
FACULTÉ DES SCIENCES
Département d’Informatique
Département de Mathématique

Combinatorial aspects of genome
rearrangements and haplotype networks

Anthony Labarre

Dissertation présentée en vue de l’obtention
du grade de Docteur en Sciences

Année académique 2007-2008

This Ph. D. dissertation was written under the supervision of Prof. Dr. Jean-
Paul Doignon (Université libre de Bruxelles, Belgium) and defended on September
12, 2008. The Jury consisted of:

• Prof. Dr. Martine Labbé (Université libre de Bruxelles, Belgium, Dean of the
Faculty of Sciences, President of the Jury);

• Prof. Dr. Jean Cardinal (Université libre de Bruxelles, Belgium, Département
d’Informatique, Secretary of the Jury);

• Prof. Dr. Jean-Paul Doignon (Université libre de Bruxelles, Belgium, Départe-
ment de Mathématique);

• Dr. Samuel Fiorini (Université libre de Bruxelles, Belgium, Département de
Mathématique);

• Dr. Patrick Mardulyn (Université libre de Bruxelles, Belgium, Laboratoire
d’Éco-éthologie évolutive);

• Prof. Dr. Marie-France Sagot (Université Claude Bernard, Lyon I, France);

• Prof. Dr. Alain Guénoche (Institut de Mathématiques de Luminy, Marseille,
France).

i

http://www.solvay.edu/EN/Research/Bernheim/RsUnits_General.php?user=3165
http://www.ulb.ac.be/di/algo/jcardin/
http://www.ulb.ac.be/facs/sciences/math/perso/doignon.html
http://homepages.ulb.ac.be/~sfiorini/
http://homepages.ulb.ac.be/~pmarduly/
http://biomserv.univ-lyon1.fr/~sagot/
http://www.lim.univ-mrs.fr/~guenoche/

Acknowledgements

First and foremost I would like to thank my advisor Jean-Paul Doignon, without
whom the present text would not lie before your eyes. Jean-Paul introduced me
to the world of research and taught me a lot, from the day we started working on
genome rearrangement problems, which were the subject of my Master’s Thesis and
which he also supervised. I would like to thank him for being a wonderful advisor
and a wonderful professor (I could not possibly overemphasise his ability to explain
even the most complex concepts in such a simple and interesting way), and for
believing in me enough to supervise me as a Ph. D. student.

Research is fun, especially when you reach results interesting enough to be pub-
lished, but it also has its moments of loneliness, doubt and pain; I would like to
thank Lin, my friends and my family for supporting me, helping me and bearing
with me during those hard times, and reminding me that there is more to life than
work. Colleagues from both Departments (Mathematics and Computer Science)
have also been most helpful, both on a personal and on a professional level. I would
like to take this opportunity to thank in particular Jean Cardinal, who has always
been able to spare a few minutes for discussing problems and whose “algorithmic
lunches”, as they are called, have been a nice and refreshing opportunity for infor-
mal discussions, presentation of results and exchange of ideas between enthusiastic
people on various topics.

I would especially like to thank Éric Tannier and Marie-France Sagot for inviting
me to a one-week open problem session in Lyon in April 2006, as well as my other
collaborators: Guillaume Fertin, Irena Rusu, and Stéphane Vialette, for believing in
and eventually collaborating with Éric and I on a survey which would later become
a book. I must credit Éric for that idea.

I would also like to thank Jean-Stéphane Varré for inviting me to Lille in March
2008 and giving me the opportunity to present some of my work to the SEQUOIA
bioinformatics team at INRIA.

I am also grateful to the Fonds National de la Recherche Scientifique (F.N.R.S.)
for supporting me with a F.R.I.A. (Fonds pour la formation à la Recherche dans
l’Industrie et dans l’Agriculture) grant during those four years.

Finally, I would like to thank you for the time you will spend on my dissertation,
and wish you a pleasant read.

ii

Introduction

We study two problems motivated by computational biology: genome rearrange-
ments, which under some assumptions can be recast as the problem of sorting a
permutation (therefore viewed as a linear ordering) using as few allowed moves as
possible, and the construction of haplotype networks, which generalise haplotype
trees in that they allow multiple paths between species. Our main contributions
are:

• new upper bounds and formulae for computing the exact transposition dis-
tance of many permutations (a problem of unknown computational complex-
ity); those results do not rely on the classical cycle graph (a variant of the
breakpoint graph restricted to unsigned permutations) as most previous results
do, but rather on the classical disjoint cycle decomposition of permutations;

• formulae for enumerating permutations whose cycle graph contains a given
number of cycles, and for enumerating permutations that belong to a given
conjugacy class (not in the classical sense, but rather in terms of the cy-
cle graph); we give simpler formulae for a few particular cases, including 2-
permutations and 3-permutations, and show how our results can be used to
completely characterise the distribution of the block-interchange distance;

• a new framework for computing and finding lower bounds on all edit distances
between permutations; in particular, this framework can be applied to genome
rearrangement distances, as we show by using it to recover previous results in
a simple way;

• a new lower bound on the prefix transposition distance, which, as we show both
theoretically and experimentally, is a substantial improvement over previous
results;

• a new lower bound of
⌊

3n+1
4

⌋
on the prefix transposition diameter, thereby

improving on the previously known lower bound of 2n/3;

• a new model for computing a haplotype network from maximum parsimonious
trees, which consists in finding a minimum common supergraph of a given set
of partially labelled trees;

• two exact algorithms for computing the minimum common supergraph of two
partially labelled graphs: one that runs in exponential time in the general
case, and another that runs in polynomial time provided that at least one
graph belongs to a particular class.

iii

We will give an overview of the dissertation at the end of the first chapter (more
specifically in Section 1.3), which is dedicated to the biological concepts and mo-
tivations behind the problems we tackle, and some perspectives for future research
after Chapter 6. This thesis is partly based on the following publications:

1. A New Tight Upper Bound on the Transposition Distance, 2005 [51]

2. New Bounds and Tractable Instances for the Transposition Distance, 2006 [52]

3. On Hultman Numbers, 2007 [29], a joint work with my advisor Jean-Paul
Doignon

4. Edit Distances and Factorisations of Even Permutations, 2008 [53]

During the course of my Ph. D., I also had the privilege to work with Guillaume
Fertin, Irena Rusu, Éric Tannier and Stéphane Vialette on a book that surveys the
combinatorial and algorithmic aspects of genome rearrangements. This book is quite
naturally entitled “Combinatorics of genome rearrangements”, and will be published
in 2009 by The MIT Press [36].

iv

Contents

1 Biological motivations 1
1.1 Comparing genomes . 1

1.1.1 A minimalist introduction to molecular evolution 1
1.1.2 Evolution at the nucleotide level: sequence alignment 3
1.1.3 Evolution at the gene level: genome rearrangements 3
1.1.4 Transpositions . 5

1.2 From genome comparisons to phylogenies 6
1.2.1 Phylogenetic trees . 6
1.2.2 Phylogenetic networks . 7

1.3 Organisation of the thesis . 9

2 Reminders 11
2.1 Graph theory . 11
2.2 Permutations . 12

2.2.1 The basics . 12
2.2.2 The cycle structure of a permutation 13

2.3 Distances on permutation groups . 14

3 Sorting by transpositions 18
3.1 Notation and preliminaries . 19

3.1.1 Transpositions . 19
3.1.2 The cycle graph . 20
3.1.3 Reduced permutations . 22
3.1.4 Toric permutations . 23
3.1.5 Upper bounds on the transposition distance 25

3.2 The distribution of the transposition distance 26
3.3 Another useful graph . 28
3.4 An explicit formula for some permutations 29

3.4.1 Monotonic cycles . 31
3.4.2 Nonmonotonic cycles . 32
3.4.3 Transposition distance of γ-permutations 34

3.5 A new upper bound . 35
3.6 Tests and heuristic improvements of our upper bound 35
3.7 Perforations of α-permutations . 38
3.8 Noncrossing cycles in the Γ-graph . 44
3.9 Cycle graphs and breakpoint graphs 47

v

Contents

4 Hultman numbers 50
4.1 Notation and definitions . 51

4.1.1 Stirling numbers and the disjoint cycle decomposition 51
4.1.2 Hultman numbers and the cycle graph 51

4.2 The bijection . 52
4.3 An explicit formula for the Hultman numbers 54
4.4 Applications . 56

4.4.1 Counting results for restricted cases 56
4.4.2 Inferring parameters of various distances 59
4.4.3 Obtaining bounds on various distances 61

5 A general framework for edit distances 62
5.1 A word on prefix sorting problems . 63
5.2 Background . 66
5.3 Distribution of the prefix transposition distance 67
5.4 A general lower bounding technique 69
5.5 Recovering previous results . 71
5.6 An improved lower bound on the prefix transposition distance 72
5.7 A tighter lower bound on the prefix transposition diameter 73
5.8 Experimental results . 76

6 Haplotype networks 78
6.1 Notation and preliminaries . 79

6.1.1 Partially labelled graphs . 79
6.1.2 Subgraphs and supergraphs 80

6.2 Previous and related work on minimum common supergraphs 82
6.3 The isomorphic (n, k)-tree problem 82
6.4 Polynomial-time solvable cases . 83

6.4.1 Isomorphism of (n, k)-trees . 85
6.4.2 Restricted graphs . 86
6.4.3 The minimum common supergraph problem on a restricted

(n, k)-graph and an arbitrary (n, k)-graph 88
6.5 An exact algorithm for two graphs 89

6.5.1 Outline and computational complexity 89
6.5.2 Restricting (n, k)-graphs . 90
6.5.3 Pruning the search tree . 91
6.5.4 Complexity analysis . 94

Conclusions 95

Glossary 97

Index 100

Bibliography 100

vi

Chapter 1

Biological motivations

The present thesis is concerned with the study of two problems motivated by biol-
ogy, from a mathematical and computer scientific point of view. The first problem
(detailed in Section 1.1.3) is the study of “genome rearrangements”, and the second
problem (detailed in Section 1.2.2) is the study of “haplotype networks”. Both topics
belong to the broader category of comparative genomics, which studies relationships
between different genomes or species. In this introductory chapter, we give basic
biological definitions and present an informal overview of the concepts and problems
that will be tackled in this thesis.

1.1 Comparing genomes

Before speaking about the problems we are interested in, we must describe and
define a few biological concepts. We refer the reader to Alberts et al. [4] and Ridley
[66] for a more detailed and technical exposition of these notions.

1.1.1 A minimalist introduction to molecular evolution

Chromosomes are the support for the genetic information contained in every cell of
all living organisms (e.g. bacteria, plants, animals), and the genome of an organism
is the set of all its chromosomes. Chromosomes are made of DNA (which stands
for deoxyribonucleic acid), a double-stranded molecule in which each strand is a
long sequence of nucleotides . Nucleotides can be of four types; for our purpose, it
will be enough to consider them as letters from the alphabet {A,C,G, T}. Both
DNA strands are said to be complementary , because an A at a given position on
one strand is always paired with a T at the same position on the other strand,
and a C at a given position on one strand is always coupled with a G at the same
position on the other strand. Complementarity implies that the sequence formed by
the nucleotides on one strand uniquely determines the sequence on the other strand,
and it is therefore sufficient to consider only one of those two sequences. Figure 1.1
summarises all these concepts.

A segment of DNA is a portion of that molecule made of consecutive nucleotides.
A gene is a segment of DNA that contains the information needed to construct the
other molecules in the cell. DNA is able to replicate itself with some inaccuracy: one

1

1.1. Comparing genomes

Chromosome

AA

AA

AA

CC

CC

CC

GG

GGGG

TT

TTTT

Chromosome

Nucleus

Telomere

ChromatidChromatid

Telomere

Centromere

Cell

Histones

DNA(double helix)

Base Pairs

National Human Genome Research InstituteNational
Institutes
of Health Division of Intramural Research

Figure 1.1: A chromosome, and a fragment of a DNA molecule (source: National
Human Genome Research Institute [58]).

2

1.1. Comparing genomes

genome is used to produce another almost identical genome. This inaccuracy is the
principle of molecular evolution. A DNA molecule may evolve by mutations at the
nucleotide level or at the gene level, leading to at least two main ways of comparing
genomes, which we discuss in more detail in the next two sections.

1.1.2 Evolution at the nucleotide level: sequence alignment

Mutations may occur at the nucleotide level, and are in this case called point muta-
tions . These consist in the insertion of a new nucleotide, the deletion of a nucleotide,
and the substitution of a nucleotide – that is, the replacement of a nucleotide with
a new one. Detecting and explaining these changes and the evolution of a set of
sequences by point mutations is the goal of sequence alignment .

In the pairwise version of the problem, we are given two sequences of nucleotides,
not necessarily of the same length, and we want to align them, i.e. to match nu-
cleotides in both sequences so as to minimise an objective function that measures
the divergence between both species based on the number of insertions, deletions
and substitutions of nucleotides that are needed to transform one sequence into the
other. Figure 1.2 shows an example of an alignment of two sequences.

S1 : T C C G C C A − − C T A
| | | | | |

S2 : T C G G A C T G G C − A

Figure 1.2: An alignment of two sequences S1 of length 10 and S2 of length 11, with
six matches, three substitutions, two insertions and one deletion.

Multiple sequence alignment , which deals with more than two genomes at the
same time, is based on the same principle and aims at aligning all sequences, rather
than just two of them, and minimising an objective function that takes all input
genomes into account. For more information on (multiple) sequence alignment, see
for instance the surveys by Notredame [59, 60].

1.1.3 Evolution at the gene level: genome rearrangements

Mutations occur at the nucleotide level, as seen in the previous section, but can also
affect whole segments of DNA which may correspond to genes. Insertions and dele-
tions of genes rather than nucleotides are just an example of the many rearrangement
operations that can occur: genes can also be reversed, moved to another segment of
the same chromosome, or even exchanged with another gene on a different chromo-
some (see Figure 1.3 for a few examples). In the presence of such events, sequence
alignment is no longer the tool of choice, since a comparison at the nucleotide level
may lead to think that the genomes under comparison are very different, whereas
they might differ by a very small number of larger scale mutations.

The genome rearrangement problem (see for instance Pevzner [64] or Meidanis
and Setubal [57] for an introduction, or Li, Wang, and Zhang [55] for a recent
survey) can be formulated as that of finding a sequence of evolutionary events that

3

1.1. Comparing genomes

Mutation

National Human Genome Research InstituteNational
Institutes
of Health Division of Intramural Research

Duplication InversionDeletion

Insertion

Types of mutation

Chromosome 20

Chromosome 4

Chromosome 20

Chromosome 4

Derivative
Chromosome 4

Derivative
Chromosome 20

Chromosome 20
Chromosome 4

Translocation

Figure 1.3: Some mutations to which genomes are subject (source: National Human
Genome Research Institute [58]).

4

1.1. Comparing genomes

transforms a given genome into another given one and is of the shortest possible
length. The (evolutionary) distance between the two genomes is the length of such
a sequence. The biological reason for favouring sequences of the shortest possible
length is the parsimony hypothesis , which states that the most plausible scenario
of evolution is the one involving the fewest number of rearrangements, based on
the observation that mutations are relatively rare. As shown in Figure 1.3, a lot of
mutations can be taken into account, among which the most popular one – and the
first one to have been studied from a computational point of view – is certainly the
reversal (also referred to as inversion by biologists, a term that we will refrain from
using as it might be confusing in a mathematical context), which reverses a segment
of the genome; other operations include translocations , which exchange segments
that belong to different chromosomes, and transpositions, which move genes around
in the genome and on which we will focus (more details will be given in the next
section).

Although very simply described in its general form, the computational study of
genome rearrangements is a very rich field, whose diversity comes from the kind of
mutations that are taken into account and how their relative importance is expressed
(e.g. one could consider only reversals, or both reversals and transpositions, possi-
bly using different weights according to the probability of occurrence of each kind
of mutation in the species under consideration), but also from the models used to
represent genomes. Many models can indeed be used, depending on the information
that is available about the genomes and what exactly we want to take into account
(for example gene orientation, i.e. the DNA strand on which a gene is located, du-
plicated genes, the order of genes along a given chromosome, whether chromosomes
are linear or circular, ...). We will not review all these models here, and refer the
reader to the aforementioned references [64, 57, 55] for more information.

In this thesis, we will focus on a very simple model, used in the case where the
order of genes is known and where all genomes share the same set and number of
genes (without duplications); under these assumptions, genomes, as well as muta-
tions, can be represented using permutations. This model is certainly not realistic
in general, since duplications are known to play a major role in evolution (see e.g.
Ohno [61]), but it may be used as a starting point for more complex models; besides,
real-world biological examples are known for which permutations are an adequate
model (see Kececioglu and Sankoff [49] for a few examples). A very nice property of
most rearrangement distances (see Definition 2.24 page 15) will allow us to reduce
the genome rearrangement problem to that of sorting permutations (by reversals,
transpositions, and so on) using as few moves as possible.

1.1.4 Transpositions

During the 1940s and 1950s, McClintock [56] discovered that some sequences of
DNA moved around to different positions within the genome of a single cell. Those
sequences were called transposons (or transposable elements, or “jumping genes”)
and proved to be responsible for turning physical characteristics on and off. This
discovery eventually awarded McClintock the Nobel Prize in Physiology or Medicine
in 1983.

5

1.2. From genome comparisons to phylogenies

Two main reasons motivate the study of transpositions instead of other muta-
tions. From a biological point of view, transpositions are interesting because while
they may not occur as frequently as other mutations (like, say, reversals), they are
known to occur in all species. Moreover, about forty-five percent of the human
genome is made of transposons, and while these transposable elements are known
to be responsible for many diseases, they also seem to be a promising tool for gene
therapies (see Anxolabéhère, Nouaud, Quesneville, and Ronserray [5]).

From a computer-theoretical point of view, not much is known about rearrange-
ment by transpositions, as opposed to the study of other rearrangement operations.
For instance, it is known that the problem of sorting by reversals is NP-hard (see
Caprara [18]), and that it is NP-hard to approximate it within a factor of 1.0008
(see Berman and Karpinski [12]; however, on the “good news” side, Berman, Han-
nenhalli, and Karpinski [13] designed an 11/8-approximation, and Caprara, Lancia,
and Ng [19] proposed a linear programming formulation that can solve the problem
on permutations of up to 200 elements in a few minutes). A variant of sorting by
reversals has also been investigated, in which every element has a “+” or a “−” sign
and a reversal not only reverses the order of elements, but also flips their signs. This
biologically more relevant problem – signs represent the DNA strand on which genes
are located – seems more difficult at first glance, but surprisingly turns out to be
computationally much easier to solve: indeed, the sorting problem can be solved in
subquadratic time (see Tannier, Bergeron, and Sagot [72]), and the corresponding
distance can be computed in linear time (see Bader, Moret, and Yan [6]).

However, as far as transpositions are concerned, no exact polynomial-time algo-
rithm for the sorting problem is yet known (the best approximation algorithm to
date, by Elias and Hartman [30], has a ratio of 11/8), and its computational com-
plexity remains open. The same is true for the problem of merely computing the
associated transposition distance, and even the maximal value that the transposition
distance can reach is unknown. Given the lack of progress on the problem of sorting
by transpositions, it is certainly justified and interesting to try and contribute to
the current state of knowledge about it.

1.2 From genome comparisons to phylogenies

1.2.1 Phylogenetic trees

Biologists are usually interested in comparing more than two genomes. Not only
do they want to measure divergence between species, they also want to reconstruct
the ancestral genomes that led, after repeated speciations, to the genomes that are
available today. Ultimately, the goal is to reconstruct scenarios of evolution between
species that are as close as possible to their true evolutionary history.

Phylogenetic trees , whose origins can be traced back to the works of Darwin
[25] and which have been in use since then, are the traditional tool for representing
evolution. The leaves of those trees are the input genomes, and the internal nodes
represent unknown common ancestors of the species at the leaves, reconstructed
by the algorithm that has been chosen; branches of various lengths, measuring the
divergence between two species, connect these nodes. We note that, although this

6

1.2. From genome comparisons to phylogenies

is not mandatory, most phylogenetic studies focus on trees in which known species
are restricted to leaves: these trees model the cases where the species under com-
parison are all “contemporary”, and the previous level in the tree (i.e. the level of
their ancestors) contains species from an earlier period in time. Many methods and
algorithms are available for accurately constructing such trees and assessing their
quality (see e.g. Felsenstein [34] for an extensive survey). As an example that il-
lustrates the use of genome comparisons that we discussed in the previous section,
we mention distance-based methods : these methods take as input a distance matrix,
which contains distances between all pairs of input genomes, then use an algorithm
to reconstruct a tree based on that distance matrix. The process we describe is very
general, and encompasses many variants whose diversity stems from how distances
are computed (at the nucleotide or gene level, which kinds of mutations are taken
into account, how they are weighted, and so on) and how genomes are combined
into a tree by the chosen algorithm, based on those distances. Figure 1.4 shows an
example of a phylogenetic tree, which represents the relations between the simian
and human immunodeficiency viruses.

Figure 1.4: Phylogenetic tree of the simian and human immunodeficiency viruses
(SIV and HIV, respectively), from Kuiken et al. [50].

1.2.2 Phylogenetic networks

The last two decades have witnessed the emergence of a new tool for reconstructing
and representing evolution, which has become widespread in phylogenetic studies.
This tool is known as a phylogenetic network , and generalises phylogenetic trees by

7

1.2. From genome comparisons to phylogenies

allowing multiple paths between species. Figure 1.5 shows an example of a phyloge-
netic network, depicting the relationships between various Salmonella isolates.

UND8

She49*

Sty15*

Sha161

Sty90

UND101
Snp76

Sty19*

Sha151,Sjo99

0.01

Sre115

Sag129

Sha147

Sha183

She12 A

Sha158
Sbr68

Smb27
Snp39*

C

D

E

Sha149,Snp34*Sha154

Sty62
Sha169

San37

Sha182

Sha184,Sen57*,Sha139,Sha60
Sha135,Sha146

,Snp128

She7*

UND64
Sty85

Sca97, UND79

B

Sse94

Smb−17

Figure 1.5: Phylogenetic network of Salmonella isolates, from Bryant, Moulton, and
Spillner [16].

The main reason for using networks rather than trees is that evolution some-
times happens not to be tree-like: genes may be duplicated, transferred or lost, and
recombination events (i.e. the breaking of a DNA strand followed by its reinsertion
into a different DNA molecule) as well as hybridisation events (i.e. the combination
of genetic material from several species) are known to occur. Moreover, even when
evolution is indeed tree-like, there exist situations in which a relatively large num-
ber of tree topologies might be “equally good”, and there is not enough information
available to discriminate between those trees. One proposed solution to the latter
issue is the use of consensus trees, where the idea is to find a tree that represents
a compromise between the given topologies; another solution is to build a network
that is compatible with all topologies of interest.

Although phylogenetic networks have not – yet – been studied as extensively as
trees, a lot of methods and results are already available, and are surveyed for instance
by Huber and Moulton [46], Posada and Crandall [65] or Gascuel and Steel [39]. A
special category of networks has been used in the context of intraspecific studies,
and more specifically, in the case where one wants to study relations between genes
instead of species. Networks used in that context are known as haplotype networks
(see e.g. Cassens, Mardulyn, and Milinkovitch [20] for more technical biological
definitions). Cassens et al. [20] proposed a new method for reconstructing such
networks, based on a set of given trees rather than on the input sequences, contrary
to previous methods (see for instance Bandelt, Forster, and Rohl [10], Excoffier and
Smouse [33], or Templeton, Crandall, and Sing [73]). The results they obtained

8

1.3. Organisation of the thesis

on simulated data seem promising, when compared to a few traditional algorithms.
However, their algorithm makes a number of arbitrary choices, produces solutions
whose quality depends on the order in which the merging process is performed, and
is a heuristic with an implicit objective function. We contribute to strengthening
their method in a way we will detail in the next section.

1.3 Organisation of the thesis

Basic notation, concepts and terminology concerning graph theory, permutation
groups and distances are introduced in Chapter 2; more specific definitions and
concepts will be introduced progressively through the rest of the thesis.

In Chapter 3, we consider the problem of sorting by transpositions and present
nontrivial connections between the graph of a permutation (see Definition 2.14
page 13) and a central tool in genome rearrangements, known as the cycle graph
(see Definition 3.3 page 20). We then use those connections to prove a new tight
upper bound on the transposition distance, as well as various formulae and heuristic
improvements that allow us, in many cases, to either compute the exact transposition
distance or at least to tighten our new bound.

Motivated by an equivalence relation on permutations which preserves the trans-
position distance as well as the structure of the cycle graph (see Section 3.1.4
page 23), Hultman [47] asked the question of determining the number of permu-
tations with a given number of cycles in their cycle graph. In Chapter 4, we solve
the more general problem of determining the number of permutations of a given
cycle type (in terms of the cycle graph), and obtain a formula for computing what
we call the “Hultman numbers”, thereby answering Hultman’s question. Our proof
is based on a bijection between permutations of n elements and related even permu-
tations of n+ 1 elements that can be expressed as the product of two (n+ 1)-cycles.
We also obtain simpler formulae in interesting restricted cases.

Since many genome rearrangement distances are based on the cycle graph or on
a similar structure, our counting result can be used to estimate the distribution of
those distances (this is in particular true for the block-interchange distance, as will
be explained in Section 4.4.2 page 59). On the other hand, perhaps surprisingly,
the bijection we construct in Chapter 4 can also be used to obtain bounds on any
edit distance between permutations, i.e. distances based on a minimum number of al-
lowed operations required to transform a permutation into another, of which genome
rearrangement distances are a particular case. In Chapter 5, we develop a framework
based on that bijection which allows us, on the one hand, to encode the cycle graph
of a permutation using an even permutation and, on the other hand, to reformulate
any edit distance problem on permutations in terms of particular factorisations of
the latter permutation. We show the power of this approach by providing simple
and unified proofs of known results on transpositions and block-interchanges, and
then turn to the study of a restricted version of sorting by transpositions, known as
sorting by prefix transpositions. We use our framework to obtain a new lower bound
on the prefix transposition distance (which always outperforms previous results, as
we show both theoretically and experimentally), which as a consequence allows us

9

1.3. Organisation of the thesis

to prove a much better lower bound on the maximal value that distance can reach.
Finally, in Chapter 6, we study the problem of constructing haplotype networks.

Most available methods for achieving this goal usually construct a network directly
from the sequences, then apply heuristics in order to reduce the size of the network
that has been obtained in that way. Another approach, inspired by phylogenetics, is
to first build the set of all most parsimonious trees on the data, then to combine them
into a single graph that contains all those trees and is “as compact as possible”. Such
an approach was proposed by Cassens et al. [20], who obtained competitive results
on simulated data with respect to a few traditional algorithms. However, their
algorithm makes a number of arbitrary choices, produces solutions whose quality
depends on the order in which the merging process is performed, and is a heuristic
with an implicit objective function. We propose a formal framework for their method
which consists in finding a minimum common supergraph of a set of partially labelled
trees, and propose algorithms for solving the problem to optimality on two graphs.

10

Chapter 2

Reminders

This chapter recalls some general and basic definitions on graph theory (see Berge
[11] or Diestel [28] for more information) and permutations (see for instance Wielandt
[75] for more information) that will be used throughout the thesis, and with which
most readers should be familiar. More specific definitions will be introduced when-
ever needed.

2.1 Graph theory

Definition 2.1. A graph G = (V,E) is an ordered pair that consists of

1. a set V = {v1, v2, . . . , vn},

2. a family E = {e1, e2, . . . , em} of elements taken in

{(u, v) | u, v ∈ V } if G is directed ,
{{u, v} | u, v ∈ V } if G is undirected .

Graphs are graphically represented by dots usually joined by arrows (in the
directed case) or by (not necessarily straight) lines (in the undirected case); dots
represent the elements of V , which are called vertices , and arrows (or line segments)
represent the elements of E, which are called edges in the undirected case and arcs
or directed edges in the directed case (see Figure 2.1 page 13 for a first example of a
directed graph, and Figure 2.2 page 17 for a first example of an undirected graph).
A (possibly directed) edge connecting vertices u and v is said to have u and v as
endpoints ; in this case, u and v are said to be adjacent , and they are both incident
to the edge that connects them. We will sometimes make use of the notations V (G)
and E(G) to refer to the vertex set and the edge set of a graph G, respectively.

Definition 2.2. The order of a graph is the number of vertices it contains.

Definition 2.3. The size of a graph is the number of edges it contains.

Definition 2.4. A graph is simple if:

1. it has no loop, i.e. an edge whose endpoints coincide, and

11

2.2. Permutations

2. there is no more than one edge connecting any two vertices.

Definition 2.5. A path in a graph G is a sequence of distinct vertices v0, v1, . . . , vk−1

such that {vi, vi+1} (or (vi, vi+1) if G is a directed graph) is in E(G), for 0 ≤ i ≤ k−2.

A path in a graph is often denoted by listing its vertices, i.e. P = (v0, v1, . . . , vk−1).

Definition 2.6. A cycle in a graph G is the union of a path P = (v0, v1, . . . , vk−1)
and of the edge {vk−1, v0} (or (vk−1, v0) if G is a directed graph).

The length of a path (resp. of a cycle) is the number of vertices it contains; if it
has length k, we call it a k-path (resp. a k-cycle).

Definition 2.7. A bicoloured graph G = (V,E) is a graph whose edge set is parti-
tioned into two classes E1 ∪ E2, to each of which a distinct colour is associated.

Definition 2.8. The neighbourhood of a vertex v in a graph G, denoted by NG(v),
is the set of all vertices that are adjacent to v in G.

Definition 2.9. A graph G is bipartite if its vertex set can be partitioned into two
classes V1 and V2 in such a way that no two vertices of V1 (resp. V2) are adjacent.

Definition 2.10. A matching M in a graph G is a set of pairwise disjoint edges,
i.e. no two edges ofM share a vertex. If every vertex of G is incident to an edge in
M, then M is called a perfect matching .

2.2 Permutations

2.2.1 The basics

The word “permutation” is used in a variety of close meanings. We adopt the same
viewpoint as Bóna [15], by considering them as linear orderings of the elements of a
finite set E = {e1, e2, . . . , en}, i.e. a way to list the elements of E in a certain order.
Any set can be used, as long as a reference total order on E is specified, but we will
mostly work with E = {1, 2, . . . , n} (sometimes also denoted by [n]).

Definition 2.11. A permutation of {1, 2, . . . , n} is a bijective application of {1, 2, . . .,
n} onto itself.

We will denote permutations using lower case Greek letters. A common way of
writing permutations is the well-known two row notation, i.e.

π =

(
1 2 · · · n
π1 π2 · · · πn

)
,

where πi = π(i), for 1 ≤ i ≤ n; in this notation, the first line stands for positions
in the permutation, and the second line stands for its elements . Most of the time,
we will shorten this notation by keeping only the second row of the above notation
enclosed in angular brackets, i.e. π = 〈π1 π2 · · · πn〉.

As stated in Definition 2.11, permutations are functions, and can therefore be
composed or multiplied as such: the product of two permutations π and σ is denoted
by π ◦ σ, and is obtained by first applying σ, then π. The identity permutation
〈1 2 · · · n〉 will be denoted by ι.

12

2.2. Permutations

Definition 2.12. The symmetric group, denoted by Sn, is the set of all permutations
of {1, 2, . . . , n} with the operation ◦ and with ι as neutral element.

Definition 2.13. The permutation π−1 is the inverse of π, i.e. the permutation
such that π ◦ π−1 = ι = π−1 ◦ π.

π−1 is obtained by exchanging positions and elements in π: for 1 ≤ i ≤ n, we
have π−1

πi
= i. For instance, the inverse of 〈4 8 9 7 6 5 1 3 2 10〉 is obtained as

follows:(
1 2 3 4 5 6 7 8 9 10
4 8 9 7 6 5 1 3 2 10

)−1

=

(
4 8 9 7 6 5 1 3 2 10
1 2 3 4 5 6 7 8 9 10

)
=

(
1 2 3 4 5 6 7 8 9 10
7 9 8 1 6 5 4 2 3 10

)
and can be written as 〈7 9 8 1 6 5 4 2 3 10〉.

2.2.2 The cycle structure of a permutation

Alternatively, permutations can be represented as the product of disjoint cycles .
This representation is unique, up to ordering of the cycles and of the elements
within each cycle, and corresponds to the following graphical representation of a
permutation.

Definition 2.14. The graph of a permutation π has vertex set {1, 2, . . . , n} and
contains an edge (i, j) whenever πi = j.

For instance, when π = 〈4 1 6 2 5 7 3〉, the disjoint cycle notation is π =
(1, 4, 2)(3, 6, 7)(5) (notice the parentheses and the commas). Figure 2.1 shows the
graph of this permutation.

5
1

4

2

3

6

7

Figure 2.1: The graph of π = 〈4 1 6 2 5 7 3〉 = (1, 4, 2)(3, 6, 7)(5).

Definition 2.15. A fixed point of a permutation π is a position i such that πi = i.

Fixed points of permutations correspond to 1-cycles in the disjoint cycle notation
or in their graph.

Definition 2.16. A permutation is called a k-cycle if it fixes all but k > 1 elements,
and all nonfixed elements belong to the same cycle.

13

2.3. Distances on permutation groups

Definition 2.17. A permutation is even if the number of even cycles in its disjoint
cycle decomposition is even or, equivalently, if it can be expressed as a product of
an even number of 2-cycles. Otherwise, it is odd .

Definition 2.18. The alternating group An is the subgroup of Sn formed by all even
permutations.

Definition 2.19. The conjugate of a permutation π by a permutation σ (both in
Sn) is the permutation

πσ = σ ◦ π ◦ σ−1.

That permutation has the same disjoint cycle decomposition as π, and can be
obtained, if π = (c1,1, c1,2, . . . , c1,`1) · · · (cm,1, cm,2, . . . , cm,`m), by replacing each
element in each cycle of π with the element onto which it is mapped by σ, i.e.
πσ = (σc1,1 , σc1,2 , . . . , σc1,`1) · · · (σcm,1 , σcm,2 , . . . , σcm,`m).

Definition 2.20. All permutations that have the same disjoint cycle decomposition
form a conjugacy class .

For example, π = (1, 2, 3)(4, 5, 6) and σ = (1, 3, 5)(2, 4, 6) belong to the same
conjugacy class. This is the particular case for the symmetric group of the general
notion of a conjugacy class in any group.

2.3 Distances on permutation groups

Definition 2.21. A distance d on a set S is an application

d : S × S → R : (s, t) 7→ d(s, t)

satisfying the following three axioms:

1. ∀ s, t ∈ S : d(s, t) ≥ 0 and d(s, t) = 0⇔ s = t (positivity);

2. ∀ s, t ∈ S : d(s, t) = d(t, s) (symmetry);

3. ∀ s, t, u ∈ S : d(s, u) ≤ d(s, t) + d(t, u) (triangular inequality).

We will be interested, among other properties, in the maximal value a distance
can reach.

Definition 2.22. The diameter of a set S under a distance d is maxs,t∈S d(s, t).

In this thesis, we will concentrate on distances between permutations that are
based on a set A ⊆ Sn of allowed operations: a distance dA (π, σ) between any two
permutations π and σ in Sn can then be defined as the minimum number of steps
needed to transform π into σ (or σ into π, by symmetry), where a valid step is an
operation that belongs to our fixed set A of allowed operations. When transforming
π into σ, each step is modelled by the right-multiplication of the current permutation
by some element x of A ; therefore, transforming π into σ in t steps will be done as
follows:

π ◦ x1 ◦ x2 ◦ · · · ◦ xt = σ, (2.1)

14

2.3. Distances on permutation groups

where x1, x2, . . ., xt ∈ A .
As an example, let A be the set of all permutations in Sn that fix all but

two elements, i.e. A = {〈1 2 · · · i− 1 j i+ 1 · · · j − 1 i j + 1 · · · n〉 | 1 ≤ i <
j ≤ n}; right-multiplying a permutation by an element of A therefore consists in
exchanging any two elements in that permutation. Therefore, transforming π =
〈3 2 5 4 1〉 into ι using only elements of A can be done by subsequent exchanges of
the boxed elements below:

〈 3 2 5 4 1 〉 → 〈1 2 5 4 3 〉 → 〈1 2 3 4 5〉,

and this transformation can in turn be expressed by

π ◦ 〈5 2 3 4 1〉 ◦ 〈1 2 5 4 3〉 = ι.

It can be easily seen that π cannot be transformed into ι using only one element of
A , and therefore we say that the distance (associated to A) between π and ι is 2,
as proved by the above sequence of length 2.

For any two elements of Sn to be a finite distance apart, the set A of allowed
operations must satisfy the following necessary and sufficient condition.

Definition 2.23. A set A ⊂ Sn is said to generate Sn, or to be a generating set
of Sn, if every element of Sn can be expressed as the product of a finite number of
elements of A . We call the elements of A generators of Sn.

Additionally, all distances we will study satisfy the following important property.

Definition 2.24. A distance d on Sn is left-invariant if for all π, σ, τ in Sn:

d(π, σ) = d(τ ◦ π, τ ◦ σ).

Left-invariance is an important underlying concept in genome rearrangements,
because it is the reason why many problems considered in that field reduce to a
sorting problem: indeed, if d is left-invariant, then computing d(π, σ) for any π and
σ in Sn is equivalent to computing d(σ−1 ◦ π, ι), and we can therefore restrict our
attention to the problem of computing the distance between a permutation and the
identity permutation. An immediate corollary of this property is that for any π in
Sn, we have d(π, ι) = d(π−1, ι) if d is left-invariant. Since we will most of the time
be considering the distance between a permutation π and the identity permutation
ι, we will often abbreviate d(π, ι) to d(π). Intuitively, left-invariance models the
fact that, given any two genomes G1 and G2 containing the same set and number of
genes (without duplications) to be transformed into one another, it does not matter
how we choose to number genes in G1 (resp. G2), as long as we assign numbers to
genes in G2 (resp. G1) accordingly.

In this case, it is easily seen that our rearrangement problems based on A are
equivalent to finding a minimum-length factorisation of π that consists only of ele-
ments of A : indeed, if we replace σ with ι in (2.1), then

π ◦ x1 ◦ x2 ◦ · · · ◦ xt = ι⇔ π = x−1
t ◦ x−1

t−1 ◦ · · · ◦ x−1
1 ,

15

2.3. Distances on permutation groups

and x−1
i still belongs to A for 1 ≤ i ≤ t (otherwise symmetry does not hold and

dA (π, σ) is not a distance).
Problems related to the factorisation of permutations have been studied long

before mathematicians and computer scientists became interested in genome rear-
rangement problems. There are some general complexity results that prevent us
from hoping for a general solution to the problem: Even and Goldreich [32] have
shown that the following problem, which is the decision version of finding an optimal
factorisation, is NP-complete.

MINIMUM GENERATOR SEQUENCE
Instance: a set A = {x1, x2, . . . , xq} of generators of a permutation group G,
a permutation π ∈ G and a natural K.
Problem: is there a generator sequence of length l ≤ K such that π = xi1 ◦
xi2 ◦ · · · ◦ xil?

However, some particular cases are easy to solve: well-known examples include
the case where A is the set of all exchanges of elements (as described on page 15),
whether or not these elements are restricted to be adjacent (see Jerrum [48] for
more details, as well as other examples). We will show strong connections between
these problems on even permutations and some well-studied genome rearrangement
problems in Chapter 5.

Finally, we recall the following natural graphical representation of Sn using a
given generating set, which is fundamental in group theory.

Definition 2.25. Given a generating set A of Sn, the Cayley graph associated
with (Sn,A) is the graph whose vertices are the elements of Sn and whose edges
connect two vertices such that the corresponding elements can be transformed into
one another using an element of A .

That graph can be either directed or undirected, according to whether or not A
contains the inverse of each generator. Figure 2.2 shows the Cayley graph associated
with (S4,A), where A is the set of all 2-cycles of the form (i, i+1), for 1 ≤ i ≤ n−1.
The notion of diameter (Definition 2.22 page 14) has a natural interpretation in that
setting: it is the length of the “longest shortest path” between any two vertices of
the Cayley graph corresponding to the given group and set of generators.

We conclude this chapter by mentioning that Cayley graphs of permutation
groups have received a lot of attention in a field known as the design of intercon-
nection networks, because many of those graphs seem to have properties that are
desirable with respect to the criteria in use in that field. We will talk more about
that topic in Chapter 5, where we will see that, interestingly enough, genome rear-
rangements and interconnection network design have common interests. For much
more information about the use of Cayley graphs of permutation groups as intercon-
nection networks, see for instance the seminal paper by Akers and Krishnamurthy
[2] and the survey by Lakshmivarahan, Jwo, and Dhall [54].

16

2.3. Distances on permutation groups

〈4 1 2 3〉
〈4 2 1 3〉

〈3 2 1 4〉

〈3 1 2 4〉

〈2 1 3 4〉

〈1 2 3 4〉

〈1 2 4 3〉

〈1 3 2 4〉

〈2 1 4 3〉

〈2 3 1 4〉

〈3 1 4 2〉

〈4 1 3 2〉

〈4 2 3 1〉

〈3 2 4 1〉

〈2 4 1 3〉

〈1 4 2 3〉

〈1 3 4 2〉

〈2 3 4 1〉

〈1 4 3 2〉

〈2 4 3 1〉

〈3 4 2 1〉

〈4 3 2 1〉

〈4 3 1 2〉

〈3 4 1 2〉

Figure 2.2: The Cayley graph associated with (S4,A), where A is the set of all
2-cycles of the form (i, i + 1), for 1 ≤ i ≤ n − 1, also known as the permutohedron
of order 4 (based on a picture by David Eppstein).

17

Chapter 3

Sorting by transpositions

In 1995, Bafna and Pevzner [8] initiated the combinatorial and algorithmic study of
evolution under transpositions, using the permutation model. Relying on the frame-
work they had introduced in the context of reversals (see Bafna and Pevzner [7]), they
succeeded in obtaining various bounds and results, including a 3/2-approximation
algorithm for transforming a permutation of n elements into the identity permuta-
tion using as few transpositions as possible, running in O(n2) time.

Thirteen years later, not much progress on the problem has been done, as com-
pared to other similar genome rearrangement problems: the computational com-
plexity of sorting by transpositions, computing the transposition distance, and even
determining the maximal value of the transposition distance are still open problems.
Building on the results obtained by Bafna and Pevzner [9], simpler and faster al-
gorithms were designed by Christie [23] and Hartman [45], but the approximation
guarantee was not improved until 2006, when Elias and Hartman [30] proposed an
11/8-approximation algorithm with time complexity O(n2). The proof of correct-
ness of that algorithm is heavily computer-driven and based on a huge case analysis,
requiring the verification of more than 80 000 configurations. Therefore, it does not
seem that designing a simpler algorithm, or one with a better ratio, will be an easy
task.

Our main contributions to this problem are the following:

• we establish connections between the common graph of a permutation and the
“cycle graph” introduced by Bafna and Pevzner [9], for a particular class of
permutations (Proposition 3.4);

• we use those connections to prove formulae for computing, in polynomial time,
the transposition distance of a few nontrivial classes of permutations (Theo-
rems 3.10 and 3.14, Corollary 3.2, Proposition 3.9), bypassing the use of any
graph structure;

• we prove a new tight upper bound on the transposition distance (Theorems 3.11
and 3.13), and improve that upper bound in some other cases (Proposition 3.12).

Most results presented in this chapter were published in [51] and later in an extended
version [52].

18

3.1. Notation and preliminaries

3.1 Notation and preliminaries

3.1.1 Transpositions

The word transposition, defined below, must be understood in the biological sense:
it refers to an evolutionary event that consists, informally, in displacing a segment
of the genome, as shown in the following example:

〈2 1 7 3 5 6 4 10 9 8〉 becomes 〈2 1 4 10 9 7 3 5 6 8〉.

By contrast with algebraic transpositions1, which exchange two not necessarily
adjacent elements, biological transpositions can be seen as exchanges of adjacent dis-
joint intervals. Indeed, the transposition considered in the above example exchanges
the interval delimited by elements 7 and 6 with the interval delimited by elements
4 and 9.

Definition 3.1. For any π in Sn, the transposition τ(i, j, k) with 1 ≤ i < j < k ≤
n + 1 applied to π exchanges the closed intervals determined respectively by i and
j − 1 and by j and k − 1, transforming π into π ◦ τ(i, j, k). Therefore, τ(i, j, k) is
the following permutation:(

1 · · · i− 1 i · · · j − 1 j · · · k − 1 k · · · n
1 · · · i− 1 j · · · k − 1 i · · · j − 1 k · · · n

)
.

Notice that the notation τ(i, j, k) stands for both this element of Sn and the
action it induces on Sn (which is called a right translation of Sn in algebra).

Definition 3.2. The transposition distance between two permutations π and σ in
Sn, denoted by td(π, σ), is the length of a shortest sequence of transpositions that
transforms π into σ.

For instance, the transposition distance between 〈3 1 4 2) and ι is 2; indeed:

〈3 1 4 2〉 → 〈 3 4 1 2 〉 → 〈1 2 3 4〉

and 〈3 1 4 2〉 cannot be sorted by a single transposition. The transposition distance
is indeed a distance on Sn in the mathematical sense (Definition 2.21 page 14), since:

1. for all π, σ in Sn: td(π, σ) ≥ 0 and td(π, σ) = 0⇔ π = σ (trivial);

2. for all π, σ in Sn: td(π, σ) = td(σ, π): indeed, if td(π, σ) = k, then there exist k
transpositions τ1, τ2, . . ., τk such that π ◦τ1 ◦τ2 ◦ · · · ◦τk = σ. This implies that
σ◦τ−1

k ◦τ
−1
k−1◦· · ·◦τ

−1
1 = π. Since the inverse of a transposition is a transposition

(indeed: (τ(i, j, k))−1 = τ(i, i + k − j, k)), we get td(σ, π) ≤ td(π, σ). The
opposite inequality is proved in the same way.

1Which we will call exchanges (see Definition 3.26 page 32) to avoid confusion.

19

3.1. Notation and preliminaries

3. for all π, ρ, σ in Sn: td(π, ρ) ≤ td(π, σ) + td(σ, ρ), otherwise td(π, ρ) would not
be minimal.

We proceed to prove that the transposition distance is left-invariant (Defini-
tion 2.24 page 15), as are many other rearrangement distances.

Proposition 3.1. The transposition distance is left-invariant.

Proof. We must show that for all π, σ, ξ in Sn: td(π, σ) = td(ξ ◦ π, ξ ◦ σ). If
td(π, σ) = m, then there exists an optimal sequence of m transpositions such that

π ◦ τ1 ◦ · · · ◦ τm = σ,

so
(ξ ◦ π) ◦ τ1 ◦ · · · ◦ τm = (ξ ◦ σ),

which implies that td(π, σ) = td(ξ◦π, ξ◦σ), since the existence of a shorter sequence
of transpositions transforming ξ ◦ π into ξ ◦ σ would contradict the optimality of
τ1 ◦ · · · ◦ τm.

This property of the transposition distance allows us to restrict our attention to
the following problem:

SORTING BY TRANSPOSITIONS
Input: a permutation π in Sn.
Problem: find a minimum-length sequence of transpositions transforming π
into ι.

We will therefore abbreviate td(π, σ) to td(π) whenever σ = ι, and abuse language
by referring to td(π) as “the (transposition) distance of π”.

3.1.2 The cycle graph

Bafna and Pevzner [9] introduced the following useful graph.

Definition 3.3. The cycle graph of π in Sn is the bicoloured directed graph G(π),
whose vertex set (π0 = 0, π1, . . . , πn, πn+1 = n+1) is ordered by positions, and whose
arc set consists of:

• black arcs (πi, πi−1) for 1 ≤ i ≤ n+ 1;

• grey arcs (πi, πi + 1) for 0 ≤ i ≤ n.

The set of black and grey arcs decomposes in a single way into alternating cycles ,
i.e. cycles that alternate black and grey arcs. Figure 3.1 shows an example of a cycle
graph, together with its decomposition.

Definition 3.4. The length of an alternating cycle in G(π) is the number of black
arcs it contains, and a k-cycle in G(π) is an alternating cycle of length k.

20

3.1. Notation and preliminaries

0 4 1 6 2 5 7 3 8

(a)

0 4 1 6 2 5 7 3 8 0 4 1 6 2 5 7 3 8

(b) (c)

Figure 3.1: (a) The cycle graph of 〈4 1 6 2 5 7 3〉, (b) and (c) the two cycles in its
decomposition.

Note that these definitions of length and k-cycle disagree with the standard
graph-theoretical definitions introduced in the previous chapter (page 12). However,
we will see in Chapter 4 that they make sense.

Definition 3.5. A k-cycle in G(π) is odd (resp. even) if k is odd (resp. even).

The number of cycles of G(π) will be denoted by c(G(π)), and the number of
odd (resp. even) alternating cycles in G(π) will be denoted by codd(G(π)) (resp.
ceven(G(π))). Bafna and Pevzner [9] proved the following lower bound on the trans-
position distance.

Theorem 3.1. [9] For all π in Sn:

td(π) ≥ n+ 1− codd(G(π))

2
.

Theorem 3.1 follows from the facts that the identity permutation is the only
permutation whose cycle graph contains n + 1 odd alternating cycles and that a
transposition can create at most two new odd alternating cycles in the cycle graph
(see Figure 3.2).

πi−1 πi · · · πj−1 πj · · · πk−1 πk
becomes

πi−1 πj · · · πk−1 πi · · · πj−1 πk

Figure 3.2: A transposition creating two new odd alternating cycles in G(π); here,
dotted arcs stand for alternating paths in the graph (i.e. paths alternating grey and
black arcs).

Definition 3.6. A cycle in G(π) is nonoriented if it contains exactly one grey arc
directed from left to right, and oriented otherwise.

21

3.1. Notation and preliminaries

For instance, both cycles in the decomposition of the graph of Figure 3.1 are
oriented; examples of nonoriented cycles will appear in Figure 3.4 (page 26). A
transposition τ(i, j, k) is said to act on black arcs coming out of vertices πi, πj and
πk in G(π). By extension, a transposition acts on one cycle (resp. on two or three
cycles) if all three black arcs on which it acts belong to that cycle (resp. to those
two or three cycles).

Definition 3.7. For a permutation π, a k-transposition is a transposition τ such
that c(G(π ◦ τ)) = c(G(π)) + k.

Lemma 3.1. [9] A transposition that acts on exactly two cycles in G(π) is a 0-
transposition.

Figure 3.3 illustrates Lemma 3.1. Two alternating cycles can interact in several
different ways, which we define below. To every alternating cycle C in a cycle graph
G(π), associate an interval IC defined by the minimum and maximum indices of the
vertices that belong to C.

0 4 2 1 5 3 6
becomes

0 5 3 4 2 1 6

Figure 3.3: Illustration of Lemma 3.1 on 〈4 2 1 5 3〉; the cycle graph of the resulting
permutation still decomposes into two alternating cycles.

Definition 3.8. A cycle C1 contains a cycle C2 if IC1 ⊃ IC2 and no black arc of C1

belongs to IC2 .

Definition 3.9. Two alternating cycles C1, C2 cross if they do not contain each
other and at least one black arc of C1 (resp. C2) belongs to IC2 (resp. IC1).

Definition 3.10. Two alternating cycles C1, C2 interleave if when reading the black
arcs of C1 and C2 from left to right, we alternately get a black arc from either cycle.

For instance, the two alternating cycles in the cycle graph of 〈4 1 6 2 5 7 3〉 cross,
as can be easily seen in Figure 3.1; the “long” cycle in the cycle graph of 〈5 3 4 2 1〉,
shown in Figure 3.3, contains the 1-cycle formed by elements 3 and 4.

3.1.3 Reduced permutations

The study of sorting by transpositions can be simplified by restricting oneself to a
particular class of permutations, defined below.

Definition 3.11. For a permutation π, an ordered pair (πi, πi+1) is a breakpoint
if πi+1 6= πi + 1, and an adjacency otherwise. The number of breakpoints of π is
denoted by b(π).

22

3.1. Notation and preliminaries

There seems to be some confusion in the genome rearrangement literature as to
how breakpoints and adjacencies are defined: some authors define them on the actual
permutation π, while others base their definitions on what we will call the extended
permutation π̃ = 〈0 π1 π2 · · · πn n+ 1〉 – the only difference being in the fact that
in the second case, the index i in Definition 3.11 takes its values in {0, 1, 2, . . . , n}
rather than in {1, 2, . . . , n − 1}. We will adopt the second point of view because,
as can easily be seen in Figure 3.3, this definition allows us to put adjacencies and
1-cycles in G(π) in one-to-one correspondence. As an example, all three adjacencies
are underlined in the permutation 〈0 1 3 2 7 8 4 9 5 6 10〉; all other pair of elements
are breakpoints, and there are seven of them.

Definition 3.12. A permutation π in Sn is reduced if 〈0 π1 · · · πn n + 1〉 has no
adjacency.

Definition 3.13. A strip in a permutation π is a maximal interval of π that contains
no breakpoint.

Christie [23] shows that every permutation can be uniquely transformed into a
reduced permutation without affecting its distance. The transformation of a per-
mutation π into its reduced version gl(π) consists in partitioning π into strips, then
removing the first strip if it begins with 1, the last strip if it ends with n, replacing
every other strip with its minimal element and finally, renumbering the resulting
sequence so as to obtain a new permutation of a possibly smaller set. We illustrate
this transformation on the following example: 〈1 3 2 7 8 4 9 5 6〉 decomposes into
seven underlined strips, and the first strip begins with 1, so we remove it, thereby
obtaining 〈3 2 7 8 4 9 5 6〉. We then replace each other strip with its minimal ele-
ment, which yields 〈3 2 7 4 9 5〉, and finally, we renumber the remaining elements,
and obtain the permutation 〈2 1 5 3 6 4〉. Since an adjacency is a 1-cycle in G(π), a
reduced permutation can also be defined as one whose cycle graph has no 1-cycles2.

Definition 3.14. Two permutations π and σ are equivalent by reduction if gl(π) =
gl(σ), which we also write as π ≡r σ.

Theorem 3.2. [23] For any two permutations π and σ: if π ≡r σ, then td(π) =
td(σ).

This result confirms the intuition that it never “pays” to break adjacencies when
sorting by transpositions. It also allows us to restrict our study of the transposition
problems (sorting and computing the associated distance) to reduced permutations,
since if we can optimally sort a reduced permutation, then we can easily deduce an
optimal sorting sequence for any permutation that reduces to it.

3.1.4 Toric permutations

Eriksson, Eriksson, Karlander, Svensson, and Wästlund [31] introduced an equiv-
alence relation on Sn, whose equivalence classes are called toric permutations and
which we define using Hultman’s notations [47].

2Note that gl(ι) is not defined, because every element would have to be removed. However, we
may argue that this is not really a problem, since there is no point in trying to sort ι.

23

3.1. Notation and preliminaries

Definition 3.15. The circular permutation obtained from a permutation π in Sn is
π◦ = 0 π1 π2 · · · πn, with indices taken modulo n+ 1 so that 0 = π◦0 = π◦n+1.

This circular permutation can be read starting from any position, and the original
“linear” permutation is reconstructed by taking the element following 0 as π1 and
removing 0. For x in {0, 1, 2, . . . , n}, let xm = (x+m) (mod n+ 1), and define the
following operation on circular permutations:

m+ π◦ = 0
m
π1

m π2
m · · · πnm.

We will give examples involving this operation after the next two definitions.

Definition 3.16. For any π in Sn, the toric permutation π◦◦ is the set of permutations
in Sn reconstructed from all circular permutations m+ π◦ with 0 ≤ m ≤ n.

Definition 3.17. Two permutations π, σ in Sn are torically equivalent if σ ∈ π◦◦ (or
π ∈ σ◦◦), which we also write as π ≡◦◦ σ.

For instance, let π = 〈3 1 5 2 4 6〉; then π◦ = 0 3 1 5 2 4 6, and

0 + π◦ = 0 3 1 5 2 4 6
1 + π◦ = 1 4 2 6 3 5 0
2 + π◦ = 2 5 3 0 4 6 1
3 + π◦ = 3 6 4 1 5 0 2
4 + π◦ = 4 0 5 2 6 1 3
5 + π◦ = 5 1 6 3 0 2 4
6 + π◦ = 6 2 0 4 1 3 5

which yields π◦◦ = {〈3 1 5 2 4 6〉, 〈1 4 2 6 3 5〉, 〈4 6 1 2 5 3〉, 〈2 3 6 4 1 5〉, 〈5 2 6 1 3 4〉,
〈2 4 5 1 6 3〉, 〈4 1 3 5 6 2〉}, and all permutations in that set are torically equivalent.
The following property is the main reason why toric permutations were introduced.

Lemma 3.2. [31] For all π, σ in Sn: if π ≡◦◦ σ, then td(π) = td(σ).

Hultman [47] proved another related interesting result.

Lemma 3.3. [47] For all π in Sn and 0 ≤ m ≤ n: every cycle in G(π) is mapped
onto a cycle in G(σ), where σ is the permutation obtained from π◦ +m.

The toric equivalence relation therefore preserves the structure of the cycle graph
in a way similar to how conjugation preserves the disjoint cycle decomposition of
permutation. However, this analogy must not be carried too far, since all permuta-
tions that have the same disjoint cycle decomposition belong to the same conjugacy
class, but two permutations whose cycle graph decomposes in a similar way are not
necessarily torically equivalent: for instance, the cycle graphs of both π = 〈5 4 3 2 1〉
and σ = 〈2 1 3 5 4〉 decompose into two alternating cycles of length three, but it
can easily be checked that π 6≡◦◦ σ.

24

3.1. Notation and preliminaries

3.1.5 Upper bounds on the transposition distance

Since we are going to prove new upper bounds on the transposition distance, it
is only fair that we conclude this introductory section with all upper bounds on
the transposition distance we are aware of. We will experimentally compare those
upper bounds to our new bounds (see Section 3.6) in order to assess the quality of
our results.

Theorem 3.3. [9] For all π in Sn:

td(π) ≤ n+ 1− c(G(π)). (3.1)

Theorem 3.4. [9] For all π in Sn:

td(π) ≤ 3(n+ 1− codd(G(π)))

4
. (3.2)

Theorem 3.5. [27] For all π in Sn:

td(π) ≤ 3 b(π)/4. (3.3)

Theorem 3.6. [31] For all π in Sn:

td(π) ≤
{

d2n/3e if n < 9 ;
b(2n− 2)/3c if n ≥ 9.

(3.4)

Elias and Hartman [30] proved upper bounds on the distance of three special
classes of permutations3.

Definition 3.18. A permutation π in Sn is simple if G(π) contains no cycle of
length greater than three.

Definition 3.19. A permutation π in Sn is a 2-permutation (resp. 3-permutation)
if all cycles in G(π) are of length 2 (resp. 3).

Note that a 2-permutation (resp. 3-permutation) only exists if n + 1 can be
divided by 4 (resp. 3). This follows directly from the definitions and, in the case of
2-permutations, from the fact that ceven(G(π)) is even for all π in Sn (see Christie
[23]). Figure 3.4 shows examples of permutations from each of those classes.

Theorem 3.7. [30] For every simple permutation π in Sn which is not a 3-permu-
tation:

td(π) ≤ b(n+ 1)/2c . (3.5)

Theorem 3.8. [30] For every 2-permutation π in Sn :

td(π) ≤ (n+ 1)/2. (3.6)

3The definitions we give here are not the ones introduced by Hannenhalli and Pevzner [44]
and Elias and Hartman [30], but we prove the equivalence between our definitions and theirs in
Section 3.9.

25

3.2. The distribution of the transposition distance

0 3 2 1 4

(a)

0 5 4 3 2 1 6

(b)

0 5 4 1 6 3 2 7

(c)

Figure 3.4: The cycle graphs of (a) a 2-permutation, (b) a 3-permutation, (c) a
simple permutation. A few alternating cycles have been highlighted to help the
reader see the decompositions.

This upper bound can easily be seen to be the actual transposition distance of
2-permutations: indeed, their cycle graph contains no odd cycle, and as a result
their transposition distance is at least (n+ 1)/2, according to Theorem 3.1.

Theorem 3.9. [30] For every 3-permutation π in Sn :

td(π) ≤ 11

⌊
n+ 1

24

⌋
+

⌊
3(n+1

3
mod 8)

2

⌋
+ 1. (3.7)

Finally, Guyer, Heath, and Vergara [43] deduced an upper bound based on in-
creasing subsequences.

Definition 3.20. Given a permutation π, a subsequence of π is a subset πi1 , . . . , πik
of not necessarily contiguous elements of π, with i1 < i2 < · · · < ik. The subsequence
is increasing if πi1 < πi2 < · · · < πik , and it is a longest increasing subsequence if
there is no other increasing subsequence in π with more elements.

Guyer et al. [43] observe that a permutation can be sorted by transpositions
by “growing” its longest increasing subsequence. That subsequence can always be
increased by at least one at each step, which yields the following upper bound.

Observation 3.1. [43] For all π in Sn :

td(π) ≤ n− |LIS(π)|, (3.8)

where |LIS(π)| is the length of a longest increasing subsequence of π.

3.2 The distribution of the transposition distance

Table 3.1 shows some experimental values of the number of permutations in Sn with
transposition distance equal to k. The distribution was obtained by generating Sn
from the identity permutation by repeatedly composing transpositions.

26

3.2. The distribution of the transposition distance

n\k 0 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0
3 1 4 1 0 0 0 0 0
4 1 10 12 1 0 0 0 0
5 1 20 68 31 0 0 0 0
6 1 35 259 380 45 0 0 0
7 1 56 770 2 700 1 513 0 0 0
8 1 84 1 932 13 467 22 000 2 836 0 0
9 1 120 4 284 52 512 191 636 114 327 0 0

10 1 165 8 646 170 907 1 183 457 2 010 571 255 053 0
11 1 220 16 203 484 440 5 706 464 21 171 518 12 537 954 0

Table 3.1: Number of permutations in Sn with transposition distance equal to k, for
1 ≤ n ≤ 11.

In Sections 3.1.3 and 3.1.4, we have seen two equivalence relations on permuta-
tions that preserve the transposition distance. Two other classes can actually be
deduced.

Proposition 3.2. For all π in Sn: td(π) = td(π−1).

Proof. Straightforward by left-invariance (Proposition 3.1):

td(π, ι) = td(π−1 ◦ π, π−1) = td(π−1, ι).

Another special permutation can be obtained from π which has the same distance:
the conjugate of π by the reversed permutation χ = 〈n n − 1 n − 2 · · · 3 2 1〉. To
prove this, we first show that if τ is a transposition, then so is its conjugate τχ.

Lemma 3.4. For any transposition τ(i, j, k) in Sn, we have

(τ(i, j, k))χ = τ(n− k + 2, n− j + 2, n− i+ 2).

Proof. Using the definitions of a transposition and of a conjugate, we have:

(τ(i, j, k))χ =

(
χ1 · · · χi−1 χi · · · χj−1 χj · · · χk−1 χk · · · χn

χ1 · · · χi−1 χj · · · χk−1 χi · · · χj−1 χk · · · χn

)
=

(
n · · · n− i+ 2 n− i+ 1 · · · n− j + 2 n− j + 1 · · · n− k + 2 n− k + 1 · · · 1

n · · · n− i+ 2 n− j + 1 · · · n− k + 2 n− i+ 1 · · · n− j + 2 n− k + 1 · · · 1

)
=

(
1 · · · n− k + 1 n− k + 2 · · · n− j + 1 n− j + 2 · · · n− i+ 1 n− i+ 2 · · · n

1 · · · n− k + 1 n− j + 2 · · · n− i+ 1 n− k + 2 · · · n− j + 1 n− i+ 2 · · · n

)
= τ(n− k + 2, n− j + 2, n− i+ 2).

Proposition 3.3. For all π in Sn, we have td(π) = td(πχ).

27

3.3. Another useful graph

Proof. Let π = τr ◦ · · · ◦ τ1, where r = td(π); then

χ ◦ π ◦ χ−1 = χ ◦ τr ◦ · · · ◦ τ1 ◦ χ−1

= (χ ◦ τr ◦ χ−1)︸ ︷︷ ︸
τ ′r

◦ (χ ◦ τr−1 ◦ χ−1)︸ ︷︷ ︸
τ ′r−1

◦ · · · ◦ (χ ◦ τ1 ◦ χ−1)︸ ︷︷ ︸
τ ′1

,

where τ ′1, . . ., τ ′r are again transpositions (Lemma 3.4). Therefore

td(π) ≥ td(πχ) ≥ td((πχ)χ) = td(π).

The following corollary is a consequence of Propositions 3.1, 3.2 and 3.3.

Corollary 3.1. For all π in Sn: td(π, ι) = td(π ◦ χ, χ) = td(π−1 ◦ χ, χ).

3.3 Another useful graph

We introduce a slight variant of the well-known graph of a permutation (Defini-
tion 2.14 page 13), in which vertices are ordered by their position in the permuta-
tion. This graph will allow us to connect the disjoint cycle decomposition of some
permutations and the alternating cycle decomposition of their cycle graph in Sec-
tion 3.4.

Definition 3.21. The Γ-graph of a permutation π in Sn is the directed graph Γ(π)
with ordered vertex set (π1, . . . , πn) and arc set {(i, πi) | i = 1, 2, . . . , n}.

4 1 6 2 5 7 3

Figure 3.5: The Γ-graph of the permutation 〈4 1 6 2 5 7 3〉.

Figure 3.5 shows an example of a Γ-graph. The disjoint cycle decomposition of π
naturally matches the decomposition of the Γ-graph into disjoint cycles, so we will
refer to a cycle of length k in Γ(π) as a k-cycle as well.

Definition 3.22. A k-cycle in Γ(π) is increasing (resp. decreasing) if k ≥ 3 and its
elements can be cyclically shifted so as to form an increasing (resp. decreasing) se-
quence, and nonmonotonic otherwise. A cycle that is either increasing or decreasing
is also referred to as monotonic.

For instance, in Figure 3.5, cycle (4, 2, 1) is decreasing, cycle (5) is nonmono-
tonic, and cycle (3, 6, 7) is increasing. In a quite similar fashion to the parity of
cycles defined in the context of G(π), a k-cycle in Γ(π) is odd (resp. even) if k is odd
(resp. even). Likewise, c(Γ(π)) denotes the number of cycles in Γ(π), and codd(Γ(π))
(resp. ceven(Γ(π))) denotes the number of odd (resp. even) cycles in Γ(π). Finally,
note that Definitions 3.8, 3.9 and 3.10 naturally adapt to the Γ-graph.

28

3.4. An explicit formula for some permutations

3.4 An explicit formula for some permutations

We now introduce a special class of reduced permutations, and show (Proposition 3.8
page 34) that their transposition distance can be computed in polynomial time.

Definition 3.23. A γ-permutation is a reduced permutation that fixes all even
elements.

It follows from Definition 3.23 that γ-permutations only exist for odd values of
n ≥ 3. An example of a γ-permutation is 〈3 2 1 4 7 6 9 8 5〉. From the definition,
it is easy to see that the number of γ-permutations in Sn is exactly the number of
derangements of (n+1)/2 elements, i.e. the number of fixed point free permutations
in S(n+1)/2. The following simple observation will be of interest later.

Observation 3.2. Any γ-permutation has a longest increasing subsequence of length
n−1

2
, formed by its even elements.

The following result characterises an interesting relation between cycles in the
Γ-graph and cycles in the cycle graph of γ-permutations.

Proposition 3.4. For every γ-permutation π in Sn:{
ceven(G(π)) = 2 ceven(Γ(π));
codd(G(π)) = 2

(
codd(Γ(π))− n−1

2

)
.

Proof. Each vertex πi of Γ(π), with i odd, is both the starting point of an arc (πi, πj1)
and the ending point of an arc (πj2 , πi). From our definitions, πi + 1 is mapped onto
itself, since it is even. In G(π), those arcs are each transformed, as explained below,
into one sequence of two arcs (grey-black for the first one, black-grey for the second
one):

• (πi, πj1) becomes (πi, πi + 1), (πi + 1, πj1);

• (πj2 , πi) becomes (πi, πi−1), (πi−1, πj2).

I.e. (πi, πj1) is transformed in one of the following ways (depending on the relative
positions of πi and πj1):

a)
πi

· · ·
πj1 πi + 1

becomes
πi

· · ·
πj1 πi + 1

b)
πj1 πi + 1

· · ·
πi

becomes
πj1 πi + 1

· · ·
πi

By definition of Γ(π), we know that πj2 = i. Since πi−1 = i − 1, the arc (πj2 , πi) is
transformed in one of the following ways (depending on the relative positions of πi
and πj2):

29

3.4. An explicit formula for some permutations

a)
πi−1

· · ·
πi πj2

becomes
πi−1

· · ·
πi πj2

b)
πj2

· · ·
πi−1 πi

becomes
πj2

· · ·
πi−1 πi

Therefore each k-cycle (k ≥ 2) in Γ(π) provides two alternating k-cycles in G(π), one
of which actually corresponds to the backwards course of the cycle in Γ(π). Finally,
1-cycles in Γ(π) do not produce cycles in G(π), and there are n−1

2
of them.

It can be easily seen that the above Proposition does not hold for all permuta-
tions: for instance, the cycle graph of χ = 〈n n − 1 · · · 2 1〉 decomposes into n
(mod 2) + 1 cycles of length n+ 1, but its Γ-graph contains (n− 1)/2 2-cycles and
n (mod 2) 1-cycles. The next observation follows naturally from the proof of Prop-
osition 3.4 (recall Definitions 3.6, 3.10 and 3.22 for the concepts of “(non)oriented”,
“interleaving” and “(non)monotonic” cycles, respectively).

Observation 3.3. For a γ-permutation π, the two alternating cycles C1, C2 in G(π)
that correspond to a k-cycle C in Γ(π) interleave. Moreover:

1. if k = 2, then C1 and C2 are nonoriented;

2. if C is monotonic, then either C1 or C2 is oriented;

3. if C is nonmonotonic and k ≥ 4, then both C1 and C2 are oriented.

Γ(π) :
3 2 1 4 7 6 9 8 5

G(π) :
0 3 2 1 4 7 6 9 8 5 10

Figure 3.6: Illustration of Proposition 3.4 and Observation 3.3.

Figure 3.6 illustrates Proposition 3.4 and Observation 3.3. We derive the follow-
ing lower bound from Proposition 3.4 and Theorem 3.1.

Lemma 3.5. For every γ-permutation π in Sn, we have td(π) ≥ n− codd(Γ(π)).

Proof. Straightforward.

30

3.4. An explicit formula for some permutations

We will prove that sorting each cycle in Γ(π) individually is an optimal strategy
for γ-permutations, and therefore that the right-hand side of the above quantity
gives the actual transposition distance of γ-permutations. In order to do that, we
need to be able to compute the number of transpositions required to sort each cycle,
and this is why we first study γ-permutations whose Γ-graph has only one “long” k-
cycle (i.e. with k > 1), distinguishing between monotonic cycles and nonmonotonic
ones.

3.4.1 Monotonic cycles

Definition 3.24. An α-permutation is a reduced permutation that fixes even ele-
ments and whose n+1

2
odd elements form one monotonic cycle in the Γ-graph, referred

to as its main cycle.

An example of an α-permutation, for n = 7, is 〈3 2 5 4 7 6 1〉. Note that for fixed
n ≥ 5, there are only two α-permutations in Sn: one has an increasing main cycle,
and the other has a decreasing main cycle. Therefore, the only other α-permutation,
for n = 7, is 〈7 2 1 4 3 6 5〉 = 〈3 2 5 4 7 6 1〉−1.

Proposition 3.5. For every α-permutation π in Sn, we have

td(π) = n− codd(Γ(π)) = |C| − (|C| mod 2) ,

where |C| = n+1
2

is the number of elements in its main cycle C.

Proof. Every α-permutation is a γ-permutation, so td(π) ≥ |C|−(|C| mod 2) (Lem-
ma 3.5). We may assume without loss of generality that C is increasing, since the
decreasing case corresponds to π−1, and will distinguish between two cases:

1. if |C| is odd, consider transpositions τ1 = τ(2, 4, n+ 1) and τ2 = τ(1, 3, n); we
prove by induction on |C| that

(τ2 ◦ τ1)
|C|−1

2

is an optimal sorting sequence for π. The base case is π = 〈3 2 5 4 1〉; we
have π ◦ τ1 = 〈3 4 1 2 5〉, and 〈3 4 1 2 5〉 ◦ τ2 = ι. For the induction, the
permutation to sort is π = 〈3 2 5 4 7 6 · · · n − 2 n − 3 n n − 1 1〉, to which
we apply transpositions τ1 and τ2:

π = 〈3 2 5 4 7 6 · · · n− 2 n− 3 n n− 1 1 〉
↓

π ◦ τ1 = 〈 3 4 7 6 · · · n− 2 n− 3 n n− 1 1 2 5〉
↓

(π ◦ τ1) ◦ τ2 = 〈7 6 · · · n− 2 n− 3 n n− 1 1 2 3 4 5〉.

Reducing the latter permutation merges the last five elements into a new ele-
ment called 1, and subtracts 4 to every other element. It is then clear that, if
σ is the permutation for which our induction hypothesis is true, then π ◦ τ1 ◦ τ2

reduces to σ.

31

3.4. An explicit formula for some permutations

2. if |C| is even, we need not even build an optimal sorting sequence, since the
upper bound follows from Observations 3.1 and 3.2.

3.4.2 Nonmonotonic cycles

Definition 3.25. A β-permutation is a reduced permutation that fixes even ele-
ments and whose odd elements form one nonmonotonic cycle in the Γ-graph, referred
to as its main cycle.

An example of a β-permutation is 〈5 2 7 4 3 6 9 8 1〉. From the definition, it is easy
to see that the number of β-permutations in Sn, for n ≥ 7, is exactly the number of
1-cycles in S(n+1)/2 minus 2 (since two α-permutations must be discarded). Note that
if n = 3, then the only β-permutation is 〈3 2 1〉, and there are no β-permutations for
n = 5. We now show that Proposition 3.5 still holds if the main cycle of the Γ-graph
is nonmonotonic. We use so-called exchanges in order to simplify the proofs, thus
bypassing the construction of optimal sequences of transpositions.

Definition 3.26. For any π in Sn, the exchange ε(i, j) with 1 ≤ i < j ≤ n applied
to π is the permutation that swaps elements in positions i and j, transforming π
into the permutation π ◦ ε(i, j). Therefore, ε(i, j) is the following permutation:(

1 · · · i− 1 i i+ 1 · · · j − 1 j j + 1 · · · n
1 · · · i− 1 j i+ 1 · · · j − 1 i j + 1 · · · n

)
.

In this section, we only use exchanges of the form ε(i, i + 2k) with k ≥ 1; such
an exchange has the same effect as two transpositions, but determining how many
transpositions are needed to achieve the same action as the product of several such
exchanges requires a little more care:

Proposition 3.6. Let σ = ε(i, i + 2) ◦ ε(i, i + 4) ◦ · · · ◦ ε(i, i + 2t); then for any π
in Sn, we have:

td(π, π ◦ σ) = td(π, π ◦ σ−1) = t+ (t mod 2).

Proof. By left-invariance (Proposition 3.1), we may assume without loss of generality
that π = ι, and Proposition 3.2 allows us to restrict our attention to σ. We note
that Γ(σ) contains one (t+1)-cycle and that all elements outside that cycle are fixed
points, since they are never affected by any exchange. If t = 1, then the long cycle
is nonmonotonic, and it is easily seen that td(σ) = 2; otherwise, the long cycle of
Γ(σ) is increasing, and all elements before position i and after position i + 2t are
fixed. Therefore, removing them transforms σ into gl(σ), which is an α-permutation
whose main cycle has t+ 1 elements. By Theorem 3.2 and Proposition 3.5, we then
have

td(σ) = t+ 1− ((t+ 1) mod 2) = t+ (t mod 2),

which completes the proof.

32

3.4. An explicit formula for some permutations

Proposition 3.7. For every β-permutation π in Sn, we have

td(π) = n− codd(Γ(π)) = |C| − (|C| mod 2) ,

where |C| = n+1
2

is the number of elements in its main cycle C.

Proof. Every β-permutation is a γ-permutation, so td(π) ≥ |C|− (|C| mod 2) (Lem-
ma 3.5). Just as it was the case for α-permutations, if |C| is even, then we are
done, since the upper bound that follows from Observations 3.1 and 3.2 equals our
lower bound. Therefore, we assume that |C| is odd, and we are going to prove that
given any β-permutation (with |C| odd), it is always possible to find a sequence
of transpositions of even length that transforms it into a permutation that reduces
either to a β-permutation or to an α-permutation, with an odd main cycle in both
cases.

We apply two subsequent exchanges to π: the first exchange is ε1(1, π−1
π1

), and
the second exchange is ε2(1, π−1

1), which respectively send π1 and 1 to the positions
they must occupy in ι. This process is schematically drawn below:

π1 2
· · ·

πj
· · ·

1
· · · −→

πj 2
· · ·

π1

· · ·
1
· · · (after ε1)

−→
1 2

· · ·
π1

· · ·
πj
· · · (after ε2)

Note that σ = π ◦ ε1 ◦ ε2 has two more fixed points than π, still fixes all even
elements and has only one cycle of length at least 2; therefore, it reduces either to
an α-permutation or to a β-permutation. Now, recall that |C| ≥ 5 and is odd; if
|C| = 5, then the number of elements in the main cycle of σ is 3, so it reduces to an
α-permutation with three elements in its main cycle. By Proposition 3.5, we have
td(σ) = 2, which implies td(π) ≤ 2 + 2 = 4 = |C|− (|C| mod 2) and verifies the base
case of the induction proof.

If |C| > 5, then one just needs to apply the same process to the resulting reduced
version of σ as long as one does not obtain an α-permutation. Let t denote the
number of pairs of exchanges that we need to use; since at each step, two exchanges
that correspond to two transpositions are applied, and two elements are removed
from C and turned into fixed points, we have:

td(π) ≤ 2t+ (|C| − 2t)− ((|C| − 2t) mod 2)

= |C| − ((|C| − 2t) mod 2)

= |C| − (|C| mod 2),

which completes the proof.

33

3.4. An explicit formula for some permutations

3.4.3 Transposition distance of γ-permutations

Any permutation π can be sorted (by transpositions) by sorting each cycle of its
Γ-graph individually, so that after sorting a cycle, the resulting permutation has the
same Γ-graph as π, except that the sorted cycle has been transformed into fixed
points. This strategy yields the following upper bound on td(π).

Lemma 3.6. For every permutation π, consider its disjoint cycle decomposition
Γ(π) = C1 ∪ C2 ∪ · · · ∪ Cc(Γ(π)). Denote td(C) the minimum number of
transpositions required to transform C = (i1, i2, . . . , ik) into (i1), (i2), . . . , (ik); then

td(π) ≤
c(Γ(π))∑
i=1

td(Ci). (3.9)

The strategy described above works for any permutation, but is not necessarily
optimal; however, we show below that it is optimal for γ-permutations.

Proposition 3.8. For every γ-permutation π in Sn :

td(π) = n− codd(Γ(π)). (3.10)

Proof. Denote odd(Γ(π)) (resp. even(Γ(π))) the set of odd (resp. even) cycles in
Γ(π); Lemma 3.6 and Propositions 3.5 and 3.7 yield

td(π) ≤
c(Γ(π))∑
i=1

|Ci| − (|Ci| mod 2)

=
∑

Ci1∈ odd(Γ(π))

(|Ci1| − 1) +
∑

Ci2∈ even(Γ(π))

|Ci2|

=

c(Γ(π))∑
i=1

|Ci| − codd(Γ(π))

= n− codd(Γ(π)),

which, together with Lemma 3.5, completes the proof.

This proposition actually leads to a more general result.

Theorem 3.10. Every permutation π in Sn that reduces to a γ-permutation has
distance

td(π) = n− codd(Γ(π)). (3.11)

Moreover, every permutation σ in Sn with n odd and whose odd elements occupy odd
positions and form an increasing subsequence modulo n+ 1 can be transformed into
a permutation π such that td(σ) = td(π) = n− codd(Γ(π)).

Proof. If π reduces to a γ-permutation, then Γ(π) can be schematically drawn as
follows (labels and arrows are omitted for clarity):

· · · · · · · · · · · · · · · · · ·

34

3.5. A new upper bound

In this representation, stands for a fixed point, and stands for an element that
belongs to a cycle of length at least 2 in Γ(π). Every dotted rectangle corresponds
to an interval of π that consists only of fixed points, and has nonzero length (except
possibly for the leftmost and rightmost intervals). Therefore, reducing π comes down
to removing fixed points, and each such removal decreases both n and codd(Γ(π)) by
1. The quantity n − codd(Γ(π)) is thus unaffected by reduction, and Theorem 3.2
completes the proof. For the second category discussed in the thesis, note that σ◦±1
fixes all even elements and therefore falls into the category discussed above. The
proof then follows from Lemma 3.2.

3.5 A new upper bound

We now show that the right-hand side of (3.10) is an upper bound on the transpo-
sition distance.

Theorem 3.11. For all π in Sn:

td(π) ≤ n− codd(Γ(π)). (3.12)

Proof. We use the sorting strategy described in Lemma 3.6: each cycle C in Γ(π)
is sorted individually using an optimal sequence of exchanges, which is in turn
converted into a corresponding sequence of transpositions of length at most |C|−(|C|
(mod 2)) (Propositions 3.5 and 3.7). As in the proof of Proposition 3.8, the distances
of the cycles in Γ(π) sum up to n− codd(Γ(π)), which completes the proof.

3.6 Tests and heuristic improvements of our up-

per bound

Table 3.2 shows the number of cases where the value of (3.12) is at most the value of
each of the previously known upper bounds given in Section 3.1.5. A first heuristic
improvement can be obtained through torism.

Theorem 3.12. For all π in Sn:

td(π) ≤ n−max
σ∈π◦◦

codd(Γ(σ)). (3.13)

Proof. Straightforward from Theorem 3.11 and Lemma 3.2.

Experiments show (Table 3.3) that (3.13) is a substantial improvement over (3.12),
but it is hard to express or evaluate this improvement because the evolution of the
Γ-graph under the toric equivalence relation does not seem easy to predict, whereas
that of the cycle graph is well known (Lemma 3.3). By the way, note that the
other upper bounds cannot benefit from this improvement, since neither the cycle
graph structure nor the number of breakpoints will be affected. A second heuristic
improvement of (3.12) can be obtained through reduction.

35

3.6. Tests and heuristic improvements of our upper bound

n
n

!
|(3

.1
2)
≤

(3
.1

)|
|(3

.1
2)
≤

(3
.2

)|
|(3

.1
2)
≤

(3
.3

)|
|(3

.1
2)
≤

(3
.4

)|
|(3

.1
2)
≤

(3
.8

)|
1

1
1

1
1

1
1

2
2

2
1

1
1

1
3

6
6

2
1

6
5

4
24

19
8

8
15

15
5

12
0

10
1

45
24

31
37

6
72

0
52

9
30

4
49

49
5

17
9

7
5

04
0

3
83

7
2

05
5

72
2

1
61

1
1

03
5

8
40

32
0

28
35

4
17

87
9

3
09

4
4

35
5

4
25

7
9

36
2

88
0

25
7

84
4

10
4

39
2

60
87

1
10

24
3

18
73

3
10

3
62

8
80

0
2

46
9

21
7

43
0

16
4

36
1

65
9

48
5

15
4

12
4

11
0

n
|si

m
p
le

p
er

m
u
ta

ti
on

s|
|2

-p
er

m
u
ta

ti
on

s|
|3

-p
er

m
u
ta

ti
on

s|
|(3

.1
2)
≤

(3
.5

)|
|(3

.1
2)
≤

(3
.6

)|
|(3

.1
2)
≤

(3
.7

)|
1

1
-

-
1

-
-

2
2

-
1

1
-

1
3

6
1

-
6

1
-

4
16

-
-

11
-

-
5

48
-

12
19

-
12

6
20

4
-

-
32

-
-

7
87

6
21

-
36

9
9

-
8

3
63

6
-

46
4

74
9

-
10

9
18

75
6

-
-

1
43

3
-

-
10

10
5

48
0

-
-

2
67

8
-

-
11

56
1

67
2

1
48

5
38

72
0

46
34

2
87

86
2

Table 3.2: Comparison of upper bound (3.12) with previous results.

36

3.6. Tests and heuristic improvements of our upper bound

n
n

!
|(3

.1
3)
≤

(3
.1

)|
|(3

.1
3)
≤

(3
.2

)|
|(3

.1
3)
≤

(3
.3

)|
|(3

.1
3)
≤

(3
.4

)|
|(3

.1
3)
≤

(3
.8

)|
1

1
1

1
1

1
1

2
2

2
1

1
1

1
3

6
6

2
1

6
5

4
24

24
11

9
21

21
5

12
0

11
2

60
36

54
54

6
72

0
67

1
45

1
73

70
3

23
1

7
5

04
0

4
65

4
3

31
8

1
33

6
3

57
4

1
93

4
8

40
32

0
37

20
9

27
48

6
5

95
7

9
86

4
7

87
0

9
36

2
88

0
33

6
74

4
25

9
19

5
13

2
80

1
21

61
0

32
00

1
10

3
62

8
80

0
3

28
0

81
5

1
24

4
00

2
93

1
58

4
1

37
6

13
4

24
6

12
4

n
|si

m
p
le

p
er

m
u
ta

ti
on

s|
|2

-p
er

m
u
ta

ti
on

s|
|3

-p
er

m
u
ta

ti
on

s|
|(3

.1
3)
≤

(3
.5

)|
|(3

.1
3)
≤

(3
.6

)|
|(3

.1
3)
≤

(3
.7

)|
1

1
-

-
1

-
-

2
2

-
1

2
-

1
3

6
1

-
6

1
-

4
16

-
-

16
-

-
5

48
-

12
48

-
12

6
20

4
-

-
19

0
-

-
7

87
6

21
-

69
2

21
-

8
3

63
6

-
46

4
1

53
0

-
20

9
18

75
6

-
-

2
78

1
-

-
10

10
5

48
0

-
-

4
89

6
-

-
11

56
1

67
2

1
48

5
38

72
0

11
2

36
4

28
1

24
54

Table 3.3: Comparison of upper bound (3.13) with previous results.

37

3.7. Perforations of α-permutations

Theorem 3.13. For all π 6= ι in Sn, let gl(π) denote its reduced version in Sm,
where m ≤ n; then

td(π) ≤ m− max
σ∈(gl(π))◦◦

codd(Γ(σ)). (3.14)

All other bounds can take advantage of this reduction as well, except for (3.1),
(3.2) and (3.3). This time, we do not compare (3.14) with other bounds; instead, for
1 ≤ i ≤ 10, we generate all permutations with their distance, and check how (3.14)
overestimates their distance. Table 3.4 shows the results.

n n! ∆ = 0 ∆ = 1 ∆ = 2 ∆ = 3 ∆ = 4 ∆ = 5 ∆ = 6
1 1 1 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0
3 6 2 4 0 0 0 0 0
4 24 11 11 2 0 0 0 0
5 120 48 51 21 0 0 0 0
6 720 197 401 108 14 0 0 0
7 5 040 1 318 2 460 966 296 0 0 0
8 40 320 8 775 13 875 15 150 2 512 8 0 0
9 362 880 45 415 132 257 145 394 34 702 5 112 0 0

10 3 628 800 231 738 1 208 900 1 124 842 972 323 90 511 420 66

Table 3.4: Number of cases where (3.14) overestimates td(π) by ∆.

3.7 Perforations of α-permutations

We now know how to compute the transposition distance of γ-permutations, which
fix all even elements; what about other permutations? One possible way to attack
this problem is to study how removing fixed points from γ-permutations affects the
distance of the resulting permutation. Since that question seems difficult, we restrict
our study to the particular case of α-permutations, for which we are able to give
an answer to the above question. Building on that result, we obtain a formula for
computing the distance of permutations obtained from α-permutations in that way
(Corollary 3.2), and succeed in improving (3.12) in many other cases, sometimes
even reaching the actual distance.

Note that removing a 1-cycle from the Γ-graph of a γ-permutation π, which will
be located in an even position i, can be done by moving πi + 1 right after πi using a
transposition, then removing the adjacency obtained in that way and renumbering
the other elements appropriately.

Definition 3.27. A k-perforation π in Sn of an α-permutation σ in Sn+k is a per-
mutation obtained by removing k ≥ 1 1-cycles from Γ(σ) and renumbering the
remaining elements.

For instance, a 3-perforation of the α-permutation 〈3 2 5 4 7 6 9 8 11 10 1〉 is
〈3 2 5 4 7 6 9 8 11 10 1〉 = 〈2 4 3 5 6 8 7 1〉. The following result, which will be
followed by an example in Figure 3.7 (page 40), describes how the structure of the
cycle graph evolves when perforating an α-permutation.

38

3.7. Perforations of α-permutations

Lemma 3.7. For every k-perforation π of an α-permutation σ in Sn+k:

c(G(π)) = codd(G(π)) = k

and G(π) contains only noncrossing cycles, not containing each other, except for a
large one containing all others.

Proof. Induction on k. The main cycle of Γ(σ) is again assumed to be increasing,
the decreasing case corresponding to σ−1 whose cycle graph has the same structure
(see Hultman [47]). Therefore, for every even i, we have σi−1 = σi + 1. Recall that
n+ k is odd, by definition of σ.

If k = 1, let us remove some fixed element σi = i (i is therefore even). We first
apply the transposition τ(i − 1, i, i + 1), which acts on two interleaving cycles of
same parity in G (Observation 3.3), and is therefore a 0-transposition (Lemma 3.1)
that transforms those two cycles into a 1-cycle and an (n + k)-cycle, both odd.
Removing the 1-cycle and renumbering all elements as required, we obtain π, and
c(G(π)) = codd(G(π)) = 1.

For the induction, we again remove 1-cycles from Γ(σ) in two steps, by first
applying all our transpositions, then removing k adjacencies. Since the thesis is
assumed to hold for k − 1 perforations, we start with the corresponding (k − 1)-
perforation π′, and put back the k − 1 adjacencies that needed to be deleted, thus
obtaining a permutation π′′ with c(G(π′′)) = codd(G(π′′)) = 2(k − 1). By our induc-
tion hypothesis, none of these cycles cross, and one of them contains all others. Let
us now select some fixed point in an even position i that we wish to remove, and
apply the adequate transposition τ(i − 1, i, i + 1) to create an adjacency. The odd
alternating cycle to which this element belongs will be split into three cycles: an
adjacency (1-cycle) “framed” by two cycles C1 and C2 of the same parity.

C1 C2

· · ·
π′′i−2 π′′i−1 π′′i π′′i+1

· · · becomes · · ·
π′′′i−2 π′′′i−1 π′′′i π′′′i+1

· · ·

We need to prove that both C1 and C2 are odd, which comes down to showing
that one of them is since they have the same parity. By induction, there is an
adjacency on the right-hand side of C2 or on the left-hand side of C1, and without
loss of generality we will assume that we are in the first case. This adjacency,
that we denote (πj, πj+1), contains an even element in an odd position, namely,
πj; since the leftmost element of C2 occupies an even position, the number j − i
of black arcs between position i and position j, which all belong to C2, is odd.
Therefore, the three new cycles are odd, and we get the permutation π′′′ = π′′ ◦ τ
with c(G(π′′′)) = codd(G(π′′′)) = 2k. We now remove k 1-cycles from G(π′′′), and the
proof follows.

Figure 3.7 illustrates the claim of Lemma 3.7. This result leads to a formula for
computing the distance of perforations of α-permutations.

39

3.7. Perforations of α-permutations

0
3

2
5

4
7

6
9

8
11

10
1

12
0

2
4

3
5

6
8

7
1

9

3
2

5
4

7
6

9
8

11
10

1
2

4
3

5
6

8
7

1

(a
)

(b
)

Figure 3.7: The cycle graph and the Γ-graph of (a) the α-permutation
〈3 2 5 4 7 6 9 8 11 10 1〉, and (b) its 3-perforation 〈2 4 3 5 6 8 7 1〉. The “wrap-
ping” cycle in the cycle graph of the perforation has been highlighted, and contains
a 3-cycle and a 1-cycle.

40

3.7. Perforations of α-permutations

Corollary 3.2. Let π in Sn be a k-perforation of an α-permutation; then

td(π) = n− codd(Γ(π))− k + (|C| mod 2) ,

where |C| = n+k+1
2

is the number of elements in the main cycle C of π.

Proof. Again, assume without loss of generality that the main cycle is increasing.
A lower bound of |C| − k is given by Lemma 3.7 and Theorem 3.1. On the other
hand, the elements of the main cycle of σ (the α-permutation in Sn+k from which
π is obtained), without 1, form a longest increasing subsequence of length n−1

2
=

|C| − 1. Moreover, perforating an α-permutation does not affect this sequence, so
Observation 3.1 yields an upper bound of n − |C| + 1, which equals |C| − k since
|C| = n+k+1

2
. Therefore:

td(π) = |C| − k
= |C| − k − (|C| mod 2) + (|C| mod 2)

= td(σ)− k + (|C| mod 2)

= n+ k − codd(Γ(σ))− k + (|C| mod 2)

= n− codd(Γ(σ)) + (|C| mod 2)

= n− codd(Γ(π))− k + (|C| mod 2) .

The next logical move, as in our analysis of γ-permutations, would be to consider
perforations of β-permutations. However, counter-examples have been found that
prevent us from proving an equivalent of Lemma 3.7 for such permutations; for
instance, consider the β-permutation 〈7 2 13 4 3 6 5 8 15 10 9 12 11 14 1〉. Then
the cycle graph of the 4-perforation 〈7 2 13 4 3 6 5 8 15 10 9 12 11 14 1〉 =
〈5 2 10 3 4 11 7 6 9 8 1〉 has only two cycles, both odd.

We can nevertheless still prove results on permutations whose Γ-graph contains
noncrossing cycles only: fortunately, the exact distance of some subcases in that fam-
ily can be computed exactly; if not, we are nonetheless still able to improve (3.12).
Before tackling this general problem in the next section, we conclude the current
one with the particular case where all noncrossing long cycles are perforations of
α-permutations, starting with the case shown in Figure 3.8, where we do not al-
low containment of long cycles. In such a configuration, the 1-cycles between every
pair of long cycles are referred to as the separating 1-cycles or, more concisely, the
separators .

· · ·
C1

· · ·
C2

· · ·
C3

· · · · · ·
Ck−1

· · ·
Ck

Figure 3.8: A Γ-graph formed by sub-permutations separated by 1-cycles. Those
sub-permutations contain one long cycle and a collection of fixed points, and no two
long cycles in the whole permutation cross, interleave or contain each other.

41

3.7. Perforations of α-permutations

Proposition 3.9. Let π in Sn be a permutation with Γ(π) of the form shown in
Figure 3.8, where Ci (1 ≤ i ≤ k) is a ki-perforation of an α-permutation (up to
appropriate renumbering); then

td(π) = n− codd(Γ(π))−K +
k∑
i=1

(|Ci| mod 2) ,

where K =
∑k

i=1 ki and |Ci| is the number of elements in the main cycle of each
perforation.

Proof. Lemma 3.7 and Theorem 3.1 yield

td(π) ≥ n+ 1−
∑k

i=1 ki
2

=
n+ 1−K

2
.

We have n = k−1+
∑k

i=1 ni, where ni is the number of elements of each perforation,
and Lemma 3.6 yields

td(π) ≤
k∑
i=1

td(Ci) =
k∑
i=1

|Ci| − ki

=
k∑
i=1

ni + ki + 1− 2ki
2

=
1

2

k∑
i=1

(ni + 1− ki)

=
n+ 1−K

2
.

The expression given in the thesis is obtained by replacing td(Ci) with the expression
provided by Corollary 3.2.

We now show that removing any subset of the separators in the case we just
examined does not affect the distance. For any transposition τ and any permutation
π, let ∆codd(τ,G(π)) = codd(G(π ◦ τ)) − codd(G(π)). The following lemma will be
useful.

Lemma 3.8. Let τ = τ(i, i+ 1, (π−1)πi+1), and let C1, C2 be two noncrossing cycles
in G(π) which share vertex πi as shown below:

C1 C2

· · ·
πi

· · ·

Then ∆codd(τ,G(π)) = 2 if both C1 and C2 are even, and 0 otherwise.

Proof. The transposition τ(i, i+ 1, (π−1)πi+1) acts on two cycles, and is therefore a
0-transposition (Lemma 3.1) transforming C1 and C2 into a 1-cycle and a (|C1| +
|C2| − 1)-cycle as shown below:

42

3.7. Perforations of α-permutations

C1 C2

· · ·
πi x

· · ·
y z

becomes

· · ·
x
· · ·

y πi z

The proof follows from parity arguments.

Corollary 3.3. Let π be a permutation that satisfies the conditions of Proposi-
tion 3.9; then removing j (1 ≤ j ≤ k−1) separators from Γ(π) yields a permutation
with the same distance.

Proof. By Lemma 3.7, each Ci in Γ(π) corresponds to a collection of alternating
cycles in G(π) wrapped in a large one, and all of them are odd. Every pair of con-
secutive “wrapping cycles” in G(π) shares a vertex, which is the 1-cycle separating
the corresponding long cycles in Γ(π). By Lemma 3.8, deleting that separating cycle
does not change the bounds obtained in Proposition 3.9, and the proof follows.

Similar arguments can be used to handle the case of cycles in the Γ-graph that
contain other ones, so we have the following result.

Theorem 3.14. For every π in Sn that reduces to a concatenation of 1-cycles and
of k perforations of α-permutations (up to appropriate renumbering):

td(π) = n− codd(Γ(π))−K +
k∑
i=1

(|Ci| mod 2) ,

where K is the number of arcs of length 1 in Γ(π).

Proof. Perforating an α-permutation creates an arc of length 1 in Γ(π). The formula
follows from Proposition 3.9 and previous observations.

It is less clear how exactly a perforation would be defined in the case of crossing
cycles. Even less clear is the evolution of cycles in the cycle graph when deleting
fixed points in this situation: this seems to depend both on how cycles cross and
on their monotonicity. We can however prove some further results on permutations
whose Γ-graph has no crossing cycles, which we do in the next section.

43

3.8. Noncrossing cycles in the Γ-graph

3.8 Noncrossing cycles in the Γ-graph

We consider permutations with a Γ-graph of the form shown in Figure 3.8 (page 41),
and have a look at what happens in the cycle graph and in the Γ-graph when deleting
separators (this is more general than the case examined in Proposition 3.9, since
we allow each Ci to be something other than a perforation of an α-permutation).
Depending on the parity of each long cycle, the deletion of separators can have
various effects.

Proposition 3.10. Let π in Sn be a permutation with Γ(π) of the form shown in
Figure 3.8, where Ci (1 ≤ i ≤ k) is one of the following:

• an α-permutation with an odd main cycle;

• a β-permutation with an odd main cycle;

• a perforation of an α-permutation.

Then deleting j separators (1 ≤ j ≤ k − 1) transforms π into a permutation with
the same distance.

Proof. By Propositions 3.4 and 3.8, we have td(π) = n+1−codd(G(π))
2

. Each pair
(Ci, Ci+1) yields a pair of alternating cycles (Observation 3.3 and Lemma 3.7) that
share the separator as described in Lemma 3.8. This Lemma also implies that delet-
ing the separator does not change the lower bound of Theorem 3.1, which is tight
for π, because it will decrease both n and the number of odd alternating cycles by
1. So td(π) is a lower bound on the distance of the resulting permutation, and since
td(π) is also an upper bound on that distance (Lemma 3.6), the proof follows.

Although we are unable to compute the exact distance when all large cycles are
even (and are not perforations of α-permutations), we can still lower (3.12) in that
case. In order to express this improved bound formally, we need to introduce the
following graph.

Definition 3.28. Given a permutation π with Γ(π) of the form shown in Figure 3.8,
the contact graph H(π) is the undirected graph whose vertices are the long cycles
in Γ(π) and whose edges are {Ci, Ci+1} if Ci and Ci+1 are even and not separated
by a 1-cycle in Γ(π).

The graph H(π) uniquely decomposes into p connected components, which we
denote C1, . . . , Cp. The following lemma will be useful.

Lemma 3.9. Let ξk = 〈3 2 1︸ ︷︷ ︸
1

6 5 4︸ ︷︷ ︸
2

· · · n n− 1 n− 2︸ ︷︷ ︸
k

〉; then td(ξk) ≤
⌈

3k
2

⌉
=
⌈
n
2

⌉
.

Proof. As shown below, the cycle graph of ξk contains only two cycles of length two
and k + 1 cycles of length three, a few of which are highlighted:

44

3.8. Noncrossing cycles in the Γ-graph

0 3 2 1 6 5 4 9 8 7
· · ·

n n− 1 n− 2 n+ 1

ξk is therefore a simple permutation, and the proof follows from Theorem 3.7.

One way to sort ξk is to handle 2-cycles of Γ(ξk) pairwise, i.e. partition ξk into
⌊
k
2

⌋
sub-permutations of the form of ξ2. Those can each be sorted optimally using three
transpositions (indeed: 〈 3 2 1 6 5 4〉 → 〈1 6 3 2 5 4〉 → 〈1 2 5 6 3 4 〉 → ι),
and possibly, one last sub-permutation of the form of ξ1 will require two transpo-
sitions. Note that ξk generalises an example given by Christie [23] that shows the
nonoptimality of his improved lower bound on the transposition distance (meaning
that even though it gives a larger value than the lower bound of Theorem 3.1, it still
underestimates the true distance). Branch-and-bound seems however to indicate
that the upper bound of Lemma 3.9 is the actual distance of ξk.

Proposition 3.11. Let π be a γ-permutation with Γ(π) of the form shown in Fig-
ure 3.8, where Ci (1 ≤ i ≤ k) is either an α-permutation or a β-permutation with
an even main cycle; then deleting j separators (1 ≤ j ≤ k − 1) transforms π into a
permutation σ such that

td(σ) ≤ td(π)− 2k +

p∑
i=1

⌈
3|Ci|

2

⌉
,

where Ci (1 ≤ i ≤ p) is a connected component of H(σ).

Proof. Instead of removing separators directly, we first apply some transpositions
to π. Each sub-α-permutation and each sub-β-permutation can be sorted “incom-
pletely” using the process described in the proof of Proposition 3.7, i.e. keep applying
transpositions until the resulting sub-permutation reduces to 〈3 2 1〉. By reduction,
the resulting permutation has a Γ-graph of the form shown in Figure 3.8, where each
C ′i is now of the form of ξ1. Let us now remove a subset of j separators (1 ≤ j ≤ k−1)
from that permutation; this will diminish the number of components in its contact
graph, thus creating sub-permutations of the form of ξk. The following upper bound
is obtained from Lemmas 3.6 and 3.9:

td(σ) ≤
p∑
i=1

td(Ci) ≤
p∑
i=1

∑
Cj∈Ci

(td(Cj)− 2) + td(ξ|Ci|)


=

p∑
i=1

∑
Cj∈Ci

(td(Cj)− 2) +

p∑
i=1

td(ξ|Ci|)

≤ td(π)− 2k +

p∑
i=1

⌈
3|Ci|

2

⌉
.

45

3.8. Noncrossing cycles in the Γ-graph

An easy particular case of this proposition is when all separators are deleted;
in that case, td(σ) ≤ td(π) −

⌈
k
2

⌉
. There remains one case to deal with, which

encompasses both previous Propositions.

Proposition 3.12. Let π be a γ-permutation with Γ(π) of the form shown in Fig-
ure 3.8, where Ci (1 ≤ i ≤ k) is one of the following:

• an α-permutation or a β-permutation with an even or an odd main cycle;

• a perforation of an α-permutation.

Then deleting j separators (1 ≤ j ≤ k − 1) transforms π into a permutation σ such
that

td(σ) ≤ td(π)− 2k +

p∑
i=1

⌈
3|Ci|

2

⌉
,

where Ci (1 ≤ i ≤ p) is a connected component of H(σ).

Proof. As hinted by Lemma 3.8 and confirmed by subsequent results, the only case in
which deleting a separator affects the distance of the resulting permutation is when
that deletion occurs between two even cycles. This means that Proposition 3.11
naturally generalises to the case where some cycles are allowed to be odd, because
deleting separators adjacent to at least one long odd cycle will not modify the
distance of the resulting permutation. By the same arguments as those used in
that Proposition’s proof, we obtain the same upper bound on the distance of the
resulting permutation, and α-permutations, β-permutations as well as perforations
of the former kind can be handled individually in σ as was already done in π.

We conclude with the case where we allow containment of cycles and perforations
of α-permutations.

Theorem 3.15. For all π in Sn with Γ(π) containing only noncrossing monotonic
cycles and 1-cycles, we have

td(π) = n− codd(Γ(π))−K +
k∑
i=1

(|Ci| mod 2) ,

where Ci (1 ≤ i ≤ k) are the long cycles in Γ(π) and K is the number of arcs of
length 1.

Proof. Assume that every pair of consecutive long cycles in Γ(π) is separated by
a 1-cycle; since each long cycle is odd or spans a perforation of an α-permutation,
the alternating cycles in G(π) that correspond to this sub-permutation are all odd
(Proposition 3.4 and Lemma 3.7). Therefore, removing any subset of the separators
cannot affect the distance (Lemma 3.8), so the strategy of Lemma 3.6 remains
optimal and the proof follows from Theorem 3.14.

46

3.9. Cycle graphs and breakpoint graphs

3.9 Equivalence of the cycle graph and of the

breakpoint graph

A reader familiar with the problem of sorting by reversals will have noted that the
cycle graph is very similar to a structure known as the breakpoint graph. In this
section, we prove that those two graphs are indeed equivalent, at least for unsigned
permutations. This equivalence allows the use of either structure for the study
of sorting by transpositions (other researchers, e.g. Elias and Hartman [30], have
already been using the breakpoint graph instead of the cycle graph, but without
proving the equivalence between both graphs), and may allow the extension of results
obtained in this chapter to other problems.

A signed permutation is a permutation whose elements can be either positive
or negative. Denote S±n the group of permutations of {±1,±2, . . . ,±n}. It is not
mandatory for a signed permutation to have negative elements, so Sn ⊂ S±n (since
each permutation in Sn can be viewed as a signed permutation without negative
elements in S±n). The following graph was introduced by Bafna and Pevzner [7] in
the context of sorting permutations by reversals.

Definition 3.29. Given a signed permutation π in S±n , transform it into an unsigned
permutation π′ in S2n by replacing πi with the sequence (2πi − 1, 2πi) if πi > 0, or
(2|πi|, 2|πi|−1) if πi < 0, for 1 ≤ i ≤ n. The breakpoint graph of π′ is the undirected
bicoloured graph BG(π′) with ordered vertex set (π′0 = 0, π′1, π

′
2, . . . , π

′
2n, π

′
2n+1 =

2n+ 1) and whose edge set consists of:

• black edges {π′2i, π′2i+1} for 0 ≤ i ≤ n;

• grey edges {π′2i, π′2i + 1} for 0 ≤ i ≤ n.

We show that for every signed permutation π with no negative element, the cycle
graph G(π) is equivalent to the breakpoint graph BG(π′). By equivalent, we mean
that every alternating cycle in G(π) is an alternating cycle in BG(π′), and that the
“topological” relations between the cycles are the same; for instance, if two cycles
cross in either graph, then they also cross in the other one.

Theorem 3.16. For all π in Sn, we have G(π) ≡ BG(π′).

Proof. We show that either graph can be constructed by transforming the other one
without affecting its features. Intuitively, transforming G(π) into BG(π′) is done by
spacing black arcs in G(π) (i.e. splitting each vertex into two nonadjacent vertices)
and removing the orientation; conversely, transforming BG(π′) into G(π) is done by
orienting edges in BG(π′), then merging every consecutive pair of vertices that are
not connected by a black arc.

1. starting with G(π): split each vertex πi (1 ≤ i ≤ n) into two unconnected
vertices (πi)l, (πi)r (one to the left and one to the right), and rename π0 (resp.
πn+1) into (π0)r (resp. (πn+1)l). Black arc (πi, πi−1) is mapped onto a new
black arc ((πi)l, (πi−1)r), as shown in Figure 3.9. Similarly, grey arc (πi, πi+1)
is mapped onto a new grey arc ((πi)r, (πi + 1)l), as shown in Figure 3.10. This

47

3.9. Cycle graphs and breakpoint graphs

G(π) :

Ĝ(π) :
(πi−1)l

πi−1

(πi−1)r (πi)l

πi

(πi)r (πi+1)l

πi+1

(πi+1)r

Figure 3.9: Mapping of the black arcs in the transformation of G(π) into BG(π′);

here, Ĝ(π) is a graph that will be isomorphic to BG(π′) once the orientation of arcs
is removed.

G(π) :

Ĝ(π) :
(πi − 1)l

πi − 1

(πi − 1)r (πi)l

πi

(πi)r (πi + 1)l

πi + 1

(πi + 1)r

Figure 3.10: Mapping of the grey arcs in the transformation of G(π) into BG(π′).

transformation yields Ĝ(π), a graph that will be isomorphic to BG(π′) once
the orientation of arcs is removed; indeed, let us then rename (πi)l (resp. (πi)r)
into 2πi− 1 (resp. 2πi) and remove the orientation of arcs: we obtain BG(π′),
since:

(a) each black arc (πi, πi−1) is mapped onto a black edge {(πi)l, (πi−1)r} =
{2πi − 1, 2πi−1};

(b) each grey arc (πi, πi + 1) is mapped onto a grey edge {(πi)r, (πi + 1)l} =
{2πi, 2πi + 1}.

2. starting with BG(π′): since π′ comes from some permutation π with no neg-
ative element, for all 1 ≤ i ≤ n, we have π′2i = 2πi and π′2i−1 = 2πi − 1. This
implies that alternating cycles in BG(π′) can be followed starting from the
leftmost vertex of a black edge, then following a grey edge that will take us
to the rightmost vertex of the next black edge. Therefore, adding an orienta-
tion to all edges that corresponds to this course will result in a collection of
directed alternating cycles that can be followed using the direction of the ar-
rows, and this orientation is obtained by transforming grey edge {π′2i, π′2i + 1}
into (π′2i, π

′
2i + 1), and black edge {π′2i, π′2i+1} into (π′2i+1, π

′
2i).

Next, for 1 ≤ i ≤ n, merge vertices π′2i−1 and π′2i into vertex π′2i, and rename
vertex π′2n+1 into π′2n+2; black arc (π′2i+1, π

′
2i) is mapped onto a new black arc

(π′2i+2, π
′
2i).

Finally, replace π′2i with πi, for 0 ≤ i ≤ n+ 1. This results in G(π), since:

48

3.9. Cycle graphs and breakpoint graphs

BG(π′) :

BG′(π′) :

π′2i−1

π′2i

π′2i π′2i+1

π′2i+2

π′2i+2 π′2i+3

π′2i+4

π′2i+4

Figure 3.11: Mapping of the black edges in the transformation of BG(π′) into G(π);
here, BG′(π′) is a graph isomorphic to G(π).

(a) each black edge {π′2i, π′2i+1} is mapped onto a black arc (π′2(i+1), π
′
2i) =

(πi+1, πi);

(b) each grey edge {π′2i, π′2i + 1} is mapped onto a grey arc (πi, πi + 1).

As in the case of the cycle graph, the length of a cycle in a breakpoint graph is
the number of black edges it contains.

Definition 3.30. [44] A permutation π in S±n is simple if BG(π′) does not contain
a cycle of length greater than three.

Definition 3.31. [44] A permutation π in S±n is a 2-permutation (resp. 3-permuta-
tion) if all cycles in BG(π′) are of length 2 (resp. 3).

Corollary 3.4. For every π in Sn, Definition 3.18 (resp. Definition 3.19) and Def-
inition 3.30 (resp. Definition 3.31) are equivalent.

Proof. Straightforward from Theorem 3.16.

49

Chapter 4

Hultman numbers

As we have seen in Chapter 3, the toric equivalence relation has proved useful for
sorting permutations by transpositions and computing, or at least approximating
the transposition distance. Hultman [47] enumerated the corresponding equivalence
classes (sequence A002619 of The On-line Encyclopedia of Integer sequences [69] –
hereafter abbreviated to OEIS). He also noticed that the structure of the cycle graph
(Definition 3.3 page 20) is preserved under this equivalence relation (Lemma 3.3
page 24), whereas the classical disjoint cycle decomposition (page 13) is in general
not preserved. This led him to propose an analogue of the Stirling number of the
first kind based on the cycle graph, and to ask for a determination of the resulting
number, which we will refer to as the “Hultman number”. Hultman was not able to
characterise this number, and stated this question as an open problem in his work.
Our main contributions in this chapter are the following:

• we present a bijection between the set of permutations of n elements whose
cycle graph contains k cycles, on the one hand, and, on the other hand, the
set of factorisations of a given (n + 1)-cycle into the product of an (n + 1)-
cycle and a permutation whose disjoint cycle decomposition contains k cycles
(Theorem 4.1);

• we indicate how to construct a similar bijection for permutations with a fixed
conjugacy class (in the sense of the cycle graph), based on arguments used for
establishing the previous bijection (Theorem 4.2);

• we deduce a general formula from these relations and the work of Goupil and
Schaeffer [42] for computing Hultman numbers (Theorem 4.4) and the number
of permutations with a fixed conjugacy class, in the sense of the cycle graph
(Theorem 4.5);

• we provide simpler formulae for enumerating a few particular classes of per-
mutations (Section 4.4).

Most results presented in this chapter have been published in [29], a joint work with
Jean-Paul Doignon.

50

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A002619

4.1. Notation and definitions

4.1 Notation and definitions

4.1.1 Stirling numbers and the disjoint cycle decomposition

We will again rely on the Γ-graph of a permutation (Definition 3.21 page 28) to de-
scribe its disjoint cycle structure (page 13). We also work with Sym({0, 1, 2, . . . , n}),
the symmetric group on {0, 1, 2, . . . , n}, abbreviated to S(1 + n).

Definition 4.1. The Stirling number of the first kind S(n, k) counts the number of
permutations in Sn whose disjoint cycle decomposition consists of k cycles:

S(n, k) = |{π ∈ Sn | c(Γ(π)) = k}| .

As an example, consider S3, which has six elements; then S(3, 2) = 3, because
the only permutations in S3 that decompose into exactly two cycles are

〈1 3 2〉 = (1)(2, 3),

〈2 1 3〉 = (1, 2)(3), and

〈3 2 1〉 = (1, 3)(2).

A more general counting situation occurs when the conjugacy class of the relevant
permutations is completely specified.

Definition 4.2. A partition λ = (λ1, λ2, . . . , λl) is a finite sequence of integers
called parts such that λ1 ≥ λ2 ≥ · · · ≥ λl > 0. Its length is l, and we write λ ` n if∑l

i=1 λi = n, in which case we say that λ is a partition of n. A permutation π in Sn
is of class λ if λ is obtained by writing in nonincreasing order the various lengths of
the disjoint cycles in Γ(π); we then set λ = C(π).

For instance, all permutations in the example preceding Definition 4.2 have con-
jugacy class (2, 1). The number of permutations in Sn of a given class λ is easily
derived (see for instance Proposition 4.1 in Stanley’s book [71]): let αi denote the
number of λj’s that are equal to i (for 1 ≤ i ≤ n), and set zλ =

∏
i αi! i

αi ; then the
number of permutations of class λ equals n! / zλ.

4.1.2 Hultman numbers and the cycle graph

Recall the cycle graph of a permutation (Definition 3.3 page 20); in the present
chapter, we slightly modify its structure, by identifying vertices 0 and n+ 1, which
transforms G(π) into a circular cycle graph that we denote G′(π). This does not alter
the decomposition into alternating cycles, as illustrated by Figure 4.1, so referring
to cycles of G(π) or of G′(π) is equivalent. Our motivation for considering this
circular version of the cycle graph, which will become clearer in Section 4.2, is the
following: we want to build a new permutation whose disjoint cycle decomposition
will correspond to the decomposition of G′(π) (and hence of G(π)) into alternating
cycles. That permutation will be the product of the cycles formed respectively by
the grey and the black arcs, which will also be viewed as permutations.

Hultman [47] proposed an analogue of the Stirling number of the first kind based
on the cycle graph.

51

4.2. The bijection

0

3

7

5

2

6

1

4

0

3

7

5

2

6

1

4

0

3

7

5

2

6

1

4

(a) (b) (c)

Figure 4.1: (a) The circular cycle graph of 〈4 1 6 2 5 7 3〉; (b), (c) its decomposition
into two alternating cycles, which matches that shown in Figure 3.1 (page 21).

Definition 4.3. The Hultman number SH(n, k) counts the number of permutations
in Sn whose cycle graph decomposes into k alternating cycles:

SH(n, k) = |{π ∈ Sn | c(G(π)) = c(G′(π)) = k}|.

Hultman does not obtain a full characterisation of these numbers, but notes that
SH(n, n+ 1) = 1 and SH(n, n− 1) =

(
n+2

4

)
. It is also obvious that SH(n, k) = 0 for

all k 6∈ [1, n + 1], since G′(π) always contains at least one alternating cycle and at
most n+ 1 alternating cycles.

Lemma 4.1. [47] For all π in Sn, we have c(G(π)) ≡ n+ 1 (mod 2).

Lemma 4.1 immediately yields the following corollary.

Corollary 4.1. For all k ≡ n (mod 2), we have SH(n, k) = 0.

In the course of characterising Hultman numbers, we will also solve the more
general problem of counting permutations in Sn whose cycle graph has a given
structure. We define the following notion, which is similar in nature to the concept
of conjugacy classes of Sn, but which is based on the cycle graph rather than on the
disjoint cycle decomposition of permutations.

Definition 4.4. A permutation π in Sn has Hultman class λ if λ is obtained by
writing in nonincreasing order the various lengths of the arc-disjoint alternating
cycles in G′(π). We then set CH(π) = λ.

For instance, if π is the permutation whose circular cycle graph is shown in
Figure 4.1, then we have CH(π) = (5, 3).

4.2 The bijection

We now construct a bijection between the set of permutations π in Sn with c(G′(π)) =
k and the set of factorisations in S(1 +n) of a given (n+ 1)-cycle into some (n+ 1)-
cycle and some permutation σ with c(Γ(σ)) = k.

52

4.2. The bijection

Let first π be any permutation in Sn, and consider the arcs of its circular cycle
graph G′(π). The grey arcs are the pairs (i, (i + 1) mod (n + 1)), for 0 ≤ i ≤ n,
which form the following (n+ 1)-cycle (independent of π) in S(1 + n):

α = (0, 1, . . . , n).

Similarly, the black arcs (πi, π(i−1) mod (n+1)), for 0 ≤ i ≤ n, form the following
(n+ 1)-cycle in S(1 + n):

π̇ = (0, πn, πn−1, . . . , π1).

Notice that the mapping Sn → S(1+n) : π 7→ π̇ is injective. Moreover, its codomain
is the set of all (n+ 1)-cycles in S(1 + n). By Definition 3.3, the alternating cycles
in the graph G′(π) build up a permutation π in S(1 + n) that maps i onto j when
there is a black arc from (i + 1) mod (n + 1) to j mod (n + 1) (remember that
(i, (i+ 1) mod (n+ 1)) is always a grey arc). Therefore, we have π = π̇ ◦ α, that is

α = π̇−1 ◦ π. (4.1)

As an example, Figure 4.2 shows the “isolated” cycles formed respectively by the
black arcs and by the grey arcs of the circular cycle graph shown in Figure 4.1; the
corresponding alternating cycle decomposition is encoded by the permutation

π = (0, 4, 2, 7, 3)(1, 6, 5)

= (0, 3, 7, 5, 2, 6, 1, 4) ◦ (0, 1, 2, 3, 4, 5, 6, 7),

whose disjoint cycle decomposition corresponds to the alternating cycle decompo-
sition of the (circular) cycle graph of π and can be reconstructed as explained just
before Equation (4.1).

0

3

7

5

2

6

1

4

0

3

7

5

2

6

1

4

Figure 4.2: The cycles formed by the black arcs and by the grey arcs, respectively,
of the graph shown in Figure 4.1.

Theorem 4.1. Let α = (0, 1, . . . , n). The mapping

F : {π ∈ Sn | c(G′(π)) = k} →
{τ ◦ α | τ ∈ S(1 + n), c(Γ(τ)) = 1 and c(Γ(τ ◦ α)) = k}

: π 7→ π = π̇ ◦ α

is bijective.

53

4.3. An explicit formula for the Hultman numbers

Proof. First note that F is well defined. If π ∈ Sn, then π satisfies α = τ ◦ π, where
τ = π̇−1 is an (n + 1)-cycle (cf. Equation (4.1)). Moreover, we have c(G′(π)) =
c(Γ(π)). Since the mapping Sn → S(1 + n) : π 7→ π̇ is injective, the injectivity of F
follows from Equation (4.1).

On the other hand, every (n + 1)-cycle τ in S(1 + n) is of the form π̇ for some
π in Sn; Equation (4.1) then implies τ ◦ α = π, and therefore F is also surjective
(remember c(G′(π)) = c(Γ(π))).

Given any (n + 1)-cycle β in S(1 + n), define D(n + 1, k) as the number of
factorisations of β into the product ρ ◦ σ, where ρ is some (n+ 1)-cycle and σ some
permutation in S(1 + n) with c(Γ(σ)) = k. We get the following result.

Corollary 4.2. For all n, k in N, we have SH(n, k) = D(n+ 1, k).

The bijection F in Theorem 4.1 is induced by a much more general bijection,
which is established along the same arguments.

Theorem 4.2. Let λ be a partition of n+ 1. The mapping

F : {π ∈ Sn | CH(π) = λ} →
{τ ◦ α | τ ∈ S(1 + n), c(Γ(τ)) = 1 and C(Γ(τ ◦ α)) = λ}

: π 7→ π = π̇ ◦ α

is bijective.

We conclude this section by noting that using a very similar approach, although
working with another conjugacy class of S(1 + n), Hultman [47] characterises what
he calls “valid decompositions” of the cycle graph.

4.3 An explicit formula for the Hultman numbers

Several authors give formulae for the number D(n, k) of factorisations of an n-cycle
into the product ρ ◦ σ, where ρ, σ ∈ Sn, ρ is an n-cycle, and c(Γ(σ)) = k (see e.g.
Goupil [41] or Stanley [70]). Goupil and Schaeffer [42] give a general formula for
the number of factorisations of an n-cycle into two permutations of given classes,
expressed as a summation of only nonnegative terms. We will use their result and
Theorem 4.1 to derive a formula for computing SH(n, k).

Definition 4.5. A composition λ = (λ1, λ2, . . . , λl) is a finite sequence of nonnega-
tive integers. Its length is l. If

∑l
i=1 λi = n, we say that λ is a composition of n and

we write λ |= n.

Compositions are very similar to partitions (Definition 4.2 page 51), except that
the parts of a composition can be equal to 0 and that they are not written in
decreasing order. As a consequence, compositions (0, 1, 0, 1) and (1, 0, 1, 0) of 2 are

different objects. Denote c
(n)
λµ the number of ways to express a given n-cycle as the

product of two permutations whose classes are given respectively by partitions λ
and µ.

54

4.3. An explicit formula for the Hultman numbers

Theorem 4.3. [42] Let λ = (λ1, . . . , λl) and µ = (µ1, . . . , µk) be any two partitions
of n, and set g = n+1−l−k

2
. Then

c
(n)
λµ =

n

zλzµ22g

∑
(g1,g2)|=g

(l + 2g1 − 1)! (k + 2g2 − 1)!×

∑
(i1,...,il)|=g1

(j1,...,jk)|=g2

l∏
h1=1

(
λh1

2ih1 + 1

) k∏
h2=1

(
µh2

2jh2 + 1

)
.

From the previous section, we need to count the number of factorisations of a
given n-cycle into an n-cycle and a permutation with k disjoint cycles. In the present
notation, this number is the sum of c

(n)
(n)µ over all partitions µ of n of length k. As

we show below, it is possible to obtain a slightly simpler expression for c
(n)
(n)µ.

Lemma 4.2. The number of ways to express a given n-cycle as the product of an
n-cycle and a permutation of class given by µ = (µ1, . . . , µk) is

c
(n)
(n)µ =

n!

zµ2n−k

n−k
2∑
i=0

1

2i+ 1

∑
(j1,...,jk)|=n−k

2
−i

k∏
h=1

(
µh

2jh + 1

)
.

Proof. Simplification of the formula of Theorem 4.3 in the case where λ = (n). Since
l = 1, there is a unique composition (g1) |= g1. Therefore∑

(i1,...,il)|=g1

(j1,...,jk)|=g2

l∏
h1=1

(
λh1

2ih1 + 1

) k∏
h2=1

(
µh2

2jh2 + 1

)
=

(
n

2g1 + 1

) ∑
(j1,...,jk)|=g2

k∏
h2=1

(
µh2

2jh2 + 1

)
.

On the other hand, the length of µ is k, so g = n−k
2

, and g2 = g − g1; we have

(l + 2g1 − 1)! (k + 2g2 − 1)! = (2g1)! (n− 2g1 − 1)!,

which simplifies further when both sides are multiplied by
(

n
2g1+1

)
:

(l + 2g1 − 1)! (k + 2g2 − 1)!

(
n

2g1 + 1

)
=

(2g1)! (n− 2g1 − 1)!n!

(2g1 + 1)! (n− 2g1 − 1)!
=

n!

2g1 + 1
.

Finally, note that zλ =
∏

i αi! i
αi = 1!n1 = n. Hence

n

zλzµ22g
=

n

nzµ2n−k
=

1

zµ2n−k
.

All these operations lead to the following simplification of the formula in Theo-
rem 4.3:

c
(n)
(n)µ =

n!

zµ2n−k

∑
(g1,g2)|=g

1

2g1 + 1

∑
(j1,...,jk)|=g2

k∏
h2=1

(
µh2

2jh2 + 1

)
.

Setting g1 = i and h = h2, we obtain g2 = n−k
2
−i and then the required equality.

55

4.4. Applications

We can now give an explicit formula for computing the Hultman number SH(n, k).

Theorem 4.4. For all n, k in N:

SH(n, k) =
(n+ 1)!

2n+1−k

∑
(µ1,...,µk)`(n+1)

1

zµ

n+1−k
2∑
i=0

1

2i+ 1

∑
(j1,...,jk)|=n+1−k

2
−i

k∏
h=1

(
µh

2jh + 1

)
.(4.2)

Proof. Clearly, D(n + 1, k) =
∑

(µ1,...,µk)`(n+1) c
(n+1)
(n+1)µ. Equation (4.2) follows from

Corollary 4.2 and Lemma 4.2.

Using this time Theorem 4.2 together with Lemma 4.2, we similarly derive:

Theorem 4.5. The number of permutations π in Sn having Hultman class µ =
(µ1, . . . , µk) equals

c
(n+1)
(n+1)µ =

(n+ 1)!

zµ2n+1−k

n+1−k
2∑
i=0

1

2i+ 1

∑
(j1,...,jk)|=n+1−k

2
−i

k∏
h=1

(
µh

2jh + 1

)
.

Table 4.1 shows a few numerical values of SH(n, k). Note that the successive
values of SH(n, 1) (n = 2, 4, . . .) form sequence A060593 in OEIS [69] (in the context
of cycle factorisations), whereas the other values do not appear in OEIS (except of
course for

(
n+2

4

)
).

4.4 Applications

4.4.1 Counting results for restricted cases

A first consequence of Theorem 4.1 is the derivation of two simple formulae for
particular values of SH(n, k) and D(n+ 1, k):

1. for all even n, we have SH(n, 1) = 2 n!
n+2

, by computing the number D(n+ 1, 1)
of ways of expressing an (n+ 1)-cycle as the product of two (n+ 1)-cycles (see
e.g. Boccara [14]);

2. for all n in N, we have D(n + 1, n − 1) =
(
n+2

4

)
, by computing the number

SH(n, n− 1) of permutations of Sn whose cycle graph decomposes into n− 1
alternating cycles (see Hultman [47]).

On the other hand, Theorem 4.5 paves the way for some other counting formulae.
The number of simple permutations (Definition 3.18 page 25) can be obtained by
restricting partitions (µ1, . . . , µk) of n + 1 in Theorem 4.5 to those made up only
of 1’s, 2’s and 3’s. More compact formulae for enumerating 2-permutations and
3-permutations (Definition 3.19 page 25) are derived as follows.

Proposition 4.1. The number of 2-permutations in Sn is

(n+ 1)!(
n+1

2
+ 1
)
! 2

n+1
2

.

56

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A060593

4.4. Applications

n
\k

1
2

3
4

5
6

7
8

9
10

11
12

1
0

1
2

1
0

1
3

0
5

0
1

4
8

0
15

0
1

5
0

84
0

35
0

1
6

18
0

0
46

9
0

70
0

1
7

0
3

04
4

0
1

86
9

0
12

6
0

1
8

8
06

4
0

26
06

0
0

5
98

5
0

21
0

0
1

9
0

19
3

24
8

0
15

2
90

0
0

16
40

1
0

33
0

0
1

10
60

4
80

0
0

2
28

6
63

6
0

69
6

90
5

0
39

96
3

0
49

5
0

1
11

0
19

05
6

96
0

0
18

12
8

39
6

0
2

64
1

92
5

0
88

80
3

0
71

5
0

1

Table 4.1: A few values of SH(n, k).

57

4.4. Applications

Proof. In Theorem 4.5, let µ = (2, 2, . . . , 2︸ ︷︷ ︸
n+1

2

). Thus k = n+1
2

and the number of

2-permutations in Sn is therefore

(n+ 1)!(
n+1

2

)
! 2

n+1
2 2n+1−n+1

2

n+1−n+1
2

2∑
i=0

1

2i+ 1

∑
(j1,...,jn+1

2
)|=
„
n+1−n+1

2
2

−i
«
n+1

2∏
h=1

(
2

2jh + 1

)

=
(n+ 1)!(
n+1

2

)
! 2n+1

n+1
4∑
i=0

1

2i+ 1

∑
(j1,...,jn+1

2
)|=(n+1

4
−i)

n+1
2∏

h=1

(
2

2jh + 1

)
.

Since n+1
4
≥ i, we have two cases:

1. if n+1
4

> i, then there exists 1 ≤ h0 ≤ h such that jh0 ≥ 1, which implies(
2

2jh0
+1

)
= 0 =

∏n+1
2

h=1

(
2

2jh+1

)
.

2. if n+1
4

= i, then the only composition of 0 being obviously (0, . . . , 0) we derive∏n+1
2

h=1

(
2

2jh+1

)
= 2

n+1
2 .

Consequently, the number of 2-permutations in Sn equals

(n+ 1)!(
n+1

2

)
! 2n+1

1

2n+1
4

+ 1
2
n+1

2 ,

which gives the wanted expression.

Removing all 0’s from the resulting sequence yields sequence A035319 in OEIS,
which counts certain maps on orientable surfaces. A bijection relating those maps
to special factorisations of cycles is derived from Proposition 4.1 in [42]. In turn,
our Theorem 4.5 explains why sequence A035319 also counts 2-permutations.

Proposition 4.2. The number of 3-permutations in Sn is

(n+ 1)!(
n+1

3

)
! 12

n+1
3

n+1
3∑
i=0

(
n+1

3

i

)
3i

2i+ 1
.

Proof. In Theorem 4.5, let this time µ = (3, 3, . . . , 3︸ ︷︷ ︸
n+1

3

). Thus k = n+1
3

and the number

of 3-permutations in Sn is therefore

(n+ 1)!(
n+1

3

)
! 3

n+1
3 2n+1−n+1

3

n+1−n+1
3

2∑
i=0

1

2i+ 1

∑
(j1,...,jn+1

3
)|=n+1−n+1

3
2

−i

n+1
3∏

h=1

(
3

2jh + 1

)

=
(n+ 1)!(
n+1

3

)
! 12

n+1
3

n+1
3∑
i=0

1

2i+ 1

∑
(j1,...,jn+1

3
)|=n+1

3
−i

n+1
3∏

h=1

(
3

2jh + 1

)
.

58

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A035319
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A035319

4.4. Applications

The binomial coefficient at the end of the last expression takes value 1 when jh = 1,
value 3 when jh = 0, and value 0 otherwise. In the last summation, we may thus
assume jh ∈ {0, 1} for all h. Then the number of jh equal to 1 in every composition

of n+1
3
− i is n+1

3
− i, the number of jh equal to 0 is i, and there are exactly

(n+1
3
i

)
such compositions. Therefore the number of 3-permutations in Sn is

(n+ 1)!(
n+1

3

)
! 12

n+1
3

n+1
3∑
i=0

(
n+1

3

i

)
3i

2i+ 1
.

Tables 4.2, 4.3 and 4.4 give a few values of the number of simple permutations,
2-permutations, and 3-permutations, respectively.

n 1 2 3 4 5 6 7 8 9 10 11
simple 1 2 6 16 48 204 876 3 636 18 756 105 480 561 672

Table 4.2: A few values of the number of simple permutations in Sn, for 1 ≤ n ≤ 11.

n 2-permutations
3 1
7 21

11 1 485
15 225 225
19 59 520 825
23 24 325 703 325
27 14 230 536 445 125
31 11 288 163 762 500 625
35 11 665 426 077 721 040 625
39 15 230 046 989 184 655 753 125
43 24 515 740 420 894 935 215 128 125
47 47 702 727 710 977 364 941 596 305 625
51 110 378 811 620 122 624 989 860 340 515 625
55 299 564 288 571 094 868 959 550 279 320 078 125
59 942 438 915 208 811 912 419 937 422 298 363 203 125
63 3 402 290 160 168 829 986 737 103 179 717 300 105 390 625

Table 4.3: A few values of the number of 2-permutations in Sn.

4.4.2 Inferring parameters of various distances

Our counting results may also be used to infer the distribution of those rearrange-
ment distances that can be computed using parameters based on the cycle graph.
We illustrate this on a generalisation of transpositions, introduced by Christie [22]
and known as a block-interchange.

59

4.4. Applications

n 3-permutations
2 1
5 12
8 464

11 38 720
14 5 678 400
17 1 294 720 000
20 423 809 075 200
23 188 422 340 198 400
26 109 244 157 102 080 000
29 80 068 011 114 291 200 000
32 72 384 558 633 074 688 000 000
35 79 125 533 869 852 634 644 480 000
38 102 879 028 406 438 808 699 535 360 000
41 156 917 389 218 035 568 246 207 283 200 000
44 277 479 100 225 377 558 605 912 342 528 000 000
47 563 104 506 388 148 477 458 573 873 381 376 000 000
50 1 299 869 094 832 702 209 261 806 910 827 397 120 000 000
53 3 386 720 940 743 333 065 762 421 673 456 346 071 040 000 000
56 9 890 793 789 905 402 493 205 694 039 349 656 131 993 600 000 000
59 32 179 606 708 070 074 004 398 610 275 324 468 031 127 552 000 000 000
62 115 991 897 893 712 179 934 231 392 287 334 384 679 952 318 464 000 000 000

Table 4.4: A few values of the number of 3-permutations in Sn.

60

4.4. Applications

Definition 4.6. For any π in Sn, the block-interchange β(i, j, k, l) with 1 ≤ i < j ≤
k < l ≤ n + 1 applied to π exchanges the closed intervals determined respectively
by i and j − 1 and by k and l − 1, transforming π into π ◦ β(i, j, k, l). Therefore,
β(i, j, k, l) is the following permutation:(

1 · · · i− 1 i · · · j − 1 j j + 1 · · · k − 1 k · · · l − 1 l l + 1 · · · n
1 · · · i− 1 k · · · l − 1 j j + 1 · · · k − 1 i · · · j − 1 l l + 1 · · · n

)
.

By contrast with transpositions, the block-interchange distance, which we denote
bid(π), can be computed in linear time [22], and finding an optimal sorting sequence
of block-interchanges can be done in O(n log n) time (see Christie [22] and Feng and
Zhu [35]). Christie proved the following formula for computing the block-interchange
distance.

Theorem 4.6. [22] For all π in Sn, we have bid(π) = n+1−c(G(π))
2

.

Therefore, the number of permutations in Sn whose block-interchange distance
is k is exactly SH(n, n+ 1− 2k), which can be computed as in Theorem 4.4. Other
distances, such as the transposition distance, are bounded by functions of the number
of cycles in the cycle graph (as illustrated by Theorem 3.1 page 21); therefore, even
though their distribution cannot be directly computed using Hultman numbers,
these can still be used to approximate the distribution, or some related functions
such as the expected value of the distance.

4.4.3 Obtaining bounds on various distances

The mapping we presented, which maps a given permutation π in Sn onto a permu-
tation π = (0, πn, πn−1, . . . , 1)◦ (0, 1, . . . , n) in An+1, can be applied to any permuta-
tion; in particular, rearrangements we have seen so far, i.e. transpositions (page 19),
exchanges (page 32) or block-interchanges (page 61), can be viewed as permutations.
Therefore, given a set A of transformations that are revertible (in the sense that
A contains both the transformations and their inverses) and can be represented as
permutations, we can reformulate any rearrangement problem on π using opera-
tions from A as a factorisation problem on π using operations from A ′ (which is
the image of A by our mapping). We will show in the next chapter how this new
framework can be used to obtain bounds on rearrangement distances.

61

Chapter 5

A general framework for edit
distances

Genome rearrangement distances are but a particular case of edit distances between
permutations, i.e. distances based on the minimum number of allowed edit opera-
tions needed to transform a permutation into another. Another area in which edit
distances have applications, besides computational biology, is the field of intercon-
nection network design, where the goal is to find how to connect devices so that the
resulting network is efficient and reliable (see Lakshmivarahan et al. [54] for more
information on what these adjectives mean in that context, and for other desirable
properties). In graph-theoretic terms, one wants to find out how to add edges to a
graph whose vertex set consists of the devices we wish to connect.

A growing and successful trend in that field, starting with the seminal work of
Akers and Krishnamurthy [2], has been to use Cayley graphs of permutation groups
as interconnection networks, using an adequate generating set. Many generators
studied in that context act on the first element or on the initial segment of the
permutation, which is also called its prefix. Incidentally, a restriction of the trans-
positions we studied in Chapter 3 was introduced by Dias and Meidanis [26], which
are called prefix transpositions and displace the initial segment of the permutation.
This variant was introduced in the hope that it would shed light on the seemingly
challenging problem of sorting by transpositions. Our main contributions in this
chapter include the following:

• we present a framework that allows us to reformulate any edit distance problem
on permutations in terms of particular factorisations of related even permu-
tations (Lemma 5.3 and Theorem 5.3), using the mapping we introduced in
Chapter 4;

• using this general framework, we show how to recover, in a simpler way, results
previously obtained by other authors (Lemma 5.5 and Theorem 5.4) and prove
a new lower bound on the prefix transposition distance;

• we prove that our new lower bound on the prefix transposition distance always
outperforms that of Dias and Meidanis [26] (Theorem 5.6), and show experi-
mentally that it is a significant improvement over all previously known results
(see Section 5.8);

62

5.1. A word on prefix sorting problems

• we use our expression to improve the lower bound on the prefix transposition
diameter of the symmetric group from 2n/3 to

⌊
3n+1

4

⌋
(Theorem 5.7);

• we give the prefix transposition distance of 2-permutations (Proposition 5.2).

Most results presented in this chapter have been published in [53].

5.1 A word on prefix sorting problems

We have already explained the relevance of edit distances and sorting problems on
permutations in the context of computational biology (see Chapter 1). However,
genome rearrangements are but one of the many possible applications: another
field in which these concepts have been studied for several decades is the field of
interconnection network design.

An interconnection network can be abstracted as a graph (directed or not) whose
vertex set represents the devices we wish to connect (e.g. processors) and whose edges
correspond to actual physical connections between two devices. Several parameters
are used to assess the “quality” of the network with respect to miscellaneous crite-
ria: we mention, among other parameters, the fact that the graph representing the
network should have a small degree and a small diameter (see Lakshmivarahan, Jwo,
and Dhall [54] for a thorough survey of the field and other relevant parameters).

A very large part of the interconnection network design literature is concerned
with Cayley graphs of permutation groups, whose use as interconnection networks
was first proposed by Akers and Krishnamurthy [2]. The idea is that each permu-
tation stands for one of the physical devices, and each pair of devices is connected
according to whether or not the corresponding permutations can be transformed into
each other using one of the generators. The following two examples have received a
lot of attention:

1. the pancake network is the Cayley graph of Sn with prefix reversals as gen-
erators, where a prefix reversal reverses the order of the first k elements of a
permutation (an operation first studied as a game by Gates and Papadimitriou
[40]); see Figure 5.1 for the pancake network of order 4;

2. the star graph is the Cayley graph of Sn with prefix exchanges as generators,
where a prefix exchange swaps the first element of the permutation with any
other element; see Figure 5.2 for the star graph of order 4.

Incidentally, the idea of restricting operations to the prefix (or initial segment)
of permutations was reused by Dias and Meidanis [26], who initiated the study
of sorting by prefix transpositions in the hope that this restricted problem would
shed light on the seemingly challenging problem of sorting by transpositions. We
find it interesting to note that genome rearrangement problems and interconnection
network design problems are concerned with similar issues: sorting algorithms in
genome rearrangements are meant to explain evolution between species, whereas in
interconnection networks, they correspond to routing algorithms on the network.
Moreover, as we have already mentioned, the diameter of the Cayley graph under
consideration is also of interest in the field of interconnection networks, since those
networks should preferably have a small diameter.

63

5.1. A word on prefix sorting problems

〈1 2 3 4〉 〈2 1 3 4〉

〈3 1 2 4〉

〈4 3 2 1〉

〈2 3 4 1〉

〈3 2 1 4〉
〈4 1 2 3〉

〈2 3 1 4〉 〈1 3 2 4〉

〈4 2 1 3〉

〈4 1 3 2〉

〈1 4 3 2〉

〈4 3 1 2〉

〈1 3 4 2〉

〈3 4 1 2〉〈3 4 2 1〉

〈2 1 4 3〉〈1 2 4 3〉

〈4 2 3 1〉

〈2 4 3 1〉

〈3 2 4 1〉〈3 1 4 2〉

〈2 4 1 3〉 〈1 4 2 3〉

Figure 5.1: The pancake network of order 4.

64

5.1. A word on prefix sorting problems

〈1 2 3 4〉 〈2 1 3 4〉

〈4 1 3 2〉

〈3 1 2 4〉〈3 2 1 4〉〈4 2 1 3〉

〈2 3 1 4〉

〈4 2 3 1〉〈3 2 4 1〉

〈2 4 3 1〉

〈3 1 4 2〉

〈1 4 3 2〉

〈4 1 2 3〉

〈1 3 2 4〉

〈1 2 4 3〉

〈2 3 4 1〉

〈3 4 2 1〉

〈2 1 4 3〉

〈1 3 4 2〉

〈3 4 1 2〉〈4 3 2 1〉 〈4 3 1 2〉

〈2 4 1 3〉〈1 4 2 3〉

Figure 5.2: The star graph of order 4.

65

5.2. Background

5.2 Background

In the previous chapters, we discussed three rearrangement operations on permuta-
tions: transpositions (Definition 3.1 page 19), exchanges (Definition 3.26 page 32)
and block-interchanges (Definition 4.6 page 61), which were respectively denoted
by τ(i, j, k), ε(i, j) and β(i, j, k, l). Setting i = 1 in those rearrangement opera-
tions turns them into “prefix rearrangements”, namely, prefix transpositions , prefix
exchanges and prefix block-interchanges . The corresponding sorting problems and
“prefix distances” are defined as before.

Definition 5.1. The prefix transposition distance between two permutations π and
σ in Sn, denoted by ptd(π, σ), is the length of a shortest sequence of prefix transpo-
sitions that transforms π into σ.

Definition 5.2. The prefix exchange distance between two permutations π and σ
in Sn, denoted by pexc(π, σ), is the length of a shortest sequence of prefix exchanges
that transforms π into σ.

The proof of Proposition 3.1 page 20 can be adapted to prefix transpositions
and prefix exchanges in order to prove that the corresponding distances are also
left-invariant, thereby allowing us to restrict our attention to sorting by prefix trans-
positions or by prefix exchanges and to computing the distance of a permutation
with respect to the identity. As we did with the transposition distance, we therefore
abbreviate ptd(π, σ) (resp. pexc(π, σ)) to ptd(π) (resp. to pexc(π)) whenever σ = ι.
While the computational complexity of sorting by transpositions or by prefix trans-
positions is unknown, a polynomial time algorithm for sorting by prefix exchanges
is known, as well as a formula for computing the associated distance, both due to
Akers, Krishnamurthy, and Harel [3]. The formula relies on the disjoint cycle decom-
position of permutations, which we express in terms of the Γ-graph (Definition 3.21
page 28).

Theorem 5.1. [3] For any π in Sn, we have

pexc(π) = n+ c(Γ(π))− 2c1(Γ(π))−
{

0 if π1 = 1,
2 otherwise,

where c1(Γ(π)) denotes the number of 1-cycles in Γ(π), or equivalently the number
of fixed points of π.

Dias and Meidanis [26] initiated the study of sorting by prefix transpositions, and
derived a lower bound on the corresponding distance using the following concepts.

Definition 5.3. Given a permutation π in Sn, build the permutation π̃ = 〈0 π1 · · ·
πn n + 1〉; a pair (π̃i, π̃i+1) with 0 ≤ i ≤ n is a prefix transposition breakpoint if
π̃i+1 6= π̃i + 1 or if i = 0. The number of prefix transposition breakpoints of π is
denoted by ptb(π).

Noting that a prefix transposition can remove at most two prefix transposition
breakpoints and that ι is the only permutation with one prefix transposition break-
point, they obtained the following lower bound.

66

5.3. Distribution of the prefix transposition distance

Lemma 5.1. [26] For any π in Sn:

ptd(π) ≥
⌈
ptb(π)− 1

2

⌉
. (5.1)

Chitturi and Sudborough [21] then obtained other bounds on the prefix transposi-
tion distance using the following concepts, based on permutations of {0, 1, 2, . . . , n−
1} rather than {1, 2, . . . , n}.

Definition 5.4. For a permutation π of {0, 1, 2, . . . , n}, an ordered pair (πi, πi+1) is
an anti-adjacency if πi+1 = πi − 1 (mod n).

Definition 5.5. A clan is a maximal interval of π that contains only anti-adjacencies.

Recall (Definition 3.13 page 23) that a strip in a permutation is a maximal inter-
val that contains no breakpoint. Chitturi and Sudborough [21] prove the following
lower bound.

Lemma 5.2. [21] For any π in Sn, let Υ(π) denote the set of all clans of π of length
at least 3, and s(π) denote the number of strips of π. Then

ptd(π) ≥
s(π) +

P
C∈Υ(π)(|C|−2)

3

2
. (5.2)

Using Lemma 5.2, Chitturi and Sudborough prove a lower bound of 2n/3 on the
prefix transposition distance of χ = 〈n n− 1 · · · 2 1〉, and therefore on the prefix
transposition diameter. They also prove the following upper bound on the prefix
transposition diameter.

Theorem 5.2. [21] For all π in Sn, we have ptd(π) ≤ n− log8 n.

5.3 The distribution of the prefix transposition

distance

As we did with the transposition distance (Table 3.1 page 27), we generated Sn from
the identity permutation by repeatedly composing prefix transpositions. Table 5.1
shows some experimental values of the resulting number of permutations in Sn with
prefix transposition distance equal to k.

It can be seen that for n = 4, 7 and 11, there are only three permutations with
maximal prefix transposition distance; these are:

• for n = 4: 〈1 4 3 2〉, 〈2 1 4 3〉 and 〈4 3 2 1〉;

• for n = 7: 〈2 1 7 6 5 4 3〉, 〈4 3 2 1 7 6 5〉 and 〈7 6 5 4 3 2 1〉;

• for n = 11: 〈7 6 5 4 3 2 1 8 11 10 9〉, 〈8 2 7 6 5 4 3 1 11 10 9〉 and
〈11 10 9 8 7 6 5 4 3 2 1〉.

67

5.3. Distribution of the prefix transposition distance

n
\
k

0
1

2
3

4
5

6
7

8
9

1
1

0
0

0
0

0
0

0
0

0
2

1
1

0
0

0
0

0
0

0
0

3
1

3
2

0
0

0
0

0
0

0
4

1
6

14
3

0
0

0
0

0
0

5
1

10
50

55
4

0
0

0
0

0
6

1
15

13
0

37
5

19
4

5
0

0
0

0
7

1
21

28
0

1
57

5
2

59
8

56
2

3
0

0
0

8
1

28
53

2
4

97
0

18
09

6
15

53
2

1
16

1
0

0
0

9
1

36
92

4
12

97
8

85
12

8
18

8
38

6
74

18
3

1
24

4
0

0
10

1
45

1
50

0
29

61
0

30
8

98
8

1
36

4
71

0
1

67
9

18
9

24
4

43
0

32
7

0
11

1
55

2
31

0
61

05
0

93
3

10
8

7
03

0
21

0
19

71
3

54
2

11
75

9
67

6
41

6
84

5
3

Table 5.1: The number of permutations π in Sn with ptd(π) = k, for 1 ≤ n ≤ 11.

68

5.4. A general lower bounding technique

Unfortunately, these permutations do not seem to share any obvious common feature
(except for the reversed permutation χ, which appears for all three values of n) that
would reveal why they are harder to sort.

We also report on some “bad news” regarding sorting by prefix transpositions:
recall the three equivalence relations we have seen in Chapter 3, namely:

• the reduction equivalence relation (Section 3.1.3 page 22),

• the toric equivalence relation (Section 3.1.4 page 23), and

• the conjugacy relation based on χ (Section 3.2 page 26).

All three operations have been shown to preserve the transposition distance; un-
fortunately, none of them preserves the prefix transposition distance, as the following
counter-examples show:

1. we have 〈1 4 3 2〉 ≡r 〈3 4 2 1〉, but ptd(〈1 4 3 2〉) = 3 and ptd(〈3 4 2 1〉) = 2;

2. the prefix transposition distance of 〈2 1 4 3〉 is 3, but the prefix transposition
distance of 〈4 1 3 2〉, which is torically equivalent to 〈2 1 4 3〉, is 2;

3. finally, conjugation by χ does not preserve the prefix transposition distance
either: indeed, the prefix transposition distance of 〈1 4 3 2〉 is 3, but the prefix
transposition distance of 〈3 2 1 4〉 = 〈1 4 3 2〉χ is 2.

5.4 A general lower bounding technique

Recall the mapping we introduced in Chapter 4, which allowed us to encode any
permutation in Sn using an even permutation:

F : Sn → An+1 : π 7→ π = (0, πn, πn−1, . . . , π1) ◦ (0, 1, 2, . . . , n).

It can be easily checked that ι = 〈0 1 2 · · · n〉. As we have seen in Section 4.2,
speaking about cycles of π, of Γ(π) or of G(π) is equivalent. We will now demon-
strate how F can be used to obtain bounds on sorting problems. The following
result expresses how the action of any rearrangement operation σ on π is translated
on π. In the following, we identify a permutation π in Sn with the permutation
〈0 π1 π2 · · · πn〉 in Sn+1.

Lemma 5.3. For all π, σ in Sn: π ◦ σ = σπ ◦ π.

Proof. The following relation will be useful:

π = (0, πn, πn−1, . . . , π1) ◦ π ◦ (0, 1, . . . , n). (5.3)

69

5.4. A general lower bounding technique

By definition, we have:

π ◦ σ = (0, (π ◦ σ)n, (π ◦ σ)n−1, . . . , (π ◦ σ)1) ◦ (0, 1, . . . , n)

= (0, πσn , πσn−1 , . . . , πσ1) ◦ (0, 1, . . . , n)

= π ◦ (0, σn, σn−1, . . . , σ1) ◦ π−1 ◦ (0, 1, . . . , n)

= π ◦ (0, σn, σn−1, . . . , σ1) ◦ (0, 1, . . . , n) ◦ (0, 1, . . . , n)−1 ◦ π−1

◦(0, 1, . . . , n)

= π ◦ σ ◦ (π ◦ (0, 1, . . . , n))−1 ◦ (0, 1, . . . , n)

= π ◦ σ ◦
(
(0, πn, . . . , π1)−1 ◦ π

)−1 ◦ (0, 1, . . . , n) (using (5.3))

= π ◦ σ ◦ π−1 ◦ (0, πn, . . . , π1) ◦ (0, 1, . . . , n)

= π ◦ σ ◦ π−1 ◦ π.

We are now ready to prove our main result.

Theorem 5.3. Let X be a subset of Sn whose elements are mapped by F onto
X ′ ⊆ An+1. Moreover, let C be the union of the conjugacy classes (of Sn+1) that
intersect with X ′; then for any π in Sn, any factorisation of π into t elements of X
yields a factorisation of π into t elements of C . More explicitly, if

π = gt ◦ gt−1 ◦ · · · ◦ g1,

where gi ∈ X for 1 ≤ i ≤ t, then

π = g1
(gt◦gt−1◦···◦g2) ◦ · · · ◦ gt−2

(gt◦gt−1) ◦ gt−1
gt ◦ gt,

where all terms in this factorisation of π belong to C .

Proof. Induction on t. The base case is π ∈ X, and clearly π ∈ X ′ ⊆ C . For
the induction, let π = gt ◦ gt−1 ◦ · · · ◦ g1, where gi ∈ X for 1 ≤ i ≤ t, and let
σ = gt−1 ◦ · · · ◦ g2 ◦ g1; by Lemma 5.3, we have:

π = gt ◦ gt−1 ◦ · · · ◦ g2 ◦ g1 = gt ◦ σ = gt ◦ σ ◦ g−1
t ◦ gt.

By induction, σ = g′t−1 ◦ g′t−2 ◦ · · · ◦ g′1, where g′i ∈ C for 1 ≤ i ≤ t; therefore:

gt ◦ σ ◦ g−1
t = gt ◦ g′t−1 ◦ g′t−2 ◦ · · · ◦ g′1 ◦ g−1

t

= gt ◦ g′t−1 ◦ g−1
t︸ ︷︷ ︸

ht

◦ gt ◦ g′t−2 ◦ g−1
t︸ ︷︷ ︸

ht−1

◦gt ◦ · · · ◦ g−1
t ◦ gt ◦ g′1 ◦ g−1

t︸ ︷︷ ︸
h1

,

and h1, . . . , ht−1 ∈ C , which completes the proof.

As we briefly explain before applying our method in the next section, Theorem 5.3
allows us to prove lower bounds on our sorting problems: indeed, as we explained
in Section 2.3, any sorting sequence of length t for π made of elements of X yields
a factorisation of π into the product of t elements (of X, provided X contains both
the transformations and their inverses, which is easily shown to be the case for all
operations considered here). The resulting factorisation can in turn be converted,
using Theorem 5.3, into a factorisation of π into the product of t elements of C .
The length of a shortest such factorisation of π into the product of elements of C
is therefore a lower bound on the length of a factorisation of π into the product of
elements of X, which in turn yields a lower bound on the edit distance of interest.

70

5.5. Recovering previous results

5.5 Recovering previous results

We illustrate how to use Theorem 5.3 to recover two previous results on the block-
interchange and transposition distances. First, we need to characterise the image of
a block-interchange by our mapping.

Lemma 5.4. For any block-interchange β(i, j, k, l), we have

β(i, j, k, l) = (j − 1, l − 1) ◦ (i− 1, k − 1).

Proof. Using our mapping and the definition of a block-interchange, we have

(0, n, n− 1, . . . , l, j − 1, j − 2, . . . , i, k − 1, k − 2, . . . , j, l − 1, l − 2, . . . ,

k, i− 1, i− 2, . . . , 1) ◦ (0, 1, 2, . . . , n)

= (0)(1) · · · (i− 2)(i− 1, k − 1)(i)(i+ 1) · · · (j − 2)(j − 1, l − 1)(j)

(j + 1) · · · (k − 2)(k)(k + 1) · · · (l − 2)(l)(l + 1) · · · (n)

= (j − 1, l − 1) ◦ (i− 1, k − 1).

Note that the two cycles (j−1, l−1) and (i−1, k−1) might not be disjoint, since
by definition of β(i, j, k, l) we may have j = k (hence the use of ◦ in the expression
of β(i, j, k, l)). We can now recover a known lower bound on the block-interchange
distance, which is actually the exact distance (recall Theorem 4.6 page 61).

Lemma 5.5. [22] For all π in Sn, we have bid(π) ≥ n+1−c(Γ(π))
2

.

Proof. By Theorem 5.3 and Lemma 5.4, a lower bound on bid(π) is given by the
length of a minimum factorisation of π into pairs of exchanges. Since this length
equals (n+ 1− c(Γ(π)))/2 (see e.g. Jerrum [48]), the proof follows.

Let us now characterise the image of a transposition by our mapping.

Lemma 5.6. For any transposition τ(i, j, l), we have

τ(i, j, l) = (i− 1, l − 1, j − 1).

Proof. Note that a transposition is a particular case of a block-interchange; more
precisely, we have τ(i, j, l) = β(i, j, j, l), and Lemma 5.4 yields:

τ(i, j, l) = β(i, j, j, l) = (j − 1, l − 1) ◦ (i− 1, j − 1) = (i− 1, l − 1, j − 1).

We recover the lower bound of Bafna and Pevzner [9] on the transposition dis-
tance (Theorem 3.1 page 21). For convenience, we restate the result below.

Theorem 5.4. [9] For all π in Sn, we have td(π) ≥ n+1−codd(Γ(π))
2

.

Proof. By Theorem 5.3 and Lemma 5.6, a lower bound on td(π) is given by the
length of a minimum factorisation of π into 3-cycles. Since this length equals (n +
1− codd(Γ(π)))/2 (see e.g. Jerrum [48]), the proof follows.

71

5.6. An improved lower bound on the prefix transposition distance

5.6 An improved lower bound on the prefix trans-

position distance

Using our theory, we prove a new lower bound on ptd(π) and show that it always
outperforms lower bound (5.1), previously obtained by Dias and Meidanis [26]. We
will find it convenient to express ptb(π) (defined after Theorem 5.1 page 66) as
follows.

Lemma 5.7. For any π in Sn, we have

ptb(π) = n+ 1− c1(Γ(π)) +

{
1 if π1 = 1,
0 otherwise.

Proof. Recall, as we already mentioned when we defined breakpoints and adjacencies
(Definition 3.11 page 22), that among the n + 1 pairs of adjacent elements in π̃ =
〈0 π1 · · · πn n + 1〉, each adjacency in π̃ gives rise to a 1-cycle in Γ(π), so b(π) =
n+1−c1(Γ(π)). If π1 6= 1 then b(π) = ptb(π); otherwise, the 1-cycle that corresponds
to (0, π1) = (0, 1) is a prefix transposition breakpoint, and we must therefore add 1
to b(π) in order to obtain ptb(π).

Let d1
3(π) denote the length of a minimum factorisation of π in Sn into a product

of 3-cycles, where each 3-cycle in the factorisation is further required to contain the
first element.

Proposition 5.1. For any π in Sn, we have ptd(π) ≥ d1
3(π).

Proof. Replace i with 1 in Lemma 5.6, and mimic the proof of Theorem 5.4.

Next, we show how to compute d1
3(π) for π in An. The following simple observa-

tion will be useful.

Observation 5.1. For any π in An, we have n ≡ c(Γ(π)) (mod 2).

Lemma 5.8. For any π in An, we have

d1
3(π) =

n+ c(Γ(π))

2
− c1(Γ(π))−

{
0 if π1 = 1,
1 otherwise.

Proof. Given a minimum factorisation of length ` of an even permutation π into
prefix exchanges, we can construct a sequence of `/2 3-cycles containing 1 by noting
that (1, j) ◦ (1, i) = (1, i, j). Therefore d1

3(π) ≤ `/2. On the other hand, assume
there exists a shorter sequence of 3-cycles acting on the first element whose product
is π; then one can split each of these 3-cycles into two prefix exchanges using the
relation above and find a shorter expression for π as a product of prefix exchanges,
a contradiction. The result follows from Theorem 5.1.

As a corollary, we obtain the following lower bound on the prefix transposition
distance:

72

5.7. A tighter lower bound on the prefix transposition diameter

Theorem 5.5. For any π in Sn, we have

ptd(π) ≥ n+ 1 + c(Γ(π))

2
− c1(Γ(π))−

{
0 if π1 = 1,
1 otherwise.

(5.4)

Proof. Follows from Proposition 5.1 and Lemma 5.8.

We conclude this section by proving that our lower bound always outperforms
Dias and Meidanis’ (Lemma 5.1).

Theorem 5.6. Lower bound (5.4) is always at least as large as lower bound (5.1).

Proof. Assume π 6= ι (otherwise the result trivially holds); this implies that Γ(π)
has at least one cycle of length at least 2, which means that c(Γ(π))− c1(Γ(π)) ≥ 1.
There are two cases to prove: if π1 = 1, then lower bound (5.1) becomes⌈

(n+ 1− c1(Γ(π)) + 1)− 1

2

⌉
=

⌈
n+ 1− c1(Γ(π))

2

⌉
,

and lower bound (5.4) satisfies

n+ 1 + c(Γ(π))− 2c1(Γ(π))

2
≥ n+ 2− c1(Γ(π))

2
≥
⌈
n+ 1− c1(Γ(π))

2

⌉
.

On the other hand, if π1 6= 1, then lower bound (5.1) becomes⌈
(n+ 1− c1(Γ(π)))− 1

2

⌉
=

⌈
n− c1(Γ(π))

2

⌉
,

and by Observation 5.1, lower bound (5.4) becomes

n+ 1 + c(Γ(π))

2
− c1(Γ(π))− 1 =

⌈
n+ 1 + c(Γ(π))− 2c1(Γ(π))− 2

2

⌉
≥

⌈
n− c1(Γ(π))

2

⌉
.

5.7 A tighter lower bound on the prefix transpo-

sition diameter

Dias and Meidanis [26] observed that the prefix transposition diameter lies between
n/2 and n− 1, and conjectured that it is equal to n−

⌊
n
4

⌋
. Recently, Chitturi and

Sudborough [21] improved those bounds to 2n/3 and n− log8 n, respectively. Using
our new lower bound, we further improve the lower bound on the prefix transposition
diameter. We prove our result in a constructive way, by building families of per-
mutations whose prefix transposition distance is at least

⌊
3n+1

4

⌋
(Figure 5.3, which

follows our result, shows examples of such permutations for each case described in
the proof).

73

5.7. A tighter lower bound on the prefix transposition diameter

Theorem 5.7. For n ≥ 2, the prefix transposition diameter of Sn is at least
⌊

3n+1
4

⌋
.

Proof. We construct a family of permutations whose prefix transposition distance
is at least

⌊
3n+1

4

⌋
. Let π = 〈3 2 1 4 7 6 5 · · · n− 4 n n− 2 n− 3〉, or any other

2-permutation, i.e. a permutation such that Γ(π) contains only cycles of length 2
(this requires that n ≡ 3 (mod 4)). There are four cases to examine, each of which
relies on Theorem 5.5:

1. if n ≡ 3 (mod 4), we have ptd(π) ≥ (n+ 1 + (n+ 1)/2)/2− 0− 1 = 3n−1
4

(see
Figure 5.3(a) for an example).

2. if n ≡ 0 (mod 4), let σ be a permutation such that Γ(σ) is obtained by insert-
ing a fixed point at the beginning of Γ(π); since σ fixes 0 and has n/2 2-cycles,
we have ptd(σ) ≥ (n + 1 + n/2 + 1)/2 − 1 − 0 = 3n

4
(see Figure 5.3(b) for an

example).

3. if n ≡ 1 (mod 4), let σ′ be a permutation such that Γ(σ′) is obtained by
inserting a fixed point anywhere in Γ(σ); we have ptd(σ′) ≥ (n+ 1 + n−2+1

2
+

2)/2− 2 = 3n+1
4

(see Figure 5.3(c) for an example).

4. if n ≡ 2 (mod 4), let σ′′ be a permutation such that Γ(σ′′) is obtained by
inserting a 3-cycle (a, c, b) with a < b < c anywhere in Γ(π). Since σ′′ has
(n+1−3)/2+1 cycles of length at least 2, we have ptd(σ′′) ≥ (n+1+ n+1−3

2
+

1)/2− 0− 1 = 3n−2
4

(see Figure 5.3(d) for an example).

0 3 2 1 4 7 6 5 8
(a)

0 1 4 3 2 5 8 7 6 9
(b)

0 1 4 3 2 5 8 7 6 9 10
(c)

0 2 1 3 6 5 4 7 10 9 8 11
(d)

Figure 5.3: Examples of permutations π in Sn with ptd(π) ≥
⌊

3n+1
4

⌋
, for all values

of n mod 4.

We can actually show that the lower bound on the prefix transposition distance
of 2-permutations is tight. In order to do that, we will need the following result on
nonoriented cycles (recall Definition 3.6 page 21).

74

5.7. A tighter lower bound on the prefix transposition diameter

Lemma 5.9. [9] For any π in Sn, let C1 be a nonoriented cycle in G(π) and a, b be
two arbitrary black arcs of C1; then there exists another cycle C2 in G(π) containing
two black arcs c and d such that (a, b) and (c, d) interleave.

In particular, this result implies that in the cycle graph of a 2-permutation, any
2-cycle crosses another 2-cycle. We are now ready to prove the following result.

Proposition 5.2. For any 2-permutation π in Sn, we have ptd(π) = (3n− 1)/4.

Proof. The lower bound has already been observed in Theorem 5.7. To show that it
is also an upper bound, we give an algorithm that sorts π in exactly that number of
steps. By Lemma 5.9, every 2-cycle crosses another one, and as observed by Bafna
and Pevzner [9], a sequence of two transpositions on any two crossing 2-cycles will
transform them into four adjacencies:

0 π1

· · ·
πi−1 πi

· · ·
πj−1 πj

· · ·
πk−1 πk

· · ·

becomes

0 πi
· · ·

πj−1 πj
· · ·

πk−1 π1

· · ·
πi−1 πk

· · ·

which becomes

0 πj
· · ·

πk−1 πi
· · ·

πj−1 π1

· · ·
πi−1 πk

· · ·

We transform the leftmost 2-cycle and any 2-cycle it crosses into four adjacen-
cies using two prefix transpositions, which transforms π into a permutation σ that
contains n+1

2
− 2 2-cycles and fixes the first element. Then, we carry out again this

process until σ is sorted, but we need three prefix transpositions at each step, since
one move must be wasted to move the first element out of the way, for instance as
follows:

0 1 2
· · ·

πj−2 πj−1 πj
· · ·

πk−1 πk
· · ·

becomes

75

5.8. Experimental results

0 πj
· · ·

πk−1 1 2
· · ·

πj−2 πj−1 πk
· · ·

The proof follows from the fact that the number of prefix transpositions used by
this algorithm is

2 +
3

2

(
n+ 1

2
− 2

)
=

8 + 3n− 9

4
=

3n− 1

4
.

5.8 Experimental results

We generated all permutations in Sn, for 1 ≤ n ≤ 10, along with their prefix
transposition distance, and compared lower bounds (5.1), (5.2) and (5.4) to the
actual distance. Table 5.2 shows the results. It can be observed that many more
permutations are tight with respect to our lower bound (column 5) than with respect
to Dias and Meidanis’ (column 3) or Chitturi and Sudborough’s (column 4).

n n! tight w.r.t. (5.1) tight w.r.t. (5.2) tight w.r.t. (5.4)
1 1 1 1 1
2 2 2 2 2
3 6 4 4 6
4 24 13 15 22
5 120 41 48 106
6 720 196 255 574
7 5 040 862 1 144 3 782
8 40 320 5 489 7 737 27 471
9 362 880 31 033 44 187 229 167

10 3 628 800 247 006 369 979 2 103 510

Table 5.2: Experimental results; column 3 lists the number of cases where (5.1) is
tight [37], column 4 lists the number of cases where (5.2) is tight, and column 5 lists
the number of cases where (5.4) is tight.

Figure 5.4 shows a perhaps more intuitive presentation of those experimental
results, exhibiting a plot with lines corresponding to the percentage of permutations
in Sn that are tight with respect to each of the lower bounds.

We also examined how large the gap between our lower bound and the actual
prefix transposition distance can get. Table 5.3 counts permutations whose prefix
transposition distance equals our lower bound plus ∆. We note that, for n ≤ 9, all
permutations have a prefix transposition distance that is at most our lower bound
plus 2 (plus 3 for n = 10).

76

5.8. Experimental results

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

Pe
rc

en
ta

ge
 o

f
pe

rm
ut

at
io

ns
 ti

gh
t w

ith
 r

es
pe

ct
 to

 th
e

gi
ve

n
lo

w
er

 b
ou

nd

Values of n

Dias and Meidanis
Chitturi and Sudborough

Labarre

Figure 5.4: Percentage of permutations in Sn that are tight with respect to each of
the lower bounds.

n n! ∆ = 0 ∆ = 1 ∆ = 2 ∆ = 3
1 1 1 0 0 0
2 2 2 0 0 0
3 6 6 0 0 0
4 24 22 2 0 0
5 120 106 14 0 0
6 720 574 143 3 0
7 5 040 3 782 1 234 24 0
8 40 320 27 471 12 310 539 0
9 362 880 229 167 128 576 5 137 0

10 3 628 800 2 103 510 1 427 966 97 321 3

Table 5.3: Number of cases where (5.4) underestimates ptd(π) by ∆.

77

Chapter 6

Haplotype networks

As discussed in more detail in Chapter 1, a lot of methods have been proposed
for reconstructing and analysing phylogenetic networks (reviewed by Huber and
Moulton [46], Posada and Crandall [65], or more recently in a book edited by Gascuel
and Steel [39]). In the case of intraspecific studies, these networks are referred
to as “haplotype networks” (see e.g. Cassens, Mardulyn, and Milinkovitch [20] for
more technical definitions concerning biological concepts). Most available methods
reconstruct a network directly from the sequences (as defined on page 1), and then
apply local heuristics in order to reduce the size or order of the network obtained in
that way. The method proposed in the case of intraspecific studies by Cassens et al.
[20] is inspired by phylogenetic methods and consists in combining a given set of most
parsimonious trees1 into a graph. They tested their method, which they call “Union
of Maximum Parsimonious trees” (or UMP for short), on simulated datasets against
other widely-used methods, and noted that UMP provides a good estimate of the
true genealogy, sometimes performing better than the other methods. Cassens et al.
[20] also provide an algorithm for merging their trees into a graph. However, their
algorithm makes a number of arbitrary choices, produces solutions whose quality
depends on the order in which the merging process is performed, and is a heuristic
with an implicit objective function. Our main contributions in this chapter are the
following:

• we propose a possible formal model for UMP in terms of finding a minimum
common supergraph of a set of partially labelled trees;

• we give two algorithms for finding an optimal solution to this problem on two
graphs: one that runs in polynomial time, provided that at least one of the
graphs belongs to a particular class (Proposition 6.3), and another that runs in
exponential time in the case where both graphs are arbitrary (Theorem 6.1).

1Those trees can be obtained using one of the many methods described e.g. by Felsenstein [34];
in the study by Cassens et al. [20], trees are inferred by a program called PAUP. However, we will
only focus on combining a given set of trees into a graph, and not on generating those trees.

78

6.1. Notation and preliminaries

6.1 Notation and preliminaries

All graphs considered in this chapter are connected, simple and undirected. We
begin with a few definitions and a formal statement of the problem we are going to
study, then illustrate all these concepts in Figure 6.1 (page 81).

6.1.1 Partially labelled graphs

Definition 6.1. An (n, k)-graph G = (V,E,L), where V = Vl ∪ Vu is a graph on
n = |V | vertices, k of which are labelled. We distinguish between the set Vl(G) of
labelled vertices and the set Vu(G) of unlabelled vertices. The labelling L assigns
distinct labels to each vertex in Vl(G); it is called a partial labelling if k < n (in
which case we say that G is partially labelled), and a complete labelling if k = n (in
which case we say that G is completely labelled).

Unless explicitly stated, all (n, k)-graphs will use the label set {1, 2, . . . , k} for
labelled vertices.

Definition 6.2. An (n, k)-tree is a connected (n, k)-graph with n − 1 edges and
whose labelled vertex set includes all vertices of degree 1.

For convenience, we will also use the following function, which (possibly) returns
the label of vertex v in the (n, k)-graph G:

lab : V (G)→ {1, 2, . . . , k} ∪ {∅} : v 7→ lab(v) =

{
i if v has label i,
∅ otherwise.

This is not to be confused with the labellings introduced in Definition 6.1: labelling
L assigns labels to vertices, while function lab (possibly) returns labels. We will
also use lab on edges, in order to obtain the pairs of labels that correspond to the
endpoints of interest: if v, w ∈ Vl, then lab({v, w}) = {lab(v), lab(w)}. Therefore,
we have:

lab(E(G)) = {{i, j} | i, j ∈ {1, 2, . . . , k} ∪ {∅} and

∃ v, w ∈ V (G) : lab(v) = i, lab(w) = j}.

We intentionally refrain from providing an explicit definition of the image of lab({v,
w}) for unlabelled vertices, because we will only use that function on pairs of labelled
vertices.

Definition 6.3. Given an (n, k)-graph G, we partition the neighbourhood NG(v)
of any vertex v in V (G) into

• the labelled neighbourhood NG
l (v) = {w ∈ NG(v) | lab(w) 6= ∅} of v, and

• the unlabelled neighbourhood NG
u (v) = {w ∈ NG(v) | lab(w) = ∅} of v.

79

6.1. Notation and preliminaries

6.1.2 Subgraphs and supergraphs

We will find it convenient to define the following well-known concepts using la-
bellings. By completing a labelling , we mean transforming a partial labelling into a
complete labelling.

Definition 6.4. Two (n, k)-graphs G and H are isomorphic if their labellings can
be completed in such a way that the resulting (n, n)-graphs G′ and H ′ satisfy
lab(E(G′)) = lab(E(H ′)). In that case, we write G ∼= H.

Definition 6.5. An (n, k)-graphG is a subgraph of an (n, k)-graphH if the labellings
of G and H can be completed in such a way that the resulting (n, n)-graphs G′ and
H ′ satisfy lab(E(G′)) ⊆ lab(E(H ′)). In that case, we also say that H is a supergraph
of G.

Informally speaking, G is a subgraph of H (and H is a supergraph of G) if one
can obtain an (n, k)-graph isomorphic to G by removing an appropriate set of edges
from H. The problem of finding a subgraph of a given graph that is isomorphic to
another given graph is well-known to be NP-complete in the case where no vertex is
labelled (see e.g. Garey and Johnson [38]). We adapt the following definition from
Bunke, Jiang, and Kandel [17] to our purposes.

Definition 6.6. A common supergraph of a set {G1, G2, . . . , Gt} of (n, k)-graphs is
an (n, k)-graph G that is a supergraph of each Gi (for 1 ≤ i ≤ t). It is minimum if
there is no other graph G′ with |E(G′)| < |E(G)| that shares this property.

The optimisation problem we want to solve is formally stated below.

MINIMUM COMMON SUPERGRAPH (I)
Instance: (n, k)-trees T1, T2, . . ., Tt on the same label set.
Problem: find a minimum common supergraph of {T1, T2, . . ., Tt}.

Figure 6.1 shows two (n, k)-trees, along with two other (n, k)-graphs G1 and G2:
G2 is a common supergraph of T1 and T2, but it is not a minimum one: indeed, G1

is also a common supergraph of T1 and T2, but it has fewer edges than G2; and G1

is indeed minimum, since it has only one more edge than T1 or T2, which are not
isomorphic.

Alternatively, the minimum common supergraph problem on partially labelled
trees can be conveniently reformulated using (complete) labellings.

Definition 6.7. The union of two (n, n)-graphs G1 = (V1, E1) and G2 = (V2, E2)
is the graph G = (V,E) whose vertices are labelled by {1, 2, . . . , n} and whose edge
set is defined by

E = {{v, w} | v, w ∈ V and {lab(v), lab(w)} ∈ lab(E1) ∪ lab(E2)}.

Figure 6.2 shows an example of the union of two completely labelled graphs on
eight vertices. Note that we defined and illustrated this concept on two graphs, but
it straightforwardly generalises to any number of input graphs. We can now use
the concepts of labellings and unions to restate the minimum common supergraph
problem on partially labelled trees as follows:

80

6.1. Notation and preliminaries

1 3

4

2

1 3

4

2

1 3

4

2

1

3

4

2

T1 T2 G1 G2

Figure 6.1: Two (7, 4)-trees T1 and T2, a minimum common supergraph G1 of T1

and T2, and a common supergraph G2 of T1 and T2 which is not minimum. For
conciseness, we refrain from displaying the vertices’ names (i.e. v1, v2, . . .), which
are irrelevant, and only write the labels of labelled vertices.

1

2
3

4

5

6
7

8

1

2
3

4

5

6
7

8

1

2
3

4

5

6
7

8

G1 G2 G

Figure 6.2: The union G of two completely labelled graphs G1 and G2.

MINIMUM COMMON SUPERGRAPH (II)
Instance: (n, k)-trees T1, T2, . . ., Tt on the same label set.
Problem: completely label T1, T2, . . ., Tt in such a way that the union of the
resulting completely labelled trees has minimal size.

Recall (Definition 2.3 page 11) that the size of a graph is the number of edges it
contains. Labellings that minimise the size of the union of our input trees will be
referred to as optimal . The first formulation of the minimum common supergraph
problem is closer to the actual biological motivation, but the second formulation will
be proved more attractive to work with in Section 6.3. Note that a solution to the
second formulation trivially provides a solution to the first formulation, obtained by
removing the new labels (i.e. labels in {k + 1, k + 2, . . . , n}) from the union of our
completely labelled trees.

81

6.2. Previous and related work on minimum common supergraphs

6.2 Previous and related work on minimum com-

mon supergraphs

As far as we know, very few results exist on minimum common supergraphs. More-
over, the definition of the problem seems to vary from paper to paper. Bunke et al.
[17] define the problem on graphs whose vertices and edges can be labelled, and
try to minimise a function that takes both the number of vertices and edges into
account. They observe that an edit distance can be defined between two graphs, in
terms of the minimum number of edge or vertex deletions, insertions or substitutions
that need to be applied to transform one graph into the other, and point out a con-
nection with the maximum common subgraph of the two graphs under consideration
(i.e. the graph of largest order and size that is a subgraph of both input graphs).

Parker and Lee [63] study the problem of finding a minimum common supergraph
of two completely labelled, connected and directed acyclic graphs. They prove that
finding a minimum common supergraph in that case is NP-hard, if the function to
optimise is the quantity |V (G)|+ c|E(G)|, where c is a small constant. The problem
is however solvable in polynomial time if either input graph is a path.

Finally, a research topic that seems closely related to our concern is the problem
of determining universal graphs for spanning trees , i.e. graphs on n vertices that
contain all nonisomorphic spanning trees on n vertices, with as few edges as possible
(in this case, all vertices and edges are unlabelled, and graphs are undirected). This
problem was first investigated by Chung and Graham [24], who proved bounds on the
number of edges of an optimal solution; there does not seem to be any computational
complexity result on the topic.

6.3 The isomorphic (n, k)-tree problem

An approach that comes to mind for building a minimum common supergraph of t
(n, k)-trees is to remove edges from the complete (n, k)-graph as long as the resulting
graph contains all our trees. However, one must make sure that the resulting graph
contains each input tree, and checking this is difficult, as we show by a simple
transformation from isomorphic spanning tree (defined below). This shows
that the approach described above is not likely to be computationally efficient, and
further motivates our liking for formulation (II) of the minimum common supergraph
problem, since labellings provide a quickly verifiable proof that each tree is indeed
a subgraph of the proposed solution.

ISOMORPHIC SPANNING TREE
Instance: graph G = (V,E), tree T = (VT , ET).
Question: does G contain a spanning tree isomorphic to T?

Isomorphic spanning tree is known to be NP-complete (see Garey and John-
son [38], problem ND8 page 207), even in the case where T is a path, in which case
the problem comes down to determining whether G is Hamiltonian. We prove, by
a simple transformation, that it remains NP-complete in the partially labelled case,
as defined below:

82

6.4. Polynomial-time solvable cases

ISOMORPHIC (n, k)-TREE
Instance: (n, k)-graph G, (n, k)-tree T on the same label set.
Question: does G contain an (n, k)-tree isomorphic to T?

Proposition 6.1. Isomorphic (n, k)-tree is NP-complete.

Proof. That isomorphic (n, k)-tree is in NP is straightforward: a solution to
isomorphic (n, k)-tree is a pair of complete labellings for T and G, and we only
need to check that lab(E(T)) ⊆ lab(E(G)), which is clearly doable in polynomial
time.

We now show how isomorphic (n, k)-tree can be used to solve isomorphic
spanning tree. Let {G = (V,E), T = (VT , ET)} be an instance of isomorphic
spanning tree, and let l denote the number of leaves of T ; we add a set V ′ of l new
vertices to both V (G) and V (T), together with the corresponding labellings LG′ and
LT ′ (i.e. the labels 1, 2, . . ., l are assigned to vertices in V ′ in an arbitrary way). Each
vertex in V ′ will be connected to exactly one leaf of T , and to every (unlabelled) ver-
tex of G, thus yielding an instance {G′ = (V ∪V ′, EG′ ,LG′), T ′ = (V ∪V ′, ET ′ ,LT ′)}
of isomorphic (|V | + l, l)-tree. Figure 6.3 illustrates the transformation on a
simple example.

Clearly, solutions to isomorphic (|V | + l, l)-tree on {G′, T ′} and solutions to
isomorphic spanning tree on G and T are in one-to-one correspondence; indeed:

1. if the answer to isomorphic spanning tree on G and T is “yes” and can
be verified using labellings L1 and L2, then clearly the same labellings can
be used to answer isomorphic (|V | + l, l)-tree on G′ and T ′ positively, by
completing LG′ and LT ′ using L1 and L2;

2. on the other hand, if the answer to isomorphic (|V | + l, l)-tree on G′ and
T ′ is “yes”, then removing all vertices with labels in {1, 2, . . . , l} and all edges
incident to those vertices lets us recover G and T as well as a solution to
isomorphic spanning tree on G and T , since labellings that certify the
positive answer to isomorphic (|V |+ l, l)-tree on G′ and T ′ are not affected
by this transformation.

The transformation is clearly achieved in polynomial time, and this completes the
proof.

As a side remark, we mention that Papadimitriou and Yannakakis [62] prove fur-
ther computational complexity results on isomorphic spanning tree, and show
some cases in which the problem can be solved in polynomial time. Those results
might be of interest in the case of isomorphic (n, k)-tree as well, but we will now
return to our topic, i.e. the study of the minimum common supergraph problem.

6.4 Polynomial-time solvable cases

We do not know the computational complexity of the minimum common supergraph
problem, but are nevertheless able to characterise a few cases in which the problem
can be solved in polynomial time. We describe such cases in this section, and give
the corresponding algorithms.

83

6.4. Polynomial-time solvable cases

T

G

1

2 3

4

T ′

1

2 3

4

G′

instance of instance of
isomorphic spanning tree isomorphic (12, 4)-tree

Figure 6.3: An example of how to transform an instance of isomorphic spanning
tree into an instance of isomorphic (n, k)-tree. Here, the answer to isomorphic
spanning tree is “yes”, and an occurrence of the input tree in the input graph is
highlighted; clearly, the transformation preserves that occurrence. Edges added by
the transformation have been dotted for clarity.

84

6.4. Polynomial-time solvable cases

6.4.1 Isomorphism of (n, k)-trees

A natural question to answer before trying to find a minimum common supergraph
of two (n, k)-trees is whether or not they are isomorphic (this is the special case of
isomorphic (n, k)-tree where G is also an (n, k)-tree). While the complexity of
the general graph isomorphism problem remains open, the problem is known to be
solvable in polynomial time for various classes of graphs, including trees (see e.g.
Valiente [74], or Aho, Hopcroft, and Ullman [1] for a linear time algorithm). Using
ideas similar to those presented by Cassens et al. [20], we show here that it is also
the case for (n, k)-trees.

For any two labelled vertices v, w in an (n, k)-graph G, we write v
G

! w if
{v, w} ∈ E(G) or if G contains a path between v and w that consists only of
unlabelled vertices (except of course for v and w). In the following, T1 and T2 will
denote two (n, k)-trees; moreover, v, w in T1 and v′, w′ in T2 will denote pairs
of labelled vertices with the same labels in T1 and in T2, i.e. {lab(v), lab(w)} =
{lab(v′), lab(w′)}.

Definition 6.8. Let v, w in T1 and v′, w′ in T2 be four labelled vertices such that

v
T1! w and v′

T2! w′. We say that the paths between v and w in T1 and between
v′ and w′ in T2 correspond if:

1. they are of the same length, and

2. the degrees of the unlabelled vertices encountered when traversing the path
from v to w (or from w to v) in both trees are equal.

For example, the paths from labelled vertex 2 to labelled vertex 4 in both trees
shown in Figure 6.1 correspond, while the paths from labelled vertex 1 to labelled
vertex 3 in both trees do not, since the degree sequence (i.e. the size of the neigh-
bourhood of each vertex in the path) of the first path is (1, 3, 2, 1) whereas that of
the second path is (1, 2, 3, 1).

Definition 6.9. Let v, w in T1 and v′, w′ in T2 be four labelled vertices such that

v
T1! w and v′

T2! w′. The identification of the path between v and w in T1 and
between v′ and w′ in T2 consists in assigning the same label to unlabelled vertices
progressively encountered by traversing both paths in the same direction.

Labels added by the identification process will start with the smallest natural
number not already used (i.e. k + 1 if T1 and T2 are (n, k)-trees). For the above
definition to make sense, the paths between vertices v and w in both trees must have
the same length (although they need not correspond, in the sense of Definition 6.8).

Observation 6.1. Let v, w in T1 and v′, w′ in T2 be four labelled vertices such that

v
T1! w and v′

T2! w′. If the path between v′ and w′ in T2 does not correspond to
the path between v and w in T1, then T1 6∼= T2.

Proof. By contradiction, let us assume that either the lengths of the paths differ
or the degrees of the unlabelled vertices in both paths do not correspond. Since
by definition of a tree, there is a unique path between any two vertices, we have
T1 6∼= T2.

85

6.4. Polynomial-time solvable cases

Observation 6.2. If the paths between labelled vertices v, w in T1 and v′, w′ in
T2 correspond, let T ′1 and T ′2 be the trees obtained after identifying those paths; then
T1
∼= T2 ⇔ T ′1

∼= T ′2.

Proof. If T1
∼= T2, then any isomorphism between T1 and T2 must identify the paths

between v and w, and therefore T1
∼= T2 ⇒ T ′1

∼= T ′2. On the other hand, if T1 6∼= T2,
then identifying the paths between v and w in both trees will not change that
property, and we will have T ′1 6∼= T ′2 as well.

Observations 6.1 and 6.2 prove the correctness of Algorithm 6.4.1, which tests
the isomorphism of two (n, k)-trees. The while loop is executed at most n−k times,
and the identification of paths takes time at most n−1 since a path in an (n, k)-tree
cannot exceed that length; therefore, Algorithm 6.4.1 runs in O(n2) time.

Algorithm 6.4.1 TREE-ISOMORPHISM(T1, T2)

Input: two (n, k)-trees T1 and T2 on the same label set
Output: true if T1

∼= T2, false otherwise

1: while |Vu(T1)| > 0 do
2: pick any v in Vl(T1) with |NT1

u (v)| ≥ 1;

3: pick any w in Vl(T1) such that v
T1! w and {v, w} 6∈ E(T1);

4: let v′ and w′ in Vl(T2) such that {lab(v), lab(w)} = {lab(v′), lab(w′)};
5: if v′

T2! w′ and the paths between v and w in T1 and between v′ and w′ in T2

correspond then
6: identify those paths {according to Observation 6.2};
7: else
8: return false {according to Observation 6.1};
9: end if

10: end while
11: if lab(E(T1)) = lab(E(T2)) then
12: return true;
13: else
14: return false;
15: end if

6.4.2 Restricted graphs

In this section, we show that the minimum common supergraph problem can be
solved in polynomial time on two (n, k)-graphs that belong to a particular class,
which we define below. The reader may be surprised to see those results expressed
on graphs rather than trees, since the input of minimum common supergraph
as we have defined it is a set of trees; however, we see no reason to restrict the
presentation of our results to trees, since the strategy we will present solves the
problem on graphs with exactly the same time complexity.

Definition 6.10. An (n, k)-graph is restricted if it contains no edge between unla-
belled vertices.

86

6.4. Polynomial-time solvable cases

4 9

10

1

2

3

8

5

7 6

Figure 6.4: A restricted (n, k)-tree.

Figure 6.4 shows an example of a restricted (n, k)-tree. We prove that the mini-
mum common supergraph problem is solvable in polynomial time on two restricted
graphs. Figure 6.5, which follows the next result, will illustrate the strategy de-
scribed in the proof on two restricted (8, 5)-trees.

Proposition 6.2. A minimum common supergraph of two restricted (n, k)-graphs
G1 and G2 can be found in O((n− k)3) time.

Proof. Let B be the complete bipartite graph with vertex classes V1 = Vu(G1),
V2 = Vu(G2) and whose edges are weighted by the following function:

f(v1, v2) =
∣∣lab(NG1

l (v1)) ∪ lab(NG2
l (v2))

∣∣ , for v1 ∈ Vu(G1) and v2 ∈ Vu(G2).

Every perfect matching M of B naturally yields two labellings LM1 and LM2 for G1

and G2: if e1 = {v1, w1}, e2 = {v2, w2}, . . ., en−k = {vn−k, wn−k} are the edges of
M, then we assign label i+ k to vi ∈ Vu(G1) and wi ∈ Vu(G2).

We claim that the minimum common supergraph problem on G1 and G2 can
be solved by finding a perfect matching of minimum weight in B. For a perfect
matching M, we set

||M|| =
∑

{v,w}∈M

f(v, w) =
∑

{v,w}∈M

∣∣lab(NG1
l (v)) ∪ lab(NG2

l (w))
∣∣

=
∣∣lab(E(GM1)) ∪ lab(E(GM2))

∣∣− C,
where GM1 and GM2 are the completely labelled graphs obtained by applying the
labellings given by M, and C is a constant that counts the number of edges in
the resulting graph whose both endpoints belong to Vl(G1) (or Vl(G2)). The last
equality follows from Definition 6.10. By definition, if M∗ is a minimum weight
perfect matching, then:

||M∗|| = min
all matchings M

||M||

= min
all matchings M

∣∣lab(E(GM1)) ∪ lab(E(GM2))
∣∣− C.

87

6.4. Polynomial-time solvable cases

Since the latter function is the objective function of minimum common super-
graph (II), and since an optimal matching can be found in time cubic in the number
of vertices of B (see e.g. Schrijver [67]), the proof is complete.

2

1

3

5

4

1

2

3

4

5

3

3

4

4
5

35

3

3

−→

1 2 3 4 5

Figure 6.5: Optimally merging two restricted (8, 5)-trees; a minimum weight perfect
matching of weight 9 yields a minimum common supergraph of those trees that
contains 9 edges.

6.4.3 The minimum common supergraph problem on a re-
stricted (n, k)-graph and an arbitrary (n, k)-graph

The special case solved in Section 6.4.2 may seem of little practical interest; but it
turns out that the strategy used in Proposition 6.2 can be extended to handle the
case where only one of the two graphs to merge is restricted. Furthermore, restricted
graphs will prove crucial in the design of an exact algorithm for finding a minimum
common supergraph of two arbitrary (n, k)-graphs (see Section 6.5).

Proposition 6.3. A minimum common supergraph of two (n, k)-graphs G1 and G2

can be found in O((n− k)3) time, provided that G1 or G2 is restricted.

Proof. We have already handled the case where both input graphs are restricted
(Proposition 6.2), so we assume that only G1 is. In that case, edges connecting
unlabelled vertices in G2 can actually be ignored: indeed, there are no such edges
in G1, so whatever assignment is chosen, the number of such edges in the result-
ing common supergraph will be equal to their number in G2, a constant. We can
therefore only reduce the number of edges connecting labelled vertices to unlabelled
ones, which we do using again the matching strategy of Proposition 6.2 with the
very same weight function.

Algorithm 6.4.2 optimally merges a restricted (n, k)-graph and an arbitrary
(n, k)-graph in O((n− k)3) time.

88

6.5. An exact algorithm for two graphs

Algorithm 6.4.2 MERGE-RESTRICTED-AND-ARBITRARY-GRAPHS(G1, G2)

Input: a restricted (n, k)-graph G1 and an arbitrary (n, k)-graph G2.
Output: two optimal labellings for G1 and G2.

1: build the complete bipartite graph B with vertex sets V1 = Vu(G1), V2 = Vu(G2)
and whose edges are weighted by the following function:

f(v1, v2) =
∣∣lab(NG1

l (v1)) ∪ lab(NG2
l (v2))

∣∣ , for v1 ∈ Vu(G1) and v2 ∈ Vu(G2).

2: find a minimum weight perfect matching in B;
3: for each edge ei = {v1, v2} of the matching do
4: assign label i+ k to v1 ∈ Vu(G1) and v2 ∈ Vu(G2);
5: end for
6: return both complete labellings;

6.5 An exact algorithm for two graphs

As illustrated in Figure 6.6, the matching strategy on which Algorithm 6.4.2 is based
no longer works for merging two arbitrary trees. In this section, we propose an exact
exponential time algorithm for solving the minimum common supergraph problem
on two arbitrary partially labelled graphs. For the sake of clarity, we defer its formal
exposition to the end of this section, and begin with a brief top-down sketch of its
design.

1
3 4 5 6

2

1
3 4 5 6

2

1 3 4 5 6 2

1
3 4 5 6

2

1
3 5 4 6

2

1 3 4 5 6 2

(a) (b)

Figure 6.6: Example on which the matching strategy for finding a minimum common
supergraph fails: labellings in situations (a) and (b) correspond to two matchings
of the same weight (sketched using dotted edges), but solution (a) is optimal while
solution (b) is not.

6.5.1 Outline and computational complexity

Let p denote the smallest integer such that G1 or G2 (possibly both) can be trans-
formed into a restricted (n, k+p)-graph by labelling a subset of p unlabelled vertices
(we will give an algorithm for achieving this task in Section 6.5.2). Without loss
of generality, we assume that we have been able to pick p vertices in G1 in such a
way that after arbitrarily labelling those vertices using labels in {k + 1, k + 2, . . .,

89

6.5. An exact algorithm for two graphs

k + p}, we obtain a restricted (n, k + p)-graph G′1. Then, we explore all possible
ways to select and label p unlabelled vertices in G2, so as to obtain an (arbitrary)
(n, k+p)-graph G′2. Algorithm 6.4.2 is then used to compute in polynomial time, for
each such pair of graphs, a minimum common supergraph of G′1 and G′2, and we keep
the common supergraph with fewest edges over all minimum common supergraphs
generated in that way.

6.5.2 Restricting (n, k)-graphs

The algorithm we depicted in Section 6.5.1 relies on our ability to compute p and find
the corresponding subset of vertices in an (n, k)-graph. Lemma 6.1 below explains
how to achieve this on (n, k)-graphs in general, and relies on the following well-known
concept.

Definition 6.11. A vertex cover of a graph G is a subset of vertices U ⊆ V (G)
such that for every edge {v, w} in E(G), we have v ∈ U or w ∈ U .

Given an (n, k)-graph G, denote Gu the graph obtained from G by removing all
edges incident to vertices of Vl(G).

Lemma 6.1. Given an (n, k)-graph G, let S ⊆ Vu(G); labelling all elements of S
transforms G into a restricted (n, k+ |S|)-graph if and only if S is a vertex cover of
Gu.

Proof. Let C be a vertex cover of Gu. Then labelling all elements of C transforms
Gu into a restricted graph, a property that is obviously preserved when reinserting
all edges incident to the vertices of Vl(G). Conversely, let X ⊆ Vu(G) be such that
labelling all elements of X yields a restricted (n, k+ |X|)-graph H; by definition of a
restricted graph, every edge of E(H) has at least a labelled endpoint, which is also
the case for every edge of E(Hu), and X is therefore a vertex cover of Gu.

Restricting an (n, k)-graph G by labelling as few vertices as possible is therefore
equivalent to finding a minimum vertex cover, i.e. a vertex cover of minimum car-
dinality, on Gu. Finding a minimum vertex cover is well-known to be NP-hard (see
Garey and Johnson [38], problem GT1 page 190), but it is solvable in linear time
on trees, among other particular cases (see e.g. Skiena [68]). Figure 6.7 shows how
a tree is transformed into a restricted tree.

1 3

42

1

5 6

3

42

becomes

Figure 6.7: Transforming an (11, 4)-tree T into a restricted (11, 6)-tree T ′. The
labelled vertices of T ′ do not constitute a minimum vertex cover of T ′, but vertices
with labels 5 and 6 do constitute a minimum vertex cover of T u.

90

6.5. An exact algorithm for two graphs

6.5.3 Pruning the search tree

There are two levels at which one wishes to prune the search tree explored by our
algorithm (for simplicity, we assume that G1 is the graph that has been transformed
into a restricted graph):

1. when selecting a particular subset of vertices of G2 to which labels are to be
assigned, and

2. when permuting the labels assigned to a given subset of vertices of G2.

The following two observations provide lower bounds that can be used in those
two situations. Let us partition the edge set of an (n, k)-graph G into E(G) =
E0(G) ∪ E1(G) ∪ E2(G), where for 0 ≤ i ≤ 2, Ei(G) stands for the subset of edges
of E(G) that have i labelled endpoints (note that if G is restricted, then E0(G) is
empty). We have the following.

Observation 6.3. For any common supergraph H of two (n, k)-graphs G1 and G2,
where G1 is restricted and G2 is arbitrary, we have

|E(H)| ≥ |E(G1)|+ |E0(G2)|+ |lab(E2(G2)) \ lab(E2(G1))|. (6.1)

Proof. We start building a common supergraph of our two graphs by adding edges
to the edges of G1. Since G1 is restricted, E0(G1) is empty, so we will have to add
at least |E0(G2)| edges to G1. Moreover, edges between two labelled vertices in
G2 which do not already appear in G1 will also have to be added, and there are
|lab(E2(G2)) \ lab(E2(G1))| of them.

Figure 6.8 illustrates the computation of the above lower bound on a simple
example. Lower bound (6.1) will be used in the second situation described above,
i.e. when assigning labels to a fixed subset of previously unlabelled vertices in G2.
Similar arguments can be used to obtain another lower bound which can be used
before assigning labels to the given subset, as we explain below.

Observation 6.4. Let G1 be a restricted (n, k1)-graph and G2 be an arbitrary (n, k2)-
graph, with k2 ≤ k1, and let S ⊆ Vu(G2) with |S| = k1 − k2; then for any common
supergraph H of G1 and G2, we have

|E(H)| ≥ |E(G1)|+ |E ′0(G2)|+ |lab(E2(G2)) \ lab(E2(G1))|, (6.2)

where |E ′0(G2)| = |E0(G2)| − |{{v, w} ∈ E0(G2) | v or w ∈ S}|.

Proof. As in the proof of Observation 6.3, we will be adding edges to the n − 1
edges of G1. Since all vertices in S are going to be labelled, we will be adding only
|E ′0(G2)| = |E0(G2)| − |{{v, w} ∈ E0(G2) | v or w ∈ S}| edges to G1.

Algorithm 6.5.1 combines all previous results to solve the minimum common
supergraph problem on two arbitrary (n, k)-graphs.

91

6.5. An exact algorithm for two graphs

1

23

4

56

7

89

10

1112

13

T1

1

11 124

1013

2

93

8 6

57

T2

Figure 6.8: Two (17, 13)-trees T1 and T2 (T1 is restricted). We have |E(T1)| = 16,
|E0(T2)| = 3, and none of the 3 edges of E2(T2) appears in T1; therefore, any common
supergraph of T1 and T2 will have at least 16 + 3 + 3 = 22 edges.

92

6.5. An exact algorithm for two graphs

Algorithm 6.5.1 MERGE-TWO-GRAPHS(G1, G2)

Input: two (n, k)-graphs G1 and G2 on the same label set
Output: a minimum common supergraph of G1 and G2

1: G← ∅;
2: b←∞;
3: if G1 or G2 is restricted then
4: G← MERGE-RESTRICTED-AND-ARBITRARY-GRAPHS(G1, G2);
5: else
6: p1 ← minimum vertex cover on Gu

1 ;
7: p2 ← minimum vertex cover on Gu

2 ;
8: if |p1| > |p2| then
9: swap G1 and G2;

10: swap p1 and p2;
11: end if
12: G′1 ← the graph obtained from G1 by labelling the vertices of p1;
13: for all subset S ⊆ Vu(G2) of size |p1| do
14: G′2 ← G2;
15: if lower bound (6.2) on G′1, G′2, S is strictly less than b then
16: arbitrarily label the elements of S;
17: for all permutations of the labels assigned to the current subset do
18: G′2 ← the graph obtained by labelling the elements of S using the

current permutation;
19: if lower bound (6.1) on G′1, G′2 is strictly less than b then
20: H ← MERGE-RESTRICTED-AND-ARBITRARY-GRAPHS (G′1,

G′2);
21: if |E(H)| < b then
22: G← H;
23: b← |E(G)|;
24: end if
25: end if
26: end for
27: end if
28: end for
29: end if
30: return G;

93

6.5. An exact algorithm for two graphs

6.5.4 Complexity analysis

Algorithm 6.5.1 on two (n, k)-trees has the following time complexity.

Theorem 6.1. A minimum common supergraph of two arbitrary (n, k)-trees can be
computed in O ((n− k)p+3) time, where p is the smallest integer such that either tree,
after arbitrarily labelling p of its unlabelled vertices, becomes a restricted (n, k + p)-
tree.

Proof. Let us assume, without loss of generality, that T1 becomes restricted after
labelling p of its vertices; the number of ways in which we can select and label p
vertices out of n− k in T2 as candidates to be identified with our p selected vertices
in T1 is the number of injective mappings from the set of p vertices in T1 to the set
of n−k unlabelled vertices in T2, which is (n−k)(n−k−1) · · · (n−k−p+1). Since
we are, at each step, comparing (n, k + p)-graphs, and since an optimal solution
to the minimum common supergraph problem on a restricted (n, k)-graph and an
arbitrary (n, k)-graph can be obtained in O((n − k)3) time (Proposition 6.3), the
proof follows from the fact that

(n− k)(n− k − 1) · · · (n− k − p+ 1)︸ ︷︷ ︸
p terms

(n− k − p)3 ≤ (n− k)p+3.

Note that the computation of the lower bounds presented in Section 6.5.3 can
be achieved in linear time. As we have previously stressed, Algorithm 6.5.1 finds an
optimal solution on graphs rather than trees; however, the computational complexity
of the algorithm may increase beyond O((n−k)p+3), since restricting an (n, k)-graph
is likely to take much more time than restricting a tree, because of the equivalence
of this problem with that of finding a minimum vertex cover (Lemma 6.1).

94

Conclusions

A few problems we have discussed in this dissertation remain open, and some of the
results we have obtained might be extendable in a few ways; we outline and suggest
below a few possible directions for further research.

Sorting by transpositions. Despite tremendous efforts by many researchers, de-
termining the complexity of sorting by transpositions and computing the transpo-
sition distance or its maximal value remain open problems. We have shown how
the classical disjoint cycle decomposition of permutations can be used to compute
in polynomial time the transposition distance of permutations belonging to a few
nontrivial classes and to obtain upper bounds on the transposition distance of other
permutations. Nevertheless, there are still permutations for which there is a gap be-
tween our bounds and the actual distance: it would be interesting to know whether
or not our approach has reached its limits, and to get more information about how
efficient it is (we conducted experimental tests, but were unable to prove an approx-
imation guarantee). Can our approach be applied to other genome rearrangement
problems, and are there other alternatives to the breakpoint graph approach that
would be of interest? A careful analysis of our improved upper bounds may also lead
to some progress on determining the value of the transposition diameter. Finally,
an intriguing question, which has been open since the first paper on the subject
by Bafna and Pevzner [8], is whether −2-transpositions, i.e. transpositions which
remove two cycles from the cycle graph, are useless. It seems intuitive that they
could be safely disregarded, since they seem to take us farther away from the iden-
tity permutation, but there is no proof that every permutation admits an optimal
sorting sequence using no −2-transposition.

Hultman numbers. In Chapter 4, we enumerated permutations that belong to
a particular “Hultman class”, and those whose cycle graph contains a given number
of alternating cycles. It would be interesting to obtain analogous results for signed
permutations, since this would immediately characterise, among others, the distri-
bution of the double cut-and-join distance (see Yancopoulos, Attie, and Friedberg
[76] for definitions), which has become increasingly popular in genome comparisons.
Obtaining closed, or at least simpler expressions for the formulae we have obtained,
in particular those that count simple permutations and 3-permutations (Proposi-
tion 4.2), is also an open problem.

95

Edit distances in general. We provided a new general framework in Chapter 5,
which connects edit distance problems on permutations with factorisations of related
even permutations. This framework proved useful in recovering known lower bounds
and proving new ones (see Sections 5.5 and 5.6), and there are at least two interest-
ing directions for new research. First, is it possible to obtain upper bounds using this
approach? Second, can this framework be extended to other objects than permuta-
tions (e.g. signed permutations, strings, or other completely different combinatorial
structures)? In particular, the breakpoint graph of signed permutations admits a
unique decomposition into disjoint alternating cycles, which suggests that it might
be possible to use the disjoint cycle decomposition of some (signed) permutation to
express the structure of this graph.

Interconnection networks. As we have seen in Chapter 5, Cayley graphs of
permutation groups have received a lot of attention from researchers over the last
two decades in the context of interconnection networks. However, Cayley graphs
based on generating sets used in genome rearrangement problems do not seem to
have received any attention. This is quite surprising since those two fields seem
to have a few goals in common, even though the motivations are different. The
study of Cayley graphs from the genome rearrangement literature might be useful
in many aspects: it may yield new information and results on genome rearrangement
problems, or reveal that these graphs are good candidates for use as interconnection
networks, or even allow to solve open problems in the latter field.

Minimum common supergraphs. A lot of work remains to be done on the
minimum common supergraph problem, starting with the determination of its
complexity (on two and on more than two trees). It also seems challenging to come
up with exact, approximation or heuristic algorithms that would be competitive in
practice (i.e. both fast and accurate).

96

Glossary

Notation Description
M A matching 12
(i1, i2, . . . , ik) A k-cycle in the disjoint cycle decomposition of a permuta-

tion
13

An The alternating group on {1, 2, . . . , n} 13
BG(π) The breakpoint graph of permutation π 47
C(π) Conjugacy class of permutation π 51
CH(π) Hultman class of permutation π 52
Ci A connected component of the contact graph of a permuta-

tion
44

D(n, k) Number of factorisations of an n-cycle into the product of
an n-cycle and a permutation with k cycles

54

E(G) The edge set of graph G 11
G′(π) The circular cycle graph of permutation π 51
G(π) The cycle graph of permutation π 20
G = (V,E) A graph G with vertex set V and edge set E 11
G = (V,E,L) A partially labelled graph 79
Gu The (n, k)-graph obtained from (n, k)-graph G by removing

all edges incident to its labelled vertices
90

H(π) The contact graph of permutation π 44
L A labelling 79
NG(v) The neighbourhood of vertex v in graph G 12
NG
l (v) The labelled neighbourhood of vertex v in (n, k)-graph G 79

NG
u (v) The unlabelled neighbourhood of vertex v in (n, k)-graph G 79

S(1 + n) Shorthand notation for Sym({0, 1, 2, . . . , n}) 50
S(n, k) Stirling number of the first kind 51
Sn The symmetric group on {1, 2, . . . , n} 12
SH(n, k) Hultman number 51
V (G) The vertex set of graph G 11
Vl(G) The set of labelled vertices of partially labelled graph G 79
Vu(G) The set of unlabelled vertices of partially labelled graph G 79
[n] The set {1, 2, . . . , n} 12
Γ(π) The Γ-graph of permutation π 28
Υ(π) The set of all clans of permutation π of length at least 3 67
β(i, j, k, l) A block-interchange 59
χ The reversed permutation 〈n n− 1 n− 2 · · · 3 2 1〉 27

97

Glossary

Notation Description
◦ Composition (or multiplication) operator for permutations,

applied from right to left
12

∼= Isomorphism of (n, k)-graphs 79
≡◦◦ Equivalence by torism 24
≡r Equivalence by reduction 23
ι The identity permutation 12
〈π1 π2 · · · πn〉 A permutation of n elements, written as a sequence 12
| LIS(π) | The length of a longest increasing subsequence of π 26
|= A composition 54
π The permutation (0, πn, πn−1, . . . , π1) ◦ (0, 1, 2, . . . , n) 53
xm Shorthand notation for (x+m) (mod n+ 1) 24
π◦◦ A toric permutation 24
π◦ A circular permutation 23
π−1 The inverse of permutation π 13
πσ The conjugate of permutation π by permutation σ 14
π̇ Shorthand notation for (0, πn, πn−1, . . . , π1) 53
π A permutation 12
τ(i, j, k) A (biological) transposition 19
ε(i, j) An exchange (or algebraic transposition) 32
` Partition of a natural number 51
π̃ The extended version of permutation π 22
ξk The permutation 〈3 2 1︸ ︷︷ ︸

1

6 5 4︸ ︷︷ ︸
2

· · · n n− 1 n− 2︸ ︷︷ ︸
k

〉 44

b(π) The number of breakpoints of permutation π 22
bid(π) The block-interchange distance of permutation π 61
c(G(π)) The number of alternating cycles in G(π) 20
c(Γ(π)) The number of cycles in Γ(π) 28

c
(n)
λµ The number of ways to express a given n-cycle as the prod-

uct of two permutations whose classes are given respectively
by partitions λ and µ

54

c1(Γ(π)) The number of 1-cycles in Γ(π), or equivalently the number
of fixed points of π

66

ceven(G(π)) The number of even alternating cycles in G(π) 20
ceven(Γ(π)) The number of even cycles in Γ(π) 28
codd(G(π)) The number of odd alternating cycles in G(π) 20
codd(Γ(π)) The number of odd cycles in Γ(π) 28
d1

3(π) The length of a minimum factorisation of permutation π
into a product of 3-cycles, each of which contains the first
element

72

even(Γ(π)) The set of even cycles of Γ(π) 34
gl(π) The reduced permutation obtained from permutation π 23
lab(v) The label of vertex v in a given (n, k)-graph 79
odd(Γ(π)) The set of odd cycles of Γ(π) 34
pexc(π) The prefix exchange distance of permutation π (with respect

to ι)
66

98

Glossary

Notation Description
pexc(π, σ) The prefix exchange distance between permutations π and

σ
66

ptb(π) The number of prefix transposition breakpoints of permuta-
tion π

66

ptd(π) The prefix transposition distance of permutation π (with
respect to ι)

66

ptd(π, σ) The prefix transposition distance between permutations π
and σ

66

s(π) The number of strips of permutation π 67
td(π) The transposition distance of permutation π (with respect

to ι)
20

td(π, σ) The transposition distance between permutations π and σ 19

v
G

! w Labelled vertices v and w in (n, k)-graph G are either adja-
cent or connected by a path that consists only of unlabelled
vertices.

85

zλ Shorthand notation for
∏

i αi!i
αi 51

99

Index

Symbols
Γ-graph . 28
α-permutation . 31
β-permutation . 32
γ-permutation . 29

A
Adjacency . 22
Alternating

cycle . 20
group . 14
path . 21

Anti-adjacency . 67
Arc . 11

B
Block-interchange . 61

distance .61
prefix . 66

Breakpoint. .22
graph . 47

C
Chromosome . 1
Clan . 67
Composition

length of a . 54
of a natural number 54
of permutations 12

Conjugacy class . 14
Conjugate . 14
Cycle

k-cycle (in a graph) 12
k-cycle (permutation) 13
alternating . 20
k-cycle . 20
containment.22
crossing . 22
even . 21
interleaving . 22

length of an . 20
nonoriented . 21
odd . 21
oriented . 21

in a graph. .12
in the Γ-graph
k-cycle . 28
decreasing. .28
even . 28
increasing . 28
monotonic . 28
nonmonotonic 28
odd . 28
separating. .41
separator. .41

length of a . 12
Cycle graph. 20

circular . 51

D
Deletion . 3
Diameter . 14
Distance . 14

block-interchange 61
edit . 62
evolutionary. .5
left-invariant . 15
prefix exchange 66
prefix transposition 66
transposition . 19

DNA. .1
complementarity 1
replication . 1
segment . 1
strand. .1

E
Edge. .11

endpoints of an 11

100

Index

set . 11
Equivalence

by reduction . 23
by torism . 24

Exchange . 32
prefix . 63

distance . 66

G
Gene. 1

orientation . 5
Generating set . 15
Generator. .15
Genome. .1

rearrangement. .3
Graph . 11

(n, k)- .79
restricted . 86
union . 80

bicoloured. .12
bipartite . 12
Cayley . 16
completely labelled79
contact . 44
directed . 11
of a permutation 13
order of a . 11
partially labelled 79
path . 12
simple . 11
size of a . 11
star . 63
undirected . 11
universal (for spanning trees).82

Group
alternating . 14
symmetric . 13

H
Hultman

class . 52
number . 52

I
Incidence . 11
Insertion . 3
Inversion see reversal

Isomorphism . 80

L
Labelling . 79

complete . 79
completing a . 80
optimal . 81
partial . 79

M
Matching . 12

perfect . 12
Molecular evolution 3
Mutation . 3

point . 3
deletion . 3
insertion . 3
substitution . 3

N
Neighbourhood . 12

labelled . 79
unlabelled. .79

Network
haplotype . 8
interconnection.63
pancake . 63
phylogenetic . 7

Nucleotide . 1
deletion . 3
insertion . 3
substitution . 3

P
Parsimony hypothesis 5
Partition . 51

class of a . 51
length of a . 51
of a natural number 51
parts of a . 51

Path . 12
k-path . 12
alternating . 21
correspondance.85
identification . 85
length of a . 12

Permutation . 12
2-permutation.25

101

Index

3-permutation.25
α-permutation 31

(k-)perforation of an 38
main cycle . 31

β-permutation 32
γ-permutation 29
k-cycle . 13
circular . 24
composition . 12
conjugate . 14
disjoint cycles . 13
elements of a . 12
even . 14
extended . 23
fixed point . 13
graph of a. .13
identity . 12
inverse . 13
linear . 24
multiplication . 12
odd . 14
reduced . 23
reversed. .27
signed. .47
simple . 25
toric . 24
two row notation 12

Permutohedron . 17
Phylogenetic

network . 7
tree . 6

Prefix
block-interchange 66
exchange . 63
reversal . 63
transposition . 66

Prefix transposition breakpoint.66

R
Recombination . 8
Reversal . 5

prefix . 63
Right translation. .19

S
Sequence

alignment . 3

multiple . 3
pairwise . 3

of nucleotides . 1
Stirling number of the first kind 51
Strip . 23
Subgraph . 80
Subsequence . 26

increasing . 26
longest . 26

Substitution . 3
Supergraph . 80

common . 80
minimum . 80

T
Translocation . 5
Transposition . 19

k-transposition 22
action . 22
algebraic see exchange
distance .19
prefix . 66

distance . 66
Transposon . 5
Tree

(n, k)- .79
phylogenetic . 6

V
Vertex . 11

adjacent . 11
classes . 12
cover .90
set . 11

102

Bibliography

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis
of Computer Algorithms, Addison-Wesley, 1974.

[2] S. B. Akers and B. Krishnamurthy, A group-theoretic model for sym-
metric interconnection networks, IEEE Transactions on Computers, 38 (1989),
pp. 555–566.

[3] S. B. Akers, B. Krishnamurthy, and D. Harel, The star graph: An
attractive alternative to the n-cube, in Proceedings of the Fourth International
Conference on Parallel Processing (ICPP), Pennsylvania State University Press,
Aug. 1987, pp. 393–400.

[4] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Wal-
ter, Molecular Biology of the Cell, Garland Publishing, 4th ed., 2002.

[5] D. Anxolabéhère, D. Nouaud, H. Quesneville, and S. Ronserray,
Transposons: des gènes anarchistes?, Pour la Science, 351 (2007), pp. 82–89.

[6] D. A. Bader, B. M. E. Moret, and M. Yan, A linear-time algorithm for
computing inversion distance between signed permutations with an experimental
study, Journal of Computational Biology, 8 (2001), pp. 483–491.

[7] V. Bafna and P. A. Pevzner, Genome rearrangements and sorting by rever-
sals, in Proceedings of the Thirty-Fourth Annual Symposium on Foundations of
Computer Science (FOCS), Palo Alto, Los Alamitos, CA, 1993, ACM/SIAM,
pp. 148–157.

[8] V. Bafna and P. A. Pevzner, Sorting permutations by transpositions, in
Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), San Francisco, CA, Jan. 1995, ACM/SIAM, pp. 614–623.

[9] V. Bafna and P. A. Pevzner, Sorting by transpositions, SIAM Journal on
Discrete Mathematics, 11 (1998), pp. 224–240 (electronic).

[10] H.-J. Bandelt, P. Forster, and A. Rohl, Median-joining networks for
inferring intraspecific phylogenies, Molecular Biology and Evolution, 16 (1999),
pp. 37–48.

[11] C. Berge, Graphes et hypergraphes, Dunod, Paris, 1970. Monographies Uni-
versitaires de Mathématiques, No. 37.

103

Bibliography

[12] P. Berman and M. Karpinski, On some tighter inapproximability results
(extended abstract), in Proceedings of the Twenty-Sixth International Collo-
quium on Automata, Languages and Programming (ICALP), J. Wiedermann,
P. van Emde Boas, and M. Nielsen, eds., vol. 1644 of Lecture Notes in Computer
Science, Berlin, July 1999, Springer-Verlag, pp. 200–209.

[13] P. Berman, S. Hannenhalli, and M. Karpinski, 1.375-approximation
algorithm for sorting by reversals, in Proceedings of the Tenth Annual European
Symposium on Algorithms (ESA), R. H. Möhring and R. Raman, eds., vol. 2461
of Lecture Notes in Computer Science, Rome, Italy, Sept. 2002, Springer-Verlag,
pp. 200–210.

[14] G. Boccara, Nombre de représentations d’une permutation comme produit de
deux cycles de longueurs données, Discrete Mathematics, 29 (1980), pp. 105–
134.

[15] M. Bóna, Combinatorics of permutations, Discrete Mathematics and its Ap-
plications (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2004. With
a foreword by Richard Stanley.

[16] D. Bryant, V. Moulton, and A. Spillner, Consistency of the neighbor-
net algorithm, Algorithms for Molecular Biology, 2 (2007), p. 8.

[17] H. Bunke, X. Jiang, and A. Kandel, On the minimum common supergraph
of two graphs, Computing, 65 (2000), pp. 13–25.

[18] A. Caprara, Sorting permutations by reversals and eulerian cycle decompo-
sitions, SIAM Journal on Discrete Mathematics, 12 (1999), pp. 91–110 (elec-
tronic).

[19] A. Caprara, G. Lancia, and S.-K. Ng, Sorting permutations by rever-
sals through branch-and-price, INFORMS Journal on Computing, 13 (2001),
pp. 224–244.

[20] I. Cassens, P. Mardulyn, and M. C. Milinkovitch, Evaluating intraspe-
cific “network” construction methods using simulated sequence data: Do existing
algorithms outperform the global maximum parsimony approach?, Systematic
Biology, 54 (2005), pp. 363–372.

[21] B. Chitturi and I. H. Sudborough, Bounding prefix transposition distance
for strings and permutations, in Proceedings of the Forty-First Annual Hawaii
International Conference on System Sciences (HICSS), Los Alamitos, CA, USA,
Jan. 2008, IEEE Computer Society Press, p. 468.

[22] D. A. Christie, Sorting permutations by block-interchanges, Information Pro-
cessing Letters, 60 (1996), pp. 165–169.

[23] D. A. Christie, Genome Rearrangement Problems, PhD thesis, University of
Glasgow, Scotland, Aug. 1998.

104

Bibliography

[24] F. R. K. Chung and R. L. Graham, On universal graphs, Annals of the
New York Academy of Sciences, 319 (1979), pp. 136–140.

[25] C. Darwin, On the Origin of Species, John Murray, 1859.

[26] Z. Dias and J. Meidanis, Sorting by prefix transpositions, in Proceedings
of the Ninth International Symposium on String Processing and Information
Retrieval (SPIRE), A. H. F. Laender and A. L. Oliveira, eds., vol. 2476 of
Lecture Notes in Computer Science, Lisbon, Portugal, Sept. 2002, Springer-
Verlag, pp. 65–76.

[27] Z. Dias, J. Meidanis, and M. E. M. T. Walter, A new approach for
approximating the transposition distance, in Proceedings of the Seventh Inter-
national Symposium on String Processing and Information Retrieval (SPIRE),
A Coruña, Spain, Sept. 2000, IEEE Computer Society Press, pp. 199–208.

[28] R. Diestel, Graph theory, vol. 173 of Graduate Texts in Mathematics,
Springer-Verlag, Berlin, 3rd ed., 2005.

[29] J.-P. Doignon and A. Labarre, On Hultman numbers, Journal of Integer
Sequences, 10 (2007). Article 07.6.2, 13 pages.

[30] I. Elias and T. Hartman, A 1.375-approximation algorithm for sorting by
transpositions, IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, 3 (2006), pp. 369–379.

[31] H. Eriksson, K. Eriksson, J. Karlander, L. Svensson, and
J. Wästlund, Sorting a bridge hand, Discrete Mathematics, 241 (2001),
pp. 289–300. Selected papers in honor of Helge Tverberg.

[32] S. Even and O. Goldreich, The minimum-length generator sequence prob-
lem is NP-hard, Journal of Algorithms, 2 (1981), pp. 311–313.

[33] L. Excoffier and P. E. Smouse, Using allele frequencies and geographic
subdivision to reconstruct gene trees within a species: Molecular variance par-
simony, Genetics, 136 (1994), pp. 343–359.

[34] J. Felsenstein, Inferring Phylogenies, Sinauer Associates, Sunderland, MA,
2004.

[35] J. Feng and D. Zhu, Faster algorithms for sorting by transpositions and sort-
ing by block interchanges, ACM Transactions on Algorithms, 3 (2007), pp. 1–14.

[36] G. Fertin, A. Labarre, I. Rusu, E. Tannier, and S. Vialette, Com-
binatorics of Genome Rearrangements, Computational Molecular Biology, MIT
Press, 2009. To appear.

[37] V. J. Fortuna, Distâncias de transposição entre genomas, Master’s thesis,
Universidade Estadual de Campinas, São Paulo, Brazil, Mar. 2005.

105

Bibliography

[38] M. R. Garey and D. S. Johnson, Computers and intractability, W. H.
Freeman and Co., San Francisco, California, 1979. A guide to the theory of
NP-completeness, A Series of Books in the Mathematical Sciences.

[39] O. Gascuel and M. Steel, eds., Reconstructing Evolution: New Mathemat-
ical and Computational Advances, Oxford University Press, Jan. 2007.

[40] W. H. Gates and C. H. Papadimitriou, Bounds for sorting by prefix re-
versal, Discrete Mathematics, 27 (1979), pp. 47–57.

[41] A. Goupil, On products of conjugacy classes of the symmetric group, Discrete
Mathematics, 79 (1989/90), pp. 49–57.

[42] A. Goupil and G. Schaeffer, Factoring n-cycles and counting maps of
given genus, European Journal of Combinatorics, 19 (1998), pp. 819–834.

[43] S. A. Guyer, L. S. Heath, and J. P. Vergara, Subsequence and run
heuristics for sorting by transpositions, in Fourth DIMACS Algorithm Imple-
mentation Challenge, Rutgers University, Aug. 1995.

[44] S. Hannenhalli and P. A. Pevzner, Transforming cabbage into turnip:
Polynomial algorithm for sorting signed permutations by reversals, Journal of
the ACM, 46 (1999), pp. 1–27.

[45] T. Hartman, A simpler 1.5-approximation algorithm for sorting by transposi-
tions, in Proceedings of the Fourteenth Annual Symposium on Combinatorial
Pattern Matching (CPM), R. A. Baeza-Yates, E. Chávez, and M. Crochemore,
eds., vol. 2676 of Lecture Notes in Computer Science, Berlin, June 2003,
Springer-Verlag, pp. 156–169.

[46] K. T. Huber and V. Moulton, Mathematics Of Evolution and Phylogeny,
Oxford University Press, New York, May 2005, ch. Phylogenetic Networks,
pp. 178–204.

[47] A. Hultman, Toric permutations, Master’s thesis, Department of Mathemat-
ics, KTH, Stockholm, Sweden, 1999.

[48] M. R. Jerrum, The complexity of finding minimum-length generator se-
quences, Theoretical Computer Science, 36 (1985), pp. 265–289.

[49] J. Kececioglu and D. Sankoff, Exact and approximation algorithms for
sorting by reversals, with application to genome rearrangement, Algorithmica,
13 (1995), pp. 180–210.

[50] C. L. Kuiken, B. Foley, B. Hahn, P. A. Marx, F. McCutchan, J. W.
Mellors, J. I. Mullins, S. Wolinsky, and B. Korber, eds., A Compi-
lation and Analysis of Nucleic Acid and Amino Acid Sequences, Human Retro-
viruses and AIDS, Theoretical Biology and Biophysics Group, Los Alamos Na-
tional Laboratory, Los Alamos, NM, 1999.

106

Bibliography

[51] A. Labarre, A new tight upper bound on the transposition distance, in Pro-
ceedings of the Fifth Workshop on Algorithms in Bioinformatics (WABI),
R. Casadio and G. Myers, eds., vol. 3692 of Lecture Notes in Computer Science,
Mallorca, Spain, Oct. 2005, Springer-Verlag, pp. 216–227.

[52] A. Labarre, New bounds and tractable instances for the transposition dis-
tance, IEEE/ACM Transactions on Computational Biology and Bioinformatics,
3 (2006), pp. 380–394.

[53] A. Labarre, Edit distances and factorisations of even permutations, in Pro-
ceedings of the Sixteenth Annual European Symposium on Algorithms (ESA),
D. Halperin and K. Mehlhorn, eds., vol. 5193 of Lecture Notes in Computer
Science, Karlsruhe, Germany, Sept. 2008, Springer-Verlag, pp. 635–646.

[54] S. Lakshmivarahan, J.-S. Jwo, and S. K. Dhall, Symmetry in inter-
connection networks based on Cayley graphs of permutation groups: A survey,
Parallel Computing, 19 (1993), pp. 361–407.

[55] Z. Li, L. Wang, and K. Zhang, Algorithmic approaches for genome rear-
rangement: a review, IEEE Transactions on Systems, Man and Cybernetics,
Part C, 36 (2006), pp. 636–648.

[56] B. McClintock, The discovery and characterization of transposable elements:
the collected papers of Barbara McClintock, vol. 17 of Genes, cells, and organ-
isms, Garland Publishing, New York, 1987.

[57] J. Meidanis and J. Setubal, Introduction to Computational Molecular Bi-
ology, Brooks-Cole, 1997.

[58] National Human Genome Research Institute, The Talking Glossary
of Genetics. Published electronically at http://www.genome.gov/. All of the
illustrations in the Talking Glossary of Genetics are freely available and may
be used without special permission.

[59] C. Notredame, Recent progress in multiple sequence alignment: a survey,
Pharmacogenomics, 3 (2002), pp. 131–144.

[60] C. Notredame, Recent evolutions of multiple sequence alignment algorithms,
PLoS Computational Biology, 3 (2007), pp. 1405–1408.

[61] S. Ohno, Evolution by gene duplication, Springer-Verlag, 1970.

[62] C. H. Papadimitriou and M. Yannakakis, The complexity of restricted
spanning tree problems, Journal of the ACM, 29 (1982), pp. 285–309.

[63] D. S. Parker and C. J. Lee, Pairwise partial order alignment as a super-
graph problem – aligning alignments revisited. Submitted, Sept. 2003.

[64] P. A. Pevzner, Computational molecular biology, MIT Press, Cambridge,
MA, 2000.

107

http://www.genome.gov/

Bibliography

[65] D. Posada and K. A. Crandall, Intraspecific phylogenetics: trees grafting
into networks, Trends in Ecology and Evolution, 16 (2001), pp. 37–45.

[66] M. Ridley, Evolution, Wiley-Blackwell, 4th ed., Sept. 2003.

[67] A. Schrijver, Combinatorial optimization. Polyhedra and efficiency. Vol. A,
vol. 24 of Algorithms and Combinatorics, Springer-Verlag, Berlin, 2003, ch. 17:
Weighted bipartite matching and the assignment problem, pp. 285–300.

[68] S. S. Skiena, The algorithm design manual, Springer-Verlag New York, Inc.,
New York, NY, USA, 1998.

[69] N. J. A. Sloane, The on-line encyclopedia of integer sequences. Published
electronically at http://www.research.att.com/~njas/sequences/.

[70] R. P. Stanley, Factorization of permutations into n-cycles, Discrete Mathe-
matics, 37 (1981), pp. 255–262.

[71] R. P. Stanley, Enumerative Combinatorics, vol. 1, Cambridge University
Press, Cambridge, Great Britain, 1999.

[72] É. Tannier, A. Bergeron, and M.-F. Sagot, Advances on sorting by
reversals, Discrete Applied Mathematics, 155 (2007), pp. 881–888.

[73] A. R. Templeton, K. A. Crandall, and C. F. Sing, A cladistic analysis
of phenotypic associations with haplotypes inferred from restriction endonucle-
ase mapping and DNA sequence data. III. Cladogram estimation, Genetics, 132
(1992), pp. 619–633.

[74] G. Valiente, Algorithms on Trees and Graphs, Springer-Verlag, Berlin, 2002.

[75] H. Wielandt, Finite permutation groups, Translated from German by R.
Bercov, Academic Press, New York, 1964.

[76] S. Yancopoulos, O. Attie, and R. Friedberg, Efficient sorting of ge-
nomic permutations by translocation, inversion and block interchange, Bioinfor-
matics, 21 (2005), pp. 3340–3346.

108

http://www.research.att.com/~njas/sequences/

	Biological motivations
	Comparing genomes
	A minimalist introduction to molecular evolution
	Evolution at the nucleotide level: sequence alignment
	Evolution at the gene level: genome rearrangements
	Transpositions

	From genome comparisons to phylogenies
	Phylogenetic trees
	Phylogenetic networks

	Organisation of the thesis

	Reminders
	Graph theory
	Permutations
	The basics
	The cycle structure of a permutation

	Distances on permutation groups

	Sorting by transpositions
	Notation and preliminaries
	Transpositions
	The cycle graph
	Reduced permutations
	Toric permutations
	Upper bounds on the transposition distance

	The distribution of the transposition distance
	Another useful graph
	An explicit formula for some permutations
	Monotonic cycles
	Nonmonotonic cycles
	Transposition distance of -permutations

	A new upper bound
	Tests and heuristic improvements of our upper bound
	Perforations of -permutations
	Noncrossing cycles in the -graph
	Cycle graphs and breakpoint graphs

	Hultman numbers
	Notation and definitions
	Stirling numbers and the disjoint cycle decomposition
	Hultman numbers and the cycle graph

	The bijection
	An explicit formula for the Hultman numbers
	Applications
	Counting results for restricted cases
	Inferring parameters of various distances
	Obtaining bounds on various distances

	A general framework for edit distances
	A word on prefix sorting problems
	Background
	Distribution of the prefix transposition distance
	A general lower bounding technique
	Recovering previous results
	An improved lower bound on the prefix transposition distance
	A tighter lower bound on the prefix transposition diameter
	Experimental results

	Haplotype networks
	Notation and preliminaries
	Partially labelled graphs
	Subgraphs and supergraphs

	Previous and related work on minimum common supergraphs
	The isomorphic (n,k)-tree problem
	Polynomial-time solvable cases
	Isomorphism of (n,k)-trees
	Restricted graphs
	The minimum common supergraph problem on a restricted (n,k)-graph and an arbitrary (n,k)-graph

	An exact algorithm for two graphs
	Outline and computational complexity
	Restricting (n,k)-graphs
	Pruning the search tree
	Complexity analysis

	Conclusions
	Glossary
	Index
	Bibliography

