Definitions
	The Bijection
	An Explicit Formula for the Hultman Numbers
	Consequences
	Acknowledgments

