
Modeling Machine Learning and Data Mining
Problems with FO(·)∗

Hendrik Blockeel, Bart Bogaerts, Maurice Bruynooghe,
Broes De Cat, Stef De Pooter, Marc Denecker, Anthony Labarre,
Jan Ramon,1 and Sicco Verwer2

1 Department of Computer Science, KU Leuven
firstname.secondname@cs.kuleuven.be

2 Radboud Universiteit Nijmegen, Institute for Computing and Information
Sciences
siccoverwer@gmail.com

Abstract
This paper reports on the use of the FO(·) language and the IDP framework for modeling and
solving some machine learning and data mining tasks. The core component of a model in the
IDP framework is an FO(·) theory consisting of formulas in first order logic and definitions; the
latter are basically logic programs where clause bodies can have arbitrary first order formulas.
Hence, it is a small step for a well-versed computer scientist to start modeling. We describe
some models resulting from the collaboration between IDP experts and domain experts solving
machine learning and data mining tasks. A first task is in the domain of stemmatology, a domain
of philology concerned with the relationship between surviving variant versions of text. A second
task is about a somewhat similar problem within biology where phylogenetic trees are used to
represent the evolution of species. A third and final task is about learning a minimal automaton
consistent with a given set of strings. For each task, we introduce the problem, present the IDP
code and report on some experiments.

1998 ACM Subject Classification D.1.6 [Logic Programming], F.4.1 [Mathematical Logic]: Com-
putational logic, I.2.4 [Knowledge Representation Formalisms and Methods]

Keywords and phrases Knowledge representation and reasoning, declarative modeling, logic
programming, knowledge base systems, FO(·), IDP framework, stemmatology, phylogenetic tree,
deterministic finite state automaton.

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.14

1 Introduction

Researchers in machine learning and data mining are often confronted with problems for
which no standard algorithms are applicable. Here we explore a few of these problems. They
can be abstracted as graph problems and are NP-complete. This means that algorithms
inherently involve search and that heuristics are needed to guide the search towards solutions.
Doing this in a procedural language is complex and cumbersome; this is the kind of application
for which high level modeling languages can be very useful. Under such a paradigm, a model
specifies the format of the data, the function to be optimized and a set of constraints to be
satisfied. The model together with a given problem instance is handed over to a solver which

∗ This work was supported by BOF project GOA/08/008 and by FWO Vlaanderen.

© Hendrik Blockeel, Bart Bogaerts, Maurice Bruynooghe, Broes De Cat, Stef De Pooter,
Marc Denecker, Anthony Labarre, Jan Ramon, and Sicco Verwer;

licensed under Creative Commons License ND
Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 14–25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.14
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

H. Blockeel et. al. 15

produces a solution. Several modeling languages exist in the field of Constraint Programming;
the Zinc language [16] is a good example. The Answer Set Programming (ASP) paradigm
can also be considered a modeling language; many solvers exist, examples are the systems
described in [15, 9, 21]. Another such modeling language is FO(·) [6]. Problem solving with
such modeling languages makes use of powerful solvers that perform propagation to squeeze
the search space each time a choice is made. They relieve the programmer from encoding
such propagation in procedural code. By default, these solvers use heuristics which are not
problem-specific, but even so they often outperform procedural solutions.

This paper explores the use of the FO(·) language and its incarnation in the IDP framework
for solving some machine learning and data mining problems. The core component of a
model in the IDP framework is an FO(·) theory consisting of formulas in first order logic
and definitions; the latter are basically logic programming clauses with arbitrary first order
formulas in the body. The necessary background on FO(·) is given in Section 2.

Section 3 solves a task in the domain of a stemmatology, a part of philology that studies
the relationship between surviving variant versions of a text. Section 4 discusses a problem
about phylogenetic trees as used in biology. Whereas the first two tasks are new, in Section 5,
it is investigated how well FO(·) performs on a standard machine learning task, namely the
learning of a minimal deterministic finite state automaton (DFA) that is consistent with a
given set of accepted and rejected strings.

In all of these problems, model expansion [17] —expanding a partially given structure into
a complete structure that is a model of a theory— is the core computational task. Sometimes,
a model that is minimal according to some criterion is required.

2 FO(·) and the IDP framework

2.1 FO(·)

The term FO(·) is used to denote a family of extensions of first order logic (FO). In this text,
the focus lies on FO(·)IDP, the instances supported by the IDP framework. FO(·)IDP extends
FO with (among others) types, arithmetic, aggregates, partial functions and inductive defini-
tions. This section recalls the aspects of FO(·) that are necessary for a good understanding
of the rest of the paper; more information can be found in [23] and [3].

A specification in FO(·)IDP consists of a number of logical components, namely vocabularies,
structures, terms, and theories. A vocabulary declares the symbols to be used (contrary
to Prolog, the first character of a symbol has no bearing on its kind); a structure is a
database with input knowledge; a term declared as a separate component represents a value
to be optimized; a theory consists of FO formulas and inductive definitions. An inductive
definition is a set of rules of the form ∀x̄ : P (x̄) ← ϕ(x̄). where ϕ is an FO(·)IDP formula.
As argued in [6], the intended meaning of all common forms of definitions is captured by
the well-founded semantics [22] which extends the least model semantics of Prolog’s definite
clauses to rule sets with negation. An FO(·)IDP formula differs from FO formulas in several
ways. Firstly, FO(·)IDP is a many-sorted logic: every variable has an associated type and
every type an associated domain. Moreover, it is order-sorted: types can be subtypes of
others. Secondly, besides the standard terms of FO, FO(·)IDP also has aggregate terms:
functions over a set of domain elements and associated numeric values which map to the
sum, product, cardinality, maximum or minimum value of the set.

We writeM |= T to denote that structureM satisfies theory T . With xM, we denote
the interpretation of x underM, where x can be a formula or a term.

ICLP’12

16 Modeling Machine Learning and Data Mining Problems with FO(·)

2.2 The IDP framework
The IDP framework [5] combines a declarative specification, in FO(·)IDP, with imperative
manipulation of the specification via the Lua [13] scripting language. Such an interaction
makes it a Knowledge Base System (KBS), as it allows one to reuse the same declarative
knowledge for a range of inference tasks such as model expansion, optimization, verification,
symmetry breaking, grounding, etc. For an in-depth treatment of the framework and the
supported inferences, we refer to [3].

In this paper, we focus on the inference tasks model expansion and model minimization.
The task of model expansion is, given a vocabulary V , a theory T over V and a partial
structure S over V (at least interpreting all types), to find an interpretationM that satisfies
T and expands S, i.e.,M is a model of the theory and the input structure S is a subset of
the model. Such a task is represented as 〈V, T, S〉.

The task of model minimization, represented as 〈V, T, S, t〉 with V , T and S as above
and t a term, is to find a modelM of T that expands S such that for all other modelsM’
expanding S, tM ≤ tM

′ .
The IDP framework allows users to specify FO(·)IDP problem descriptions. Such a problem

description consists of logical and procedural components. The basic overall structure of the
various logical components is as in the following schema.

vocabulary V { . . . } theory T: V { . . . }
term t : V { . . . } structure S : V { . . . }

The first component defines a vocabulary V. The other components define respectively a
theory T, a term t and a structure S. They all refer to the vocabulary V for the symbols they
use. In general, several vocabularies can be defined, eventually, one vocabulary extending
another.

We use IDP syntax in the examples throughout the paper. Each IDP operator has an
associated logical operator, the main (non-obvious) operators being: &(∧), |(∨), ∼(¬), !(∀),
?(∃), <=>(≡), ∼=(6=).

The procedural component consists of procedures, coded in Lua, that provide the interface
between the user and the logical components. Examples will be shown in the next sections.

3 Stemmatology

3.1 The task
The Oxford English Dictionary defines stemmatics, or stemmatology, as “the branch of
study concerned with analyzing the relationship of surviving variant versions of a text to
each other, especially so as to reconstruct a lost original.” A stemma is a kind of “family
tree” of a set of manuscripts that indicates which manuscripts have been copied from which
other manuscripts, and which manuscript is the original source. It may include both extant
(currently existing and available) and non-extant (“lost”) manuscripts. The stemma is not
necessarily a tree: sometimes a manuscript has been copied partially from one manuscript,
and partially from another, in which case the manuscript has multiple parents. Hence, a
stemma is in general a connected directed acyclic graph with a single root [1]; we use the
term CRDAG (connected rooted DAG) for it.

While constructing a stemma has some similarities with constructing a phylogenetic tree
in biology, the algorithms of that domain do not fit the stemmatological context well and
specific algorithms are developed [2].

H. Blockeel et. al. 17

The problem studied here assumes that a CRDAG representing a stemma is given, as well
as feature data about (some of) the manuscripts. More specifically, for each location where
variation is observed in the manuscripts, the data includes a feature that indicates which
variant a particular manuscript has. Note that, in practice, it is highly unlikely that exactly
the same variant originated multiple times independently; when a variant occurs in multiple
manuscripts, it is reasonable to assume there was one ancestor, common to all of these, where
the variant occurred for the first time (the “source” of the variant)1. Therefore, we say that
the feature is consistent with the stemma if it is possible to indicate for each variant a single
manuscript that may have been the origin of that variant. Since for some manuscripts the
value of the feature is not known, checking consistency boils down to assigning a variant to
each node in the CRDAG in such a way that, for each variant, the nodes having that variant
form a CRDAG themselves. Using colors to denote the value of a variant, this property is
captured by the following definition.

I Definition 1 (Color-connected). Two nodes x and y in a colored CRDAG are color-connected
if a node z exists (z can be one of x and y) such that there is a directed path from z to x,
and one from z to y, and all nodes on these paths (including z, x, y) have the same color.

Given a partially colored CRDAG, the color-connected problem is to complete the coloring
such that every pair of nodes of the same color is color-connected.

3.2 An IDP solution
A pair of researchers in stemmatology attempted to develop a search free algorithm. They
wrote 370 lines of perl and used a graph library in the background. While it worked for their
benchmarks, they were worried about the completeness of their approach. After abstracting
the problem as the color-connected problem, we proved that it was NP-complete (hence
requires search) and constructed a solvable example for which their algorithm claimed no
solution exists. We also worked on an IDP solution. After several iterations, we arrived at
the following simple solution which turned out to be faster than the (incomplete) procedural
algorithm on the benchmark set. It is shown in Listing 1.

The vocabulary part introduces two types (manuscript and color), two functions and
one predicate. The function colorOf maps a manuscripts to its color and the function
sourceOf maps a color to the manuscript that is the source of the feature. The predicate
copiedBy is used to represent the CRDAG of the stemma in the input structure.

The theory part compactly represents the color-connectedness property by a single
constraint: when the source of the color of a manuscript (x) is not equal to the manuscript
itself then there must exist a manuscript (y) with the same color that has been copied by x.

The Lua code of the procedure process (omitted, 60 lines) processes the stemma data
and builds the input structure for copiedBy. It then iterates over the features, partially
builds the structure for the function colorOf and calls the procedure check, passing all
structures in the variable feature. The latter procedure calls the model expansion and
returns the result to process which reports them to the user.

Our largest benchmark so far is the Heinrichi data set [18]. This stemma about old
Finnish texts includes 48 manuscripts, 51 copiedBy tuples and information about 1042
features. Processing all features takes 12 seconds with the IDP system while it took 25
seconds with the original procedural code. Our solution is integrated in the toolset of [20].

1 For some features, e.g., the spelling of a particular word, this does not hold.

ICLP’12

18 Modeling Machine Learning and Data Mining Problems with FO(·)

Listing 1 Description of the connected-coloring problem using IDP.
vocabulary V {

type manuscript
type c o l o r
copiedBy (manuscript , manuscript)
co lo rOf (manuscript) : c o l o r
sourceOf (c o l o r) : manuscript

}
theory T : V {

! x : x ∼= sourceOf (co lo rOf (x))
=> ? y : copiedBy (y , x) & co lorOf (x) = co lorOf (y) .

}
procedure check (f e a tu r e) {

re turn sa t (T, f e a tu r e) // checks e x i s t e n c e o f a model
}
procedure proce s s (stemmafilename , sample f i l ename) {
read the stemma data and bu i ld a s t ruc tu r e f or copiedBy
for each f e a tu r e {

read the g iven c o l o r s and bu i ld a p a r t i a l s t ruc tu r e f or co lo rOf
c a l l check (f e a tu r e)
r epor t the r e s u l t s }

}

4 Minimum common supergraphs of partially labelled trees

Phylogenetic trees, extensively surveyed by [7], are the traditional tool for representing
the evolution of a given set of species. However, there exist situations in which a tree
representation is inadequate. One reason is the presence of evolutionary events that cannot
be displayed by a tree: genes may be duplicated, transferred or lost, and recombination
events (i.e., the breaking of a DNA strand followed by its reinsertion into a different DNA
molecule) as well as hybridisation events (i.e., the combination of genetic material from
several species) are known to occur. A second reason is that even when evolution is indeed
tree-like, there are cases in which a relatively large number of tree topologies might be
“equally good” according to some chosen criteria, and not enough information is available
to discriminate between those trees. One solution that has been proposed to address the
latter issue is the use of consensus trees, where the idea is to find a tree that represents a
compromise between the given topologies; another approach, on which we focus here, consists
in building a network that is compatible with all topologies of interest. A somewhat loose
description of the variant we are interested in, which will be stated in a more formal way
below, is to find the smallest graph that contains a given set of evolutionary trees. For more
information about those phylogenetic networks, see the recent book by [12] and the online,
up-to-date annotated bibliography maintained by [8].

4.1 The problem
The studied problem is about the evolution of a fixed set of m given species. The input is a
set of phylogenetic trees, each tree showing a plausible relationship between the species. All
trees have n (> m) nodes, m of them are labeled with the name of the species (typically, in
the leaves, but also internal nodes can be labeled). Given n−m extra names, the labeling of
each tree can be extended into a full labeling. The completely labeled trees then induce pairs

H. Blockeel et. al. 19

of labels, whose union yields a graph over the set of n names. The task is to find a network
with a minimum number of edges. Here, we formulate the problem as a slightly more general
graph problem where we do not fix the size of the initial labeling.

I Definition 2 (Common supergraph of partially labeled n-graphs). Given is a set S of n

names and a set of graphs {G1, G2, . . . , Gt} where each graph Gi = (V, Ei,Li) has n vertices
and is partially labeled with an injective function Li : V → S. A graph (S, ES) is a common
supergraph of {G1, G2, . . . , Gt} if there exists, for each i, a bijection L′i : V → S that extends
Li and such that, for each edge {v, w} of Ei: {L′i(v),L′i(w)} ∈ ES.

A minimum common supergraph (S, ES) is a common supergraph such that |ES′| ≥ |ES|
for all common supergraphs (S, ES′).

Note that every labeling function L′i induces an injection Ei → ES, hence the name common
supergraph. Figure 1 shows two partially labeled 7-graphs, along with two of their common
supergraphs. G1 is a minimum common supergraph since T1 and T2 are not isomorphic
and G1 has only one more edge than each of T1 and T2. G2 is not a minimum common
supergraph since it has more edges than G1.

1 3

4

2

1 3

4

2

1 3

4

2

1

3

4 2

T1 T2 G1 G2

Figure 1 Two 7-graphs T1 and T2, a minimum common supergraph G1, and a common supergraph
G2 that is not minimum.

Now, we can consider the following decision problem: Given a set of partially labeled
n-graphs, can the labelings be completed such that the n-graphs have a common supergraph
with at most k edges? It is proven in [14] that this problem is NP-hard, even if the n-graphs
are trees with all leaves labeled.

4.2 The IDP solution
Listing 2 shows a simple model inspired by [14]. The labeling is declared as a function from
nodes to the names (it is partly specified in the input structure). The only constraint of the
theory forces the function to be bijective. The common supergraph over the names induced
by the labeling is given by the arc atoms. As the minimization is on the number of such
atoms, some care is required. Either one should make arc a symmetric relation or one should
pay attention to the direction, e.g., by ensuring x < y in arc(x,y) (every type is ordered
in FO(·)IDP and provided of a < predicate). The latter is done here as the former gives a
somewhat larger grounding.

A feature of the shown solution is that the terms label(t ,x) and label (t ,y) each have two
occurrences in the rules defining arc. The current grounder associates a distinct variable with
each occurrence. One can avoid this by replacing the head of the definition by arc(lx , ly) and
by adding lx=label(t,x) and ly=label(t,y) to the body. This has a dramatic effect on the size
of the grounding and on the solving time; e.g., the grounding is reduced from 620798 to 6024
lines and the solving time from 144s to 8 s on a problem with 5 trees of 8 vertices (4 leaves).

ICLP’12

20 Modeling Machine Learning and Data Mining Problems with FO(·)

Listing 2 Modelling cs-plt in the IDP format.
vocabulary CsPltVoc {

type t r e e
type ver tex
type name // Isomorphic to ver tex
edge (t ree , node , node) // t r e e s , g iven in input s t r u c tu r e
arc (name , name) // The induced network
l a b e l (t ree , node) : name // the l abe l i ng ,

// p a r t i a l l y g iven in the input s t r u c tu r e
}
theory CsPltTheory : CsPltVoc {

{ // induced network
arc (l a b e l (t , x) , l a b e l (t , y)) <− edge (t , x , y) &

l a b e l (t , x) < l a b e l (t , y) .
arc (l a b e l (t , x) , l a b e l (t , y)) <− edge (t , y , x) &

l a b e l (t , x) < l a b e l (t , y) .
}
! t c : ?1 n : l a b e l (t , n) = c . // l a b e l f unc t i on i s b i j e c t i v e

}
term SizeOfSupergraph : CsPltVoc { #{ x y : arc (x , y) } }
procedure main () {

p r i n t (minimize (CsPltTheory , CsPltStructure , SizeOfSupergraph) [1])
}

The solving time is exponential in the number of nodes and the program becomes
impractical on real-world problems, even if the best solution found so far is returned when
some time budget is exceeded. However, the versatility of the IDP system allowed us to
experiment with various strategies for greedily searching an approximate solution. This led
to the following quite natural solution that performed very well, with respect to both running
time and quality of the solution.
1. Find a minimum common supergraph (MCS) for every pair of trees.
2. Pick the smallest MCS (say G) and remove the two trees that are the input for G.
3. Find an MCS between G and every remaining tree.
4. Replace G by an MCS with minimum size, remove the tree that is the input for this MCS

and go back to step 3 if any tree remains.

Steps 1 and 3 of this simple procedure are performed by IDP using a model very similar
to that of Listing 2 (see [14] for the actual model). This greedy approach works very well.
Indeed, for large instances and a fixed time budget, the exact method runs out of time and
returns a suboptimal solution while the greedy method completes and returns a solution
that, although suboptimal, is typically much smaller.

5 Learning deterministic finite state automata

A third task is about learning a deterministic finite state automaton (DFA). The goal is to
find a (non-unique) smallest DFA that is consistent with a given set of positive and negative
examples. It is one of the best studied problems in grammatical inference [4], has many
application areas, and is known to be NP-complete [10]. Recently [11] won the 2010 Stamina
DFA learning competition [19] by reducing the DFA learning problem to a SAT problem and
running an off-the-shelf SAT solver. Here we explore whether an FO(·)IDP formalization can
compete with this competition winner.

H. Blockeel et. al. 21

b

b

a a
a

b

b accepting
rejecting

Figure 2 An augmented prefix tree acceptor (APTA) for S = (S+ = {a, abaa, bb}, S− = {abb, b}).
The start state is the root of the APTA.

5.1 The problem
A deterministic finite state automaton (DFA) is a directed graph consisting of a set of states
Q (nodes) and labeled transitions T (directed edges). The root is the start state and any
state can be an accepting state. In each state, there is exactly one transition for each symbol.
A DFA can be used to generate or accept sequences of symbols (strings) using a process
called DFA computation. When accepting strings, the symbols of the input string determine
a path through the graph. When the final state is an accepting state, the string is accepted,
otherwise it is rejected.

Given a pair of finite sets of positive example strings S+ and negative example strings
S−, (the input sample), the goal of DFA identification (or learning) is to find a (non-unique)
smallest DFA A that is consistent with S = {S+, S−}, i.e., every string in S+ is accepted,
and every string in S− is rejected by A. Typically, the size of a DFA is measured by |Q|, the
number of states it contains.

5.2 The solution
Most DFA learning algorithms use a form of state-merging. First, a a tree-shaped automaton
called the augmented prefix tree acceptor (APTA), is constructed. As can be seen in Figure 2,
the APTA accepts the positive examples and rejects the negative ones. State-merging
merges states under the constraint that the automaton remains deterministic (at most one
transition/label in each state) and that accepting and rejecting states cannot be merged.

States of the final automaton are thus equivalence classes of states of the APTA. Calling
the states of the final automaton colors, the problem becomes that of finding a coloring of
the states of the APTA that is consistent with the input sample. This is also the approach
taken by [11]; they formulate constraints expressing which pairs of states are incompatible,
and abstract the problem as a graph, with as states the states of the APTA and as links the
incompatible pairs. The problem is now a conventional graph coloring problem and they
use a clever SAT encoding to solve it. Here we construct a direct model in FO(·)IDP. But
before doing so, we have to consider one more aspect. For really large problems, the SAT
formulation was too big (hundreds of colors, resulting in over 100.000.000 clauses) [11]. To
get around such problems, they used a greedy heuristic procedural method to identify a
clique of pairwise incompatible states in the APTA. For states in such a clique, the colors
can be fixed in advance. The effect is to break some symmetries and to reduce the size of
the problem. We assume here that the states of the clique are already colored in the input
structure.

The FO(·)IDP DFA learning theory is depicted in Listing 3. The types state, label, the
function trans, and the predicates acc and rej describe the given input samples (and hence
the APTA). Note that trans is partial as the input samples do not define all transitions.

ICLP’12

22 Modeling Machine Learning and Data Mining Problems with FO(·)

Listing 3 Modelling DFA in the IDP format.
vocabulary dfaVoc {

type s t a t e // s t a t e s used in APTA
type l a b e l // symbols t r i g g e r i n g t r a n s i t i o n s
type c o l o r // a v a i l a b l e s t a t e s f o r r e s u l t i n g automaton
partial t rans (s ta te , l a b e l) : s t a t e // t r a n s i t i o n s d e f i n i n g APTA
acc (s t a t e) // accept ing s t a t e s o f APTA
r e j (s t a t e) // r e j e c t i n g s t a t e s o f APTA
co lorOf (s t a t e) : c o l o r // f i x ed in input f o r c o l o r s in c l i q u e
// the r e s u l t i n g automaton :
partial co lorTrans (co lo r , l a b e l) : c o l o r // t r a n s i t i o n s
accColor (c o l o r) // accept ing s t a t e s

}
theory dfaTheory : dfaVoc {

! x : acc (x) => accColor (co lo rOf (x)) .
! x : r e j (x) => ∼accColor (co lo rOf (x)) .
// t rans induces co lorTrans :
! x l z : t rans (x , l)=z => colorTrans (co lo rOf (x) , l)=co lo rOf (z) .

}
term nbColorsUsed : dfaVoc { #{ x : (? y : ColorOf (y) = x) } }
procedure main () {

s tdopt i on s . symmetry = 1 // de t e c t and break symmetries
p r i n t (minimize (dfaTheory , s imple , nbColorsUsed) [1])

}

The states of the resulting automaton are elements of the type color. Its transitions are
described by the function colorTrans. This function is also declared as a partial function.
To construct a complete DFA from the result, colorTrans has to be made total by mapping
the missing transitions to a hidden “sink” state. The function colorOf maps the states of
the APTA on the states (colors) of the final automaton. Finally, the predicate accColor
describes the accepting states of the resulting automaton.

The theory expresses two constraints on accColor: accepting states of the APTA must
and rejecting states cannot be mapped to an accepting state of the final automaton. The
third constraint states that each transition on the APTA induces a transition between colors.
The term nbColorsUsed counts the number of states (colors) of the resulting automaton
and is used for minimization. Instead of minimizing the number of states, one could as well
minimize other properties such as the number of transitions, depth of the model, the size
of loops, etc. They are also easy to formalize in FO(·)IDP. This makes the resulting DFA
learning tool very suitable for application in different problem domains such as software
engineering or bioinformatics where other optimization criteria are preferred.

In order to test the performance of the IDP translation, we ran it on the benchmark
set of [11]. We compare IDP with two versions of the encoding in [11]: an unoptimized
plain encoding (but with the symmetry breaking clique), and an optimized version (with
extra symmetry breaking, unit literal propagation, but without redundant clauses). The
experiment is not on the minimization problem but on the problem of constructing a DFA
with a fixed set of states.

IDP, with the symmetry breaking option on, is significantly faster than the plain SAT
encoding (not for the easy problems where the IDP time is dominated by the approximately
one second grounding time, a time not needed when the problem is directly encoded in
SAT). For example the maximum runtime of an instance in IDP is approximately 1400
seconds while one instance takes over 70000 seconds to solve in the plain encoding. The IDP

H. Blockeel et. al. 23

translation is however outperformed by the optimized version of the direct SAT translation.
In the optimized encoding, the longest recorded runtime is slightly above 100 seconds. In [11]
an even better time is obtained by including extra redundant clauses. It is an interesting
question whether the performance gap can be closed by adding redundant constraints or by
parameter tuning of the SAT solver.

6 Conclusion

We have described three NP-hard problems together with their solution with FO(·) and the
IDP framework. The first problem is in the domain of stemmatology. We developed an IDP
solution that outperformed the dedicated procedural code of a researcher in the field. We
proved the problem is NP-complete and constructed problem instances on which the original
code errs. The resulting program is a useful tool for the researchers and is integrated in [20].
In a trivial extension we made the colorOf function partial; then only those manuscripts
are colored as necessary for making the coloring consistent. This gives useful insight to the
philologist. Another planned variation does not enforce a unique source for each color, but
minimizes the number of sources. This can provide additional insight when the data are in
disagreement with the hypothesized stemma.

The second problem addressed the construction of a minimal common supergraph out of
a given set of phylogenetic trees. The use of FO(·)IDP allowed the authors of [14] to quickly
explore various approaches and to arrive at an approximate method that gives good results.

These two applications illustrate the versatility of FO(·) for solving a new problem. The
third application compares an FO(·) formalization with a state of the art solution for the
NP-complete problem of learning a DFA. While we observe a performance gap with a highly
tuned competition winner, our solution performs better than the initial encoding of [11]. On
the other hand, the FO(·) formalization took much less effort to develop and offers a lot
more flexibility, e.g., to change the optimization criterion. The application is also a good
benchmark for further improving the IDP system.

We hope these applications inspire others to try out the IDP framework. It is a small
step for computer scientists knowledgeable about logic and Prolog. While our solutions look
deceivingly simple, a word of caution is in place. A first solution is hardly ever the best
solution; be convinced that it can be done simpler. Simpler not only means a more concise
and elegant model but also, almost always, a better performance. Try to break up complex
constraints in simpler ones, requiring less variables.

A common beginners misconception we observed, is to use one function (or relation) for
information partially given in the input structure and to use another function that extends
the partial function into a total one while that same function can serve by declaring it total
(the default for functions) and stating that the input structure is partial.

We also observed a very useful programming pattern. In each of our applications,
some equivalence class over some given elements is to be constructed. Representing this
relationships as a function from the elements to the set of equivalence classes is an excellent
choice (the function colorOf in stemmatology and in DFA learning, the function label in
the phylogenetic trees).

Acknowledgements Caroline Macé and Tara Andrews brought some of the authors in
touch with stemmatology and Tara explained them the working of the procedural code.

ICLP’12

24 Modeling Machine Learning and Data Mining Problems with FO(·)

References

1 T. Andrews and C. Macé. Beyond the tree of texts: Graph methods for stemmatic analysis.
In preparation, 2012.

2 P. Baret, C. Macé, P. Robinson, C. Peersman, R. Mazza, J. Noret, E. Wattel, Van Mulken
M., Robinson P., A. Lantin, P. Canettieri, V. Loreto, H. Windram, M. Spencer, C. Howe,
M. Albu, and A. Dress. Testing methods on an artificially created textual tradition. In
The evolution of texts: Confronting stemmatological and genetical methods, pages 255–283.
Istituti editoriali e poligrafici internazionali, Pisa, 2006.

3 Bart Bogaerts, Broes De Cat, Stef De Pooter, and Marc Denecker. The idp framework
reference manual. http://dtai.cs.kuleuven.be/krr/software/idp3/documentation.

4 Colin de la Higuera. A bibliographical study of grammatical inference. Pattern Recognition,
38(9):1332–1348, 2005.

5 Stef De Pooter, Johan Wittocx, and Marc Denecker. A prototype of a knowledge-based
programming environment. In International Conference on Applications of Declarative
Programming and Knowledge Management, 2011.

6 Marc Denecker and Eugenia Ternovska. A logic of nonmonotone inductive definitions. ACM
Transactions on Computational Logic (TOCL), 9(2):Article 14, 2008.

7 Joseph Felsenstein. Inferring Phylogenies. Sinauer Associates, Sunderland, MA, 2004.
8 Philippe Gambette. Who is who in phylogenetic networks: Articles, authors and programs.

Published electronically at http://www.atgc-montpellier.fr/phylnet, 2010.
9 Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. clasp: A

conflict-driven answer set solver. In Chitta Baral, Gerhard Brewka, and John S. Schlipf,
editors, LPNMR, volume 4483 of LNCS, pages 260–265. Springer, 2007.

10 E. Mark Gold. Complexity of automaton identification from given data. Information and
Control, 37(3):302–320, 1978.

11 Marijn Heule and Sicco Verwer. Exact DFA identification using SAT solvers. In Grammat-
ical Inference: Theoretical Results and Applications, ICGI 2010, pages 66–79, 2010.

12 Daniel H. Huson, Regula Rupp, and Celine Scornavacca. Phylogenetic Networks: Concepts,
Algorithms and Applications. Cambridge University Press, November 2010.

13 Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes. Lua – an ex-
tensible extension language. Software: Practice and Experience, 26(6):635–652, 1996.

14 Anthony Labarre and Sicco Verwer. Merging partially labelled trees: hardness and an
efficient practical solution. In preparation, 2012.

15 Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri,
and Francesco Scarcello. The DLV system for knowledge representation and reasoning.
ACM Transactions on Computational Logic, 7:499–562, 2002.

16 Kim Marriott, Nicholas Nethercote, Reza Rafeh, Peter J. Stuckey, Maria Garcia de la
Banda, and Mark Wallace. The design of the Zinc modelling language. Constraints,
13(3):229–267, 2008.

17 David G. Mitchell and Eugenia Ternovska. A framework for representing and solving NP
search problems. In Manuela M. Veloso and Subbarao Kambhampati, editors, AAAI, pages
430–435. AAAI Press / The MIT Press, 2005.

18 T. Roos and T. Heikkilä. Evaluating methods for computer-assisted stemmatology using
artificial benchmark data sets. Literary and Linguistic Computing, 24(4):417–433, 2009.

19 The StaMinA competition, Learning regular languages with large alphabets. http:
//stamina.chefbe.net/, 2010.

20 Stemmaweb, a collection of tools for analysis of collated texts. http://byzantini.st/
stemmaweb/, 2012.

http://dtai.cs.kuleuven.be/krr/software/idp3/documentation
http://www.atgc-montpellier.fr/phylnet
http://stamina.chefbe.net/
http://stamina.chefbe.net/
http://byzantini.st/stemmaweb/
http://byzantini.st/stemmaweb/

H. Blockeel et. al. 25

21 Tommi Syrjänen and Ilkka Niemelä. The smodels system. In Thomas Eiter, Wolfgang
Faber, and Mirosław Truszczyński, editors, LPNMR, volume 2173 of LNCS, pages 434–438.
Springer, 2001.

22 Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded semantics for
general logic programs. Journal of the ACM, 38(3):620–650, 1991.

23 Johan Wittocx, Maarten Mariën, and Marc Denecker. The idp system: a model expansion
system for an extension of classical logic. In Marc Denecker, editor, LaSh, pages 153–165,
2008.

ICLP’12

	Introduction
	FO() and the IDP framework
	FO()
	The IDP framework

	Stemmatology
	The task
	An IDP solution

	Minimum common supergraphs of partially labelled trees
	The problem
	The IDP solution

	Learning deterministic finite state automata
	The problem
	The solution

	Conclusion

