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LOWER BOUNDING EDIT DISTANCES BETWEEN
PERMUTATIONS*

ANTHONY LABARRET

Abstract. A number of fields, including the study of genome rearrangements and the design
of interconnection networks, deal with the connected problems of sorting permutations in as few
moves as possible, using a given set of allowed operations, or computing the number of moves the
sorting process requires, often referred to as the distance of the permutation. These operations often
act on just one or two segments of the permutation, e.g., by reversing one segment or exchanging
two segments. The cycle graph of the permutation to sort is a fundamental tool in the theory of
genome rearrangements and has proved useful in settling the complexity of many variants of the
above problems. In this paper, we present an algebraic reinterpretation of the cycle graph of a
permutation 7 as an even permutation 7 and show how to reformulate our sorting problems in terms
of particular factorizations of the latter permutation. Using our framework, we recover known results
in a simple and unified way and obtain a new lower bound on the prefiz transposition distance (where
a prefiz transposition displaces the initial segment of a permutation), which is shown to outperform
previous results. Moreover, we use our approach to improve the best known lower bound on the prefiz
transposition diameter from 2n/3 to |3n/4| and investigate a few relations between some statistics
on 7 and 7.
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1. Introduction. Given a set S of allowed operations and two permutations 7
and o of {1,2,...,n}, we study the related problems of computing, on the one hand,
a sequence of elements of S of minimum length that transforms 7 into ¢ and, on
the other hand, computing the length of such a sequence, referred to as the distance
between m and o. The operations in S usually yield an edit distance dg(-,-) with the
property that dg(m,0) = ds(c~!om, 1) for any two permutations 7 and o of the same
set, where ¢ is the identity permutation (1 2 --- n). This property allows us to restrict
our attention to sorting permutations using a minimum number of operations from
S or to computing the distance of a given permutation to the identity permutation
rather than to another arbitrary permutation. Two areas in which these questions
have applications are the fields of genome rearrangements and interconnection network
design, which we briefly review below.

In genome rearrangements (see Fertin et al. [14] for a survey), the permutation
to sort represents an ordering of genes in a given unichromosomal genome and the
allowed operations model mutations that are known to actually occur in evolution.
Rearrangements studied in that context include reversals [21], which reverse a seg-
ment of the permutation, block-interchanges [9], which exchange two not necessarily
adjacent segments, and transpositions [3], which displace a block of adjacent ele-
ments. Those seemingly easy problems turn out to be more challenging than they

*Received by the editors February 7, 2013; accepted for publication (in revised form) May 28,
2013; published electronically August 13, 2013. A significant portion of this work previously appeared
in Proceedings of the 16th Annual European Symposium on Algorithms (ESA), 2008.

http://www.siam.org/journals/sidma/27-3/90897.html

fLaboratoire d’informatique Gaspard Monge, Université Paris-Est Marne-la-Vallée, 77420
Champs-sur-Marne, France (Anthony.Labarre@Quniv-mlv.fr).

1410



LOWER BOUNDING EDIT DISTANCES BETWEEN PERMUTATIONS 1411

might appear at first: although a polynomial-time algorithm is known for sorting by
block-interchanges or computing the associated distance [9], the same problems were
shown to be NP-hard for reversals [6] and more recently for transpositions [5]. Signed
permutations, where each element can be positive or negative, are a more realistic
model of evolution because they model gene orientation as well, but that information
is not always available (see again Fertin et al. [14] for more details).

In interconnection network design (see Lakshmivarahan, Jwo, and Dhall [25] for
a thorough survey), permutations stand, e.g., for processors, or other devices to be
connected, and form the vertex set of a graph whose edges correspond to physical
connections between two devices. One wants to build a graph with small degree and
small diameter, among other desirable properties. Akers and Krishnamurthy’s land-
mark paper [2] proposed the idea of choosing a set S that generates all permutations of
{1,2,...,n} and using the corresponding Cayley graph, whose vertex set is the set of
all permutations and whose edges connect any two permutations that can be obtained
from one another by applying a transformation from S, as an interconnection network.
In that setting, sorting algorithms for permutations correspond to routing algorithms
for the corresponding networks, since a sequence of elements of S transforming 7 into
o corresponds to a path of the same length in the network. Two kinds of operations
that received a lot of attention in that context are prefix reversals [17], which reverse
the initial segment of the permutation, and prefiz exchanges [1], which swap the first
element of the permutation with another element. Those operations gave birth to the
pancake network and star graph topologies, respectively, which are extensively stud-
ied models in that field. We also mention prefiz transpositions, which displace the
initial segment of the permutation and were introduced by Dias and Meidanis [10] in
the context of genome rearrangements in the hope that their study would shed light
and give insight on the challenging problem of sorting by transpositions. Those more
restricted versions of operations studied in the context of genome rearrangements do
not lead to problems simpler than their unrestricted counterparts: the sorting and
distance computation problems related to prefix exchanges can be solved in polyno-
mial time [1], but the complexity of those problems in the case of prefix transpositions
is open, and the problem of sorting by prefix reversals has only recently been showed
to be NP-hard [4], more than 30 years after the first works on the subject [17, 18].

The cycle graph of a permutation is a ubiquitous structure in the field of genome
rearrangements and has proved useful in resolving many questions related to the
problems discussed in the above paragraphs. In this paper, we present a new way of
encoding the cycle graph of a permutation 7 as an even permutation 7, inspired by a
previous work of ours [11], and show how to reformulate any sorting problem of the
form described above in terms of particular factorisations of the latter permutation.
We first illustrate the power of our framework by recovering known lower bounds on
the block-interchange and transposition distances in a simple and unified way and
then use it to prove a new lower bound on the prefix transposition distance. We
prove that our lower bound always outperforms that obtained by Dias and Meidanis
[10], and we show experimentally that it is a significant improvement over both that
result and the only other known lower bound proved by Chitturi and Sudborough [7].
We then use this new result to improve the previously best known lower bound on
the maximal value of the prefix transposition distance from 2n/3, proved by Chitturi
and Sudborough [7], to [3n/4|. Finally, we examine some further properties of the
model and establish connections between statistics on 7 and 7.

We note that several similar approaches have been proposed to attack edit dis-
tance and sorting problems from an algebraic point of view. Meidanis and Dias
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[26] proposed such an algebraic framework in 2000; they considered genomes and
rearrangements as cyclic permutations. This differs from our model in that we view
genomes and rearrangements as linear orders, i.e., sequences of genes and transforma-
tions thereof. Several attempts were later made to adapt Meidanis and Dias’ model
to linear genomes [27, 13], where characterizations of valid operations in that context
were also proposed. By contrast, the model we propose is simple, applies directly to
every edit distance in the classical sense without the need to adapt the operations
under consideration or to view permutations as cycles, and allows the derivation of
several results as simple consequences of results obtained by Jerrum [20]. Our model
also allows the translation of sorting sequences from one problem to another, meaning
that if one can sort a given permutation 7 using operations from a set S, then one
can directly derive a sorting sequence using elements from f(S) for the permutation
f(m), where f(-) is the function—mentioned above—that encodes the cycle graph of
a given permutation.

2. Notation and definitions.

2.1. Permutations and conjugacy classes. Let us start with a quick re-
minder of basic notions on permutations. (For details, see, e.g., Wielandt [29].)

DEFINITION 2.1. A permutation of a set Q is a bijective application of Q0 onto
itself.

It is convenient to set Q = {1,2,...,n}, and we will follow this convention here,
although we will also sometimes use the set {0,1,2,...,n}. The symmetric group Sy,
is the set of all permutations of a set of n elements, together with the usual function
composition o, applied from right to left. Permutations are denoted by lowercase
Greek letters, and we will follow the convention of shortening the traditional two-row

notation
< 1 2 -+ n >
ﬂ- p—
T o . e T

by keeping only the second row, i.e., 7 = (w1 w2 -+ m,), where m; = (7).

DEFINITION 2.2. The graph I'(m) of the permutation w in S,, is the directed graph
with ordered vertex set (wy,ma,...,m,) and arc set {(i,7) | m = 7,1 <i <n}.

The fact that 7 is a bijection implies that I'(7) decomposes in a single way into
disjoint cycles (up to the ordering of cycles and of elements within each cycle), leading
to another notation for 7 based on its disjoint cycle decomposition. For instance, when
m=1{4162573), the disjoint cycle notation is = = (1,4,2)(3,6,7)(5) (notice the
parentheses and the commas).

DEFINITION 2.3. The length of a cycle in a graph is the number of vertices it
contains, and a k-cycle is a cycle of length k.

The number of cycles in a graph G will be denoted by ¢(G), and the number of
cycles of length k will be denoted by cx(G). We will also distinguish between cycles
of odd (resp., even) length, denoting the number of such cycles in G using c,q4(G)
(resp., Cepen(G)). It is common practice to omit 1-cycles in the cycle decomposition
of (the graph of) a permutation and to call that permutation a k-cycle if the resulting
decomposition consists of a single cycle of length k£ > 1. Cycles of length 1 in the
disjoint cycle decomposition of a permutation are referred to as fized points.

DEFINITION 2.4. A permutation 7 is even if the number of even cycles in T'(r)
is even or, equivalently, if it can be expressed as a product of an even number of
2-cycles.
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The alternating group A, is the subgroup of S, formed by the set of all even
permutations, together with o. The following notion will be central to this work.

DEFINITION 2.5. The conjugate of a permutation m by a permutation o, both in
Sy, is the permutation 7° = comoo ™! and can be obtained by replacing every element
i in the disjoint cycle decomposition of m with o;. All permutations in S, that can be
obtained from one another using this operation form a conjugacy class (of Sy ).

2.2. Generating sets and edit distances. We are interested in distances be-
tween permutations based on operations that can themselves be modeled as permu-
tations. More formally, given a subset S of S,, and two permutations 7 and ¢ in S,
we have two goals:

1. to find a sequence of elements «, 3,...,w from S whose length is minimum
and whose product transforms 7 into o (or conversely, o into 7),

moaoffo---ow=0;

2. to find the length of such a sequence, called the S distance between m and o.
Distances whose definition is based on a set of allowed operations as described
above are often referred to as edit distances.

Note that S must be symmetric, i.e., v € S if and only if y~! € S, for the
corresponding distance to satisfy the symmetry axiom. An immediate corollary of
this property is that for any 7 in S,, we have d(m,t) = d(n~!,1). For any two
permutations of the same set to be a finite distance apart, S must also satisfy the
following property.

DEFINITION 2.6. A set S C S, is said to generate S, or to be a generating set
of Sy, if every element of S, can be expressed as the product of a finite number of
elements of S. We call the elements of S generators of .S,,.

Moreover, all generating sets we will consider in this paper yield distances that
satisfy the following property.

DEFINITION 2.7. A distance d on S, is left-invariant if for all 7, o, 7 in S,, we
have d(mw,0) = d(T o w, 7 0 0).

Intuitively, left invariance models the fact that given any two permutations m
and o to be transformed into one another, we can rename the elements of either
permutation as we wish without changing the value of the distance between both per-
mutations, as long as we renumber the elements of the other permutation accordingly.
Since most of the time we will be considering the distance between a permutation 7
and the identity permutation ¢, we will often abbreviate d(m,¢) to d(m).

It can be easily seen that both problems mentioned at the beginning of this
section can be reformulated in terms of finding a minimum-length factorization of
that consists only of elements of S, since

Toaofo-ow=1&r=w lo-0f toa?

and S is symmetric. Finally, another parameter of interest in the study of those
distances is the largest value they can reach.
DEFINITION 2.8. The diameter of a set U under a distance d is max, tcv d(s,t).

2.3. Genome rearrangements and the cycle graph. We recall here a few
operations that are commonly used in the fields of genome rearrangements and inter-
connection network design to build generating sets of S,,.

DEFINITION 2.9 (see [9]). The block-interchange 5(4, j, k,1) with1 <i < j <k <
I < n+1 is the permutation that exchanges the closed intervals determined respectively
byi and j —1 and by k and | — 1:
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Ueeeim1[i =1 j+1 o k=1[k - I=1]1I+1 - n
U=k o =] j+1 o k=1[i - j=1]ll+1 - n/

Two particular cases of block-interchanges are of interest:

1. When j = k, the resulting operation exchanges two adjacent intervals and is
called a transposition [3], denoted by 7(3, j,1).

2. When j =141 and ! = k+1, the resulting operation swaps two not necessarily
adjacent elements in respective positions ¢ and k£ and is called an exchange,
denoted by (i, k).

We use the notation bid(w), td(w), and exc(rw) for the block-interchange distance,
the transposition distance, and the exchange distance of m, respectively. The opera-
tions we described above can be further restricted by setting ¢ = 1 in their definition,
thereby transforming them into so-called prefix rearrangements. The corresponding
“prefix distances” are defined in an analogous manner with the additional restriction
that all operations must act on the initial segment of the permutation. We denote
ptd(m) and pexc(r) the prefiz transposition distance and prefix exchange distance of
m, respectively. While sorting by transpositions is NP-hard [5] and the computational
complexity of sorting by prefix transpositions is unknown, polynomial-time algorithms
exist for sorting by block-interchanges [9], exchanges [20], or prefix exchanges [1], as
well as formulas for computing the associated distances.

We will have more to say about sorting by transpositions and sorting by block-
interchanges in section 4, where we will give simple proofs of lower bounds on the two
corresponding distances, as well as about sorting by prefix transpositions in section 5,
where we will prove new and improved lower bounds on the associated distance and
diameter. Meanwhile, we conclude this section with the following traditional tool
introduced by Bafna and Pevzner [3], which has proved most useful in the study of
genome rearrangements.

DEFINITION 2.10. The cycle graph of a permutation w in S, is the bicolored
directed graph G(m), whose vertez set (mg = 0,71, ...,my,) is ordered by positions and
whose arc set consists of

e black arcs {(m;, mi—1) | 1 <i <n}U{(m0,7n)},

e gray arcs {(m, 7 +1) | 0<i<n}U{(n,0)}.

The arc set of G(7) decomposes in a single way into arc-disjoint alternating cy-
cles, i.e., cycles that alternate black and gray arcs. The length of an alternating cycle
in G(m) is the number of black arcs it contains, and a k-cycle in G(w) is an alter-
nating cycle of length k& (note that this differs from Definition 2.3). Figure 2.1 shows
an example of a cycle graph, together with its decomposition into a 5-cycle and a
3-cycle.

3. A general lower bounding technique. We now present a framework for
obtaining lower bounds on edit distances between permutations in a simple and unified
way. To that end, we adapt a bijection previously introduced by Doignon and Labarre
[11],

(3.1) f:8, = A1 :mn—=>7T=(0,1,2,...,n)0 (0,7, Tn—1,--.,71),

which in particular maps ¢ ontoz = (012 - -- n). (Recall that the notation (0, 1,2, ...,
n), introduced right after Definition 2.2, refers to an (n + 1)-cycle, not to the iden-
tity permutation.) That mapping allows us to encode the structure of a cycle graph
G(7) using an even permutation 7 in an intuitive way, which corresponds to de-
composing the cycle graph into the product of two “monochromatic cycles,” namely,
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Fic. 2.1. (a) The cycle graph of (416 25 7 3); (b), (c) its decomposition into two alternating
cycles.

the cycle made of all black arcs (i.e., (0,7, Tp—1,...,71)) and the cycle made of all
gray arcs (i.e., (0,1,2,...,mn)). The construction is perhaps best understood using
an example: let 7 = (416 2 5 7 3), whose cycle graph is depicted in Figure 2.1(a).
Then

7™=1(0,1,2,3,4,5,6,7)0(0,3,7,5,2,6,1,4) = (0,4,1,5,3)(2,7,6),

and the two disjoint cycles of T correspond to the two alternating cycles of G(rx),
whose elements they list in the order they are encountered (up to rotation):
1. The first cycle of G(m) (Figure 2.1(b)) starts with 0, then visits 4 after fol-
lowing a black-gray path (i.e., a black arc followed by a gray arc), then visits
1 after following a black-gray path, and in the same way visits 5 and 3 before
coming back to 0, which corresponds to the first cycle of 7.
2. The second cycle of G(w) (Figure 2.1(c)) starts with 2, then visits 7 after
following a black-gray path, and in the same way visits 6 before coming back
to 2, which corresponds to the second cycle of 7.

Note that the order in which we decide to follow arcs (first a black arc and then a
gray arc) is given by the order in which the two cycles are multiplied. An alternative
definition® of 7 could therefore have been (0,7, 7p_1,...,m1)0(0,1,2,...,n), which
can be seen to be equivalent to our definition when conjugated by (0,n,n —1,...,1)
and whose cycles are interpreted exactly as above, with the modification that gray
arcs are followed first. Consequently, speaking about cycles of 7, of I'(7), or of G(m)
is equivalent. We will now demonstrate how f(-) can be used to obtain results on the
sorting and distance computation problems we discussed in section 2.2. The following
lemma expresses how the action of any rearrangement operation o on 7 is translated
on . We will find it convenient to identify permutations in S,, with their extended
versions in S,41 (i.e., we identify 7 with (0 7y w2 -+ m,)). This allows us to express
any permutation 7 in S, as follows:

(3.2) 7= (0,7, Tpn-1,...,m)omo(0,1,2,...,n).
LEMMA 3.1. For all m, o in S, we have Too =Too .

1This is actually the definition we used in the conference version of this paper [24].



1416 ANTHONY LABARRE

Proof. By definition, we have

700 =(0,1,2,...,n)0(0,(mo0)n, (M0 0)p—1,...,(m00)1)

=(0,1,2,...,n) om0 (0,0n,0n_1,...,00)0m "
=(0,1,2,...,n) 0 (0,7, Tp—1,...,m1) om0 (0,1,2,...,n)

0(0,00,0n—1,...,01) 0 * (using (3.2))
=Too". a

We are now ready to prove our main result.

THEOREM 3.2. Let S be a subset of S,, whose elements are mapped by f(-) onto
S C Any1. Moreover, let € be the union of the conjugacy classes (of Sn41) that
intersect with S’; then for any 7 in Sy, any factorization of 7 into t elements of S
yields a factorization of T into t elements of €.

Proof. Induction on t. The base case is m € S, and clearly T € S’ C ¢. For the
induction, let 7 = wowo---ofoq, where a, 3,...,%Y,w € S, and let 0 = ¢o---0foq;
by Lemma 3.1, we have

T=wopo--rofoa=woo=woo".

By induction, 7 =1’ oco---03 oa’ , where o/, 3,...,9 € €; therefore

wodow '=woyo---0f 0 ow™!
=wo ow towo--row lowoB ow twoa ow™?!,
— ———
,l/}// B// C)(//

and o, ",...,¢" € €, which completes the proof. |
We will use Theorem 3.2 in the next two sections to prove lower bounds on several
edit distances between permutations.

4. Recovering previous results. We illustrate how to use Theorem 3.2 to
recover two previously known results on bid and td. The general idea is as follows: as
we explained in section 2.2, if S is symmetric, then any sorting sequence of length ¢
for m made of elements of S yields a factorization of 7 into the product of ¢ elements of
S, which can in turn be converted, as in the proof of Theorem 3.2, into a factorization
of 7 into the product of ¢ elements of S’ C %. Therefore, the length of a shortest
factorization of 7 into the product of elements of ¢ is a lower bound on the length
of a factorization of 7 into the product of elements of S, and we can obtain a lower
bound on the distance of interest by

1. characterizing the set of images of the elements in S by f(-) and
2. computing the distance of T with respect to €.
Let us now show how we can obtain a lower bound on the block-interchange distance.
We start by characterizing the image of a block-interchange by our mapping.
LEMMA 4.1. For any block-interchange 5(3, j, k,1) in Sp, we have

B, g, k1) = (4, 1) o (i, k).
Proof. Equation (3.1) and Definition 2.9 yield
0,1,2,...,0) 0 (O,nyn—1,... 0, j—1,§ =2, . ik—1,k—2,...,
Gl—10—2, . ki—1,i—2,...,1)
=0)n)(n—=1)---(+1)HI=1)-- @+ 1) k)i —1)---(1)
= (4,0) o (i, k). O
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Note that (j,1) and (i, k) might not be disjoint, since Definition 2.9 allows for
j = k (hence the use of o in the expression of §(i,7,k,1)). We can now recover a
known lower bound on the block-interchange distance, which is actually the exact
distance as shown by Christie [9].

THEOREM 4.2 (see [9]). For all 7 in S, we have bid(mw) > w

Proof. By Theorem 3.2 and Lemma 4.1, a lower bound on bid(w) is given by the
length of a minimum factorization of 7 into the product of pairs of exchanges. Since
this length equals (n+1—c(I'(7)))/2 (see, e.g., Jerrum [20]), the proof follows. O

Let us now characterize the image of a transposition by our mapping.

LEMMA 4.3. For any transposition 7(i,j,1), we have

7(i,5,0) = (4,1, 7).
Proof. As noted in section 2.2, we have 7(i,5,1) = 8(4, j, j,1); Lemma 4.1 yields
7(i,5.1) = B(i,5.3,1) = (43,1) o (i, §) = (4,1, j). a

We can now recover the following known lower bound on the transposition dis-
tance. Recall that c,qq4(I'(7)) denotes the number of odd cycles in I'(7).

THEOREM 4.4 (see [3]). For all w in S, we have td(7) > %

Proof. By Theorem 3.2 and Lemma 4.3, a lower bound on td(w) is given by the
length of a minimum factorization of 7 into the product of 3-cycles. Since this length
equals (n + 1 — coqqa(T'(7)))/2 (see, e.g., Jerrum [20]), the proof follows. 0

5. New results on the prefix transposition distance. Dias and Meidanis
[10] initiated the study of sorting by prefix transpositions and derived a lower bound
on the corresponding distance using the following concepts.

DEFINITION 5.1. Given a permutation © in S,, build the permutation ™ =
(0w - m n+1); a pair (T, Ti11) with 0 < i < n is a prefix transposition
breakpoint if w41 # 7; + 1 or if i = 0 and an adjacency otherwise.

The number of prefix transposition breakpoints of 7 is denoted by ptb(w). Noting
that a prefix transposition can create at most two adjacencies and that ¢ is the only
permutation with one prefix transposition breakpoint, Dias and Meidanis obtained
the following lower bound.

LEMMA 5.2 (see [10]). For any 7 in Sy,

ptb(r) — 1} |

(5.1) ptd(m) > [ 5

Chitturi and Sudborough [7] later obtained another lower bound on the prefix
transposition distance. They used the following concepts, based on permutations of
{0,1,2,...,n — 1} rather than {1,2,... n}.

DEFINITION 5.3. For a permutation m of {0,1,2,...,n — 1}, an ordered pair
(mi, mix1) s an antiadjacency if w41 = m; — 1 (mod n). A strip in a permutation ©
is a mazimal interval of w that contains only adjacencies, and a clan is a mazimal
interval of w that contains only antiadjacencies.

Chitturi and Sudborough proved the following lower bound.

LEMMA 5.4 (see [7]). For any permutation m of {0,1,2,...,n — 1}, let T(m)
denote the set of all clans of m of length at least 3 and s(w) denote the number of
strips of w. Then

8(71—) + ZCET(WPI('c'_z)

(5.2) ptd(r) > 5
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We will prove a new lower bound on the prefix transposition distance
(Theorem 5.8) using our model and the results of Akers, Krishnamurthy, and Hare
[1] on computing the prefix exchange distance.

THEOREM 5.5 (see [1]). For any 7 in Sy, we have

pexc(m) = n+c(I'(7)) = 2¢1(I'(7)) — { (2) ZE;LT;T;;,

where ¢1(I'(m)) denotes the number of 1-cycles in I'(w) or equivalently the number of
fixed points of .

5.1. An improved lower bound. Using our theory, we prove a new lower
bound on ptd(w) and show that it always outperforms (5.1). We will find it convenient
to express ptb(m) as follows.

LEMMA 5.6. For any 7 in S, we have

B _ 1 ifm =1,
ptb(m) =n+1—a(I(7)) + { 0 otherwise.

Proof. The formula results from the observation that among the n 4+ 1 pairs
of adjacent elements in 7, each adjacency in 7 gives rise to a 1l-cycle in I'(7), and

from the fact that if m; = 1, then we counted the 1l-cycle that corresponds to
(0,1) as an adjacency, which is contrary to Definition 5.1 and which we correct by
adding 1. d

As explained in section 4, we can obtain a lower bound on the prefix transposition
distance by characterizing the image of a prefix transposition by f(-) and computing
the associated distance. We already know that transpositions are mapped onto 3-
cycles (see Lemma 4.3); in the case of prefix transpositions, it is easily seen that these
3-cycles will always contain element 0. Therefore, we need to be able to compute the
length of a minimum factorization of 7 in S;, into a product of 3-cycles, where each
3-cycle in the factorization is further required to contain the first element. Let us
denote the corresponding distance d3(7); the following result shows how to compute
it.

LEMMA 5.7. For any w in Ay, we have

n+c(I'(m)) 0 ifm=1,
2

ds(m) = —a(l'(m) — {1 otherwise.

Proof. Given a minimum factorization of length ¢ of an even permutation 7
into prefix exchanges, we can construct a sequence of /2 3-cycles by noting that
(1,7)0(1,4) = (1,4, ). Therefore di(w) < £/2. On the other hand, assume there exists
a shorter sequence of 3-cycles acting on the first element whose product is 7; then
one can split each of these 3-cycles into two prefix exchanges using the relation above
and find a shorter expression for 7 as a product of prefix exchanges, a contradiction.
The result follows from Theorem 5.5. O

As a corollary, we obtain the following new lower bound on the prefix transposition
distance.

THEOREM 5.8. For any m in Sy, we have

n+ 1+ c¢'(7)) _ 0 ifm =1,
2 —al@) - { 1 othelrwise.

Proof. The proof follows immediately from Theorem 3.2 and Lemma 5.7. d

(5.3) ptd(m) >
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An immediate question is how tight this new lower bound actually is. We will
answer this question experimentally in section 6, where we will see that many more
permutations are tight with respect to our new result than with respect to the pre-
viously known lower bounds. We will in the meantime conclude this section by prov-
ing that our lower bound always outperforms that of Dias and Meidanis (given by
Lemma 5.2).

THEOREM 5.9. For all w in Sy, the value of lower bound (5.3) is never smaller
than that of lower bound (5.1).

Proof. Assume 7 # ¢ (otherwise the result trivially holds); this implies that I'(7)
has at least one cycle of length at least 2, which means that ¢(I'(7)) — c1 (I'(7)) > 1.
There are two cases to prove. If w1 = 1, then lower bound (5.1) becomes

{m+1—cﬂgﬂ)+n—1w:{n+1—;gmﬁw7

and lower bound (5.3) satisfies

n+1+dﬂﬂ)—%ﬂﬂﬂ)>n+2—q@ﬁ»>{n+1—q@ﬁﬁw
2 - 2 - 2 '

On the other hand, if m; # 1, then lower bound (5.1) becomes

[(nle_Cl;F(%)))_ﬂ _ [n—c;(l“(ﬁ))w ’

and Definition 2.4 implies that for any 7 in A,,, we have n = ¢(I'(7)) (mod 2). Lower
bound (5.3) becomes

n+14c(I'(7)) _ n+14cI(T)) — 2c1(0(7)) — 2
f—cl(lﬁ(w))—lz [ 5 —‘

E[L@W] .

2

5.2. A tighter lower bound on the prefix transposition diameter. Dias
and Meidanis [10] observed that the prefix transposition diameter lies between n/2
and n— 1, and conjectured that it is equal to n — L%J Chitturi and Sudborough [7, 8]
then improved those bounds to 2n/3 and n — logg /2, respectively. Using our new
lower bound, we further improve the lower bound on the prefix transposition diame-
ter. We prove our result in a constructive way, by building families of permutations
whose prefix transposition distance is at least |3n/4]. Figure 5.1, which follows our
result, shows examples of such permutations. The proof uses permutations from the
following class, which has proved useful in the analysis of several other rearrangement
problems [14].

DEFINITION 5.10. A permutation w in S, is a 2-permutation if all cycles in 7
have length 2.

Note that the above definition requires n = 3 (mod 4): indeed, n 4+ 1 must be
even in order to obtain a partition of the elements of 7 into pairs, and (n + 1)/2 is
also even by the definition of 7.

THEOREM 5.11. For all n, the prefix transposition diameter of S, is at least
[3n/4].

Proof. If n =1 or 2, the result is easily verified. For n > 3, we construct for each
value of n (mod 4) a suitable permutation. Figure 5.1 shows an example for each case
of the proof.
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6 0
1 .
47
8
g 2
)

n=3 (mod 4) n=0 (mod 4 n=1 (mod 4) n =2 (mod 4)

Fic. 5.1. Cycle graphs of permutations w in Sn with ptd(w) > |3n/4], for all values of n mod 4.

1. If n =3 (mod 4), then any 2-permutation 7 in S, is a valid candidate: indeed, 7
contains in this case exactly (n + 1)/2 cycles of length 2, and Theorem 5.8 yields

n+1+ 24 ,_B3n+3-4 3n-—1

> = —
ptd(m) 2 2 1 4

2. If n =0 (mod 4), we build a permutation o in S,, by inserting a new first element
as a fixed point in 7, where 7 is the permutation in S,_; constructed in the
previous case. @ contains n/2 cycles of length 2 and one cycle of length 1 that
corresponds to the fact that oy = 1. Theorem 5.8 then yields

n+l+5+1 1_2n+2—|—n—|—2—4_3n
2 n 4 4

ptd(o) >

3. If n = 1 (mod 4), we build a permutation ¢ in S, by inserting a fixed point
anywhere in @, where o is the permutation in S,,_; built in the previous case. &
contains (n + 1 — 2)/2 cycles of length 2 and two cycles of length 1, and & = 1.
Theorem 5.8 then yields

P S B ,_t24fnt1-244-8 3n-3

ptd(§) > 5 1 1

4. If n =2 (mod 4), we build a permutation 7 in S,, by appending a 3-cycle to any
permutation 7 such that 7 is a 2-permutation in S,_3. 7 contains (n + 1 — 3)/2
cycles of length 2 and one cycle of length 3, and Theorem 5.8 yields

n+14 2483 4 L _2n+24n+1-342-4 3n-2

o
2 4 4

ptd(r) >

We can actually show that the lower bound on the prefix transposition distance
of 2-permutations is tight. In order to do that, we will need the following result. We
use the following relation to order black arcs: (m;, mi—1) < (7, mj—1) if j > i.

LEMMA 5.12 (see [3]). For any m in Sy, let Cy be a cycle of length 2 in G(r)
with black arcs a, b; then there exists another cycle Co in G(x) containing two black
arcs ¢ and d such thata <c<b<dorc<a<d=<b.

This result can be interpreted in a more visual way in the case of a 2-permutation
7 by saying that in G(r), every 2-cycle intersects with another 2-cycle. We are now
ready to prove the following result.

PROPOSITION 5.13. For any 2-permutation © in Sy, we have ptd(r) = (3n —
1)/4.

Proof. The lower bound has already been observed in Theorem 5.11. To show
that it is also an upper bound, we give an algorithm that sorts 7 in exactly that
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number of steps. By Lemma 5.12, every 2-cycle intersects with another 2-cycle, and
as observed by Bafna and Pevzner [3], a sequence of two transpositions on any two
crossing 2-cycles will transform them into four adjacencies:

O«—0 0«—0 0«—0 O«—0

0 1 Ti—1 H T Tj—1 Uy Tk—1 Tk
becomes

O«—0 O«—0 O«—0 O«—0

0 T Tj—1 H Uy Thk—1 1 Ti—1 Tk

which becomes

O«—0 O«—0 O«—0 O«—0
0 Uy Thk—1 T Tj—1 1 Ti—1 Tk

We transform the leftmost 2-cycle and any 2-cycle it crosses into four adjacencies
using two prefix transpositions, which transforms 7 into a permutation ¢ that contains
"T“ — 2 cycles of length 2 and fixes the first element. Then, we carry out this process
again until o is sorted, but we need three prefix transpositions at each step, since
one move must be wasted to move the fixed points in ¢’s prefix out of the way, for
instance, as follows:

O€«——O€«——O0 LRI O€«——O0«——0 LB O€«—O

0 1 2 Ti—2 Ti—1 H ;i Th_1 | Tk
becomes

O€«<——O ... O€«——O€«——0 .. O€«——O€«———0

0 j Th—1 1 2 Tj_2 Tj_1 Tk

The algorithm is guaranteed to terminate, since after applying each sequence of three
transpositions of the form described above, we obtain either ¢ or a permutation on
which we can repeat the same process by Lemma 5.12. The proof follows from the
fact that the number of prefix transpositions used by this algorithm is

3 /n+1 8+3n—9 3n—1
2+§ -2 = = .

= O
4 4
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TABLE 6.1
Comparison of all known lower bounds on the prefiz transposition distance. Column 3 lists
the number of cases where Dias and Meidanis’s lower bound is tight [15, p. 48], column 4 lists the
number of cases where Chitturi and Sudborough’s lower bound is tight, and column 5 lists the number
of cases where our lower bound is tight.

n n! | Tight w.r.t. (5.1) Tight w.r.t. (5.2) Tight w.r.t. (5.3)
1 1 1 1 1
2 2 2 2 2
3 6 4 4 6
4 24 13 15 22
5 120 41 48 106
6 720 196 255 574
7 5040 862 1144 3782
8 40320 5489 7737 27471
9 362 880 31033 44187 229167
10 3628 800 247006 369979 2103510
11 39916 800 1706 816 2575693 21280564
12 | 479001600 16 302 397 25791 862 236651 919

6. Experimental results. We generated all permutations in S, for 1 <n < 12,
along with their prefix transposition distance, and compared lower bounds (5.1), (5.2),
and (5.3) to the actual distance. Table 6.1 shows the results. It can be observed that
many more permutations are tight with respect to our lower bound (column 5) than
with respect to that of Dias and Meidanis (column 3) or Chitturi and Sudborough
(column 4).

We also examined how large the gap between our lower bound and the actual
prefix transposition distance can get. Table 6.2 counts permutations whose prefix
transposition distance equals our lower bound plus A. We note that for n < 9, all
permutations have a prefix transposition distance that is at most our lower bound
plus 2 (plus 3 for n < 12).

TABLE 6.2
Number of cases where our lower bound underestimates ptd(m) by A.

n n! A=0 A=1 A=2 A=3
1 1 1 0 0 0
2 2 2 0 0 0
3 6 6 0 0 0
4 24 22 2 0 0
5 120 106 14 0 0
6 720 574 143 3 0
7 5040 3782 1234 24 0
8 40320 27471 12310 539 0
9 362880 229 167 128 576 5137 0
10 3628 800 2103510 1427966 97 321 3
11 39916 800 21280 564 17532948 1103254 34
12 | 479001600 | 236651919 | 221680237 | 20667 140 2304

7. Further observations on 7r. Now that we have an alternate representation
of the cycle graph of a permutation as another permutation, we would like to examine
whether other results can be obtained that could be helpful in getting insight on
problems related to length-constrained factorizations of permutations. We investigate
in this section a few relations between 7 and 7, starting with relations between the
cycle structures of both permutations when subjected to particular operations.
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7.1. Cycle structures. A natural question is whether conjugacy classes are
preserved by f(+), i.e., whether T and 7% are in the same conjugacy class for any choice
of m and o in S,,. The answer is negative in general, as the following counterexample
shows: m = (1,3)(2) and 7 = (1, 2)(3) are conjugate, but ¥ = (0,1,2,3) 0 (0,1,2,3) =
(0,2)(1,3) and 7= (0,1,2,3) 0 (0,3,1,2) = (0)(3,2, 1) are not. However, the relation
we are interested in holds for two particular cases, whose significance we explain below.

The following result is similar in spirit to Tannier and Sagot’s characterization
of “inverse breakpoint graphs” of signed permutations [28] and shows that the cycle
graphs of a permutation and of its inverse have exactly the same cycle structure.

LEMMA 7.1. For any 7 in S, we have 7—1 = (7~ 1)(® ),

Proof. The proof is straightforward:

71=(0,1,2,...,n) 0 (0, w,;l,w,;il,...,wfl)
:7rlo7r0(012 ,n)or to(0,n,n—1,....,1)o7
=7 (0,7r1,7r2,...,7rn)o(O,n,n—l,...,l)ow
=rtlomlon
=@ H" . o

Tannier and Sagot’s idea of examining how the cycle graph of 7=! evolves when
applying a signed reversal to a permutation m—which reverses and flips the signs
of the elements of an interval of m—was a key point in their successful attempt at
designing an algorithm with an improved running time for sorting permutations by
signed reversals. The above relation allows us to derive a simple description of the
more general situation (albeit restricted to “traditional”, unsigned permutations), i.e.,
how 7—1 changes when an arbitrary rearrangement o is applied to 7.

COROLLARY 7.2. For all 7, o in Sy, we have (moo)—L = (6 Lomx 1)7 '

Proof. Lemma 3.1 yields

—1
(roog)l=0c"lox! —0—1077—1( )

=oclos toocoo torloo (using Lemma 7.1)

=@ ltor 1) . O

A second particular case of conjugate permutations whose transformation by f(-)
yields two conjugate permutations is presented below. We use the notation x for the
reverse permutation, i.e., x ={nn—1 --- 1).

LEMMA 7.3. For any 7 in Sy, we have 7x = (7~ 1)X)(0:1:2m),

Proof. We have by definition

™ =(0,1,2,...,n) 0 (0, X, 7xX_1,..., 7))
=(0,1,2,...,n)omX 0 (0,n,n — 1...,1)o(7r><)*1
= (X (O n,n—1,...,1) 0 (7)1 0(0,1,2,...,n))012n)
=(xomo(0,1,2,...,n)om toxo(0,1,2,...,n))0L2mm
= (xemo (01,2, myor o @ mn—1,...,1)0 ) @12
=(xom ox)(O’L2 S

Conjugating 7 by x corresponds to computing its reverse complement: indeed,
ToX = (T Ty -+ m), and xo(mox) = (n+1—my nt1=mu_y - n+1—m).
By definition, 7w and 7X have the same cycle structure, and by the above result so do
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their images by f(-). The reverse complement operation is interesting because most
(but not all, prefix distances being notable exceptions [23]) genome rearrangement
distances are, in addition to being left-invariant, “reverse complement-invariant”: for
all m and o in S, we have d(m, o) = d(7X, 0X). As a consequence, bounds obtained on
the distance between 7 and ¢ with respect to a certain set of operations can sometimes
be improved by examining 7! or 7X.

Eriksson et al. [12] introduced another important equivalence relation on permu-
tations that does not preserve their cycle structure in the classical sense but that does
preserve the cycle structure of their cycle graphs. This equivalence relation, whose
equivalence classes are called toric permutations, proved useful in improving bounds
on the transposition distance [12, 22]. We will see below that 7 provides a simple way
of navigating through all cycle graphs of the permutations in the same equivalence
class. The equivalence relation uses the following notion.

DEFINITION 7.4. The circular permutation obtained from a permutation 7 in S,
s w° =0m m -+ w, with indices taken modulo n+ 1 so that 0 = 7§ = 4.

This circular permutation can be read starting from any position, and the original
“linear” permutation is reconstructed by taking the element following 0 as m; and
removing 0. For x in {0,1,2,...,n}, let T = (z +m) (mod n + 1), and define the
following operation on circular permutations:

m_'_ﬂ_o:ﬁm 7T—1mﬂ,—2m ﬁm

DEFINITION 7.5. For any 7 in Sy, the toric permutation 7J is the set of permu-
tations in S, reconstructed from all circular permutations m + 7° with 0 < m < n.

DEFINITION 7.6. Two permutations w, o in S, are torically equivalent if o € m¢
(or ™ € 03 ), which we also write as ™ =3 0.

Let us illustrate those notions using our running example 7 = (4 1 6 2 5 7 3); we
have 7°=0416257 3, and

0+7° = 04162573
1+7° = 15273604
247° = 26304715
347° = 37415026
447 = 40526137
5471 = 51637240
6+7° = 62740351
T+ = 73051462,

which yields 73 = {(4162573), 4152736), (4715263), (2637415),
(5261374),(5163724),(3516274),(5146273)}. Hultman [19] proved
the following interesting result.

LEMMA 7.7 (see [19]). For all m in Sy and 0 < m < n, every cycle in G(r) is
mapped onto a cycle in G(o), where o is the permutation obtained from m + m°.

In other words, if 7 =2 o, then T and @ are conjugate. We show below how one
can iterate over the cycle graphs of all elements in 7.

LEMMA 7.8. For all @, o in Sy, if 0° = m + x°, then & = 7012

Proof. By Equation 3.1, we have

..,n)m.

g=1(0,1,2,...,n) 0 (00,0n,0n—1,---,01)

=(0,1,2,...,n)o(m+my,m+mp,m+ Tp_1,...,m~+m),

since by hypothesis ¢° = m + 7°.
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On the other hand, the mapping (7o, mpn, Tr—1,-..,m1) — (M + T, M + 7T, m +
Tn—1,---,M —+ 1) consists in replacing each element of the cycle with its value plus
m (mod n—+ 1), which is by definition equivalent to conjugating (mo, mp, Tn—1,...,71)
by (0,1,2,...,n)™. O

COROLLARY 7.9. For all 7 in S, we have {7 | o € 2} = {7(O12m" | 0 <
m < n}.

Other relations between the cycle structure of m and that of T can easily be
derived from previous work. The following relation allows us to bound the number of
odd cycles of 7.

THEOREM 7.10 (see [22]). For all w in Sy, we have td(m) < n — coqq(T'(7)).

The following result is an immediate corollary of Theorems 4.4 and 7.10.

COROLLARY 7.11. For all 7 in Sy, we have 2¢oqa(T(7)) < n — 1+ coqa(T(7T)).

Similarly, the following result is an immediate corollary of Theorem 4.2 and of
the characterization of exchanges as restricted block-interchanges.

COROLLARY 7.12. For all w in Sy, we have 2¢(I'(m)) <n — 1+ ¢(T'(7)).

7.2. Descents of m and cycles of 7. Aside from relations between cycle
structures, we can also establish relations between pairs of elements of m and cy-
cles of T. An example of such a relation is the fact that the number of adjacencies
in (0 m mg -+ 7, n+ 1) equals ¢1(I'(7)). We will prove that a less obvious relation
connects the descents of m (defined below) and the cycles of 7.

DEFINITION 7.13. A descent in a permutation m is a pair (mi—1,7;) such that
T < Ti—1-

For instance, the permutation (4 | 1 6 | 2 5 7 | 3) has three descents, indicated
by vertical arrows.

DEFINITION 7.14. A cycle C in G(x) contains a descent (w;—1,m;) if (7, Ti—1)
is a black arc of C.

We now derive bounds on the number of descents contained by cycles in G(7).

LEMMA 7.15. For all m in S, every cycle of length £ > 2 in G(w) contains at
most £ — 1 descents and at least one descent of .

Proof. For clarity, let us write the vertices of C' in the order in which C vis-
its them, starting with the element whose position in 7 is maximal: we get C' =
(Tiy s Tjys Mins Tjns - - - » Wiy, M5y, ), Where 49 (resp.,ji) is the largest (resp.,smallest) po-
sition of an element of ™ appearing in C. We identify here my and 7,41 = 7o
(mod n + 1). Recall that (m;,,7;,) for 1 < o < k is a black arc of C and that
by Definition 2.10 the following relation holds:

(7.1) T, =75, +1foralll <z <k, and m, =m;, + 1.
1. For the upper bound, assume on the contrary that C' contains ¢ descents;
then every black edge of C corresponds to a descent, and we have

(7.2) i, > m, for 1 <o <k.
By alternating between the conditions specified by (7.2) and (7.1), we obtain

Trjk>7Tik:Trjk—1+1>7rik—1+1:7Tjk—2+2>”.:7rj1+k‘_1
>my, +k—-1=m;, +k,

which is clearly a contradiction.
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2. For the lower bound, assume on the contrary that C' contains no descent; we
have

(7.3) mj, <, for 1 <z <k
By alternating between the conditions specified by (7.3) and (7.1), we obtain

7Ti1—1:7Tjk<7Tik:ij_l+1<7Tik_1+1:7Tjk_2+2<"':7Tj1+k—1
<7y +k—1.

For the above relations to hold, elements from the set A = {m;, ,m,_, +
1,...,m, + k — 2} can only be assigned values from the set B = {m;, +
1,my, +2,...,m, +k—2}. However, we have k — 1 = |A| > |B| = k — 2,
which clearly makes it impossible to obtain a permutation.
Finally, note that 7 and 7 can be regarded as equivalent as far as descents are con-
cerned, since (7o, 71) and (7, Tp41) cannot be descents. a
The following result is a direct corollary of the above.
PROPOSITION 7.16. For any 2-permutation w in Sy, the number of descents of

is (n+1)/2.
Proof. By definition, 7 contains exactly (n + 1)/2 cycles of length 2, and by
Lemma 7.15 each of these cycles contains exactly one descent of . O

8. Conclusions. We presented a new framework for reformulating any edit dis-
tance problem on permutations as a minimum-length factorization problem on a re-
lated even permutation, under the implicit assumption that the edit operations are
revertible. This approach is based on a new representation of a structure known as
the cycle graph, which pervades the field of genome rearrangements in several different
forms; it previously allowed us to enumerate permutations whose cycle graph decom-
poses into a given number of alternating cycles [11] and allowed us in this work to
recover two previously known results in a simple and unified way. Moreover, we used
our approach to derive a new lower bound on the prefix transposition distance that,
as we showed both theoretically and experimentally, is a significant improvement over
previous results. From that result, we deduced an improved lower bound on the prefix
transposition diameter of the symmetric group, whose exact value is still unknown.
Finally, we investigated other relations between permutations and their cycle graphs
that we hope will prove useful in obtaining new results.

Several interesting questions and leads for future work arise. First, our method
provides an automated way of obtaining lower bounds on distances between permu-
tations; is there an analogous way of obtaining upper bounds instead? Second, we
initiated the study of relations between statistics on a permutation and statistics on
the permutation that corresponds to its cycle graph. Can other relations be deduced
and used to prove other results, including tighter bounds on the distances of interest?
Third, permutations are but one structure for which the cycle graph has been defined.
Other structures, such as signed permutations, give rise to a more general structure
known as the breakpoint graph. As mentioned in the introduction, analogues of f(-)
have been proposed in the signed setting too; are there other generalizations that could
apply to other ways of modeling genomes (e.g., posets, set systems)? Finally, another
question is whether Cayley graphs obtained from genome rearrangement operations
can yield good interconnection networks. For instance, (signed) reversals generalize
the operations that generate the (burnt) pancake network, exchanges generalize the
operations that generate the star network, and prefix transpositions generalize the
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operations that generate the birotator graphs (see [25] for definitions). It seems likely
that collaborations between researchers in both fields could be fruitful in investigating
this topic.
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