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A few definitions

Deoxyribonucleic acide: double
helix of nucleotides (A, C, G, T);

Complementarity (A-T, C-G): one
strand is enough;

Gene = sequence of nucleotides
(that codes for a specific protein);

Chromosome = ordered set of
genes;

Genome = set of chromosomes;

Goal: compare genomes;
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Comparing genomes at the nucleotide level

Most common comparisons: at the nucleotide level;

Example (sequence alignment)

S1 : · · · T C C G C C A − − C T A · · ·
| | | | | |

S2 : · · · T C G G A C T G G C − A · · ·

Matches, substitutions, insertions and deletions;

Correspond to mutations;
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At the gene level

Some mutations involve whole segments of nucleotides;

Genomes = signed permutations if genomes:
1 are totally ordered sets of genes, and
2 only differ by gene order (no duplications, no deletions).

Example (genomes → signed permutations)

−5 +1 +2 +4 −7 −3 +6

(A)

+1 +2 +3 +4 +5 +6 +7

(B)
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Some mutations involve whole segments of nucleotides;

Genomes = signed permutations if genomes:
1 are totally ordered sets of genes, and
2 only differ by gene order (no duplications, no deletions).

Example (genomes → signed permutations)
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Comparing genomes

Two main ways of comparing genomes:
1 by identifying “common” or close content;
2 by measuring their distance according to evolutionary events;

Both approaches yield measures of (dis)similarity between
permutations;

(Many other measures are available, but they’re generally not
biologically relevant (see e.g. [Estivill-Castro and Wood, 1992]));
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What lies ahead

I will give an overview of several representative problems:

comparing signed and unsigned permutations;
enumeration problems, with applications;
using comparisons to reconstruct evolution;

Links with other interesting areas;

Open problems and suggestions for future research;
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Measuring similarity

Search for segments that are “alike”;

This is a form of approximate pattern matching:
1 at the nucleotide level: look for subsequences that are “almost

the same”;
(this is how genomes are partitioned to yield permutations)

2 at the gene level: look for subsequences that have exactly the
same content BUT in a possibly different order;

Point 2 motivates the next definition;
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Common intervals

Definition

A common interval of permutations π1, π2, . . . , πm in S±n is a
subset of {1, 2, . . . , n} whose elements form a substring of
π1, π2, . . . , πm (up to reordering and sign changes).

Biological motivation: genes that stuck together in an ancestor
and in the present species are not likely to have been separated
during evolution.

Example (some common intervals of two given permutations)

〈9 −8 4 −5 −6 7 1 2 3〉 {4, 5, 6, 7, 8, 9}, {1, 2, 3}
〈1 2 3 −8 7 −4 −5 6 −9〉 {4, 5, 8}: NO
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Intervals and measures

Other variants exist (e.g. conserved intervals);

Measures of (dis)similarity can be built and computed
efficiently [Bergeron and Stoye, 2006];

X simple to compute;
X biologically relevant;
× do not correspond to evolutionary events;

... which is why we’ll now have a look at “event-based”
measures;

Anthony Labarre Permutations in comparative genomics



Introduction
Comparing signed permutations

Comparing unsigned permutations
Counting problems

Median problems
Conclusions

Searching for similarities
Genome rearrangements
Sorting by signed reversals
The breakpoint graph and its uses
Selected results and open problems

Genome rearrangements

Genomes evolve by point mutations, but also by means of
mutations involving whole segments;

Parsimony principle in biology: a shorter scenario of
mutations is more likely;

This motivates the study of the following problem;
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Genome rearrangements

Problem (pairwise genome rearrangement problem)

Given: permutations π, σ in S±n , and a generating set S of S±n .
Find: a sequence of t elements of S that:

1 transforms π into σ (or conversely), and

2 such that t is as small as possible.

This yields a distance dS (·, ·) between permutations;

dS (·, ·) is usually left-invariant, so we assume σ = ι;

S is closed under inverses (x ∈ S ⇔ x−1 ∈ S);

⇒ find a minimum-length factorisation of π into the product
of elements of S ;
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Example: sorting by signed reversals

π = −5 +1 +2 +4 −7 −3 +6

−5 +1 +2 −4 −7 −3 +6

−5 +1 +2 −4 −7 −6 +3

−5 +1 +2 −4 −3 +6 +7

−5 +1 +2 +3 +4 +6 +7

−5 −4 −3 −2 −1 +6 +7

σ = +1 +2 +3 +4 +5 +6 +7

srd(π, σ) ≤ 6
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Computing genome rearrangement distances

Proving upper bounds is “easy” (find a sequence that works);

But how do we guarantee that a given sequence is optimal?

We usually rely on variants of the breakpoint graph, first
introduced by [Bafna and Pevzner, 1996];

That structure proved very useful in:
1 obtaining bounds and approximations;
2 computing distances exactly in polynomial time;
3 proving complexity results;
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The breakpoint graph

Going back to our example:

−5 +1 +2 +4 −7 −3 +6π =

π′ = 0 10 9 1 2 3 4 7 8 14 13 6 5 11 12 15

1 double π’s elements
(i 7→ {2|i | − 1, 2|i |}) and
add 0 and 2n + 1

2 elements of π′ = vertices

3 black edges connect
distinct adjacent genes

4 grey edges connect distinct
consecutive genes
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Using the breakpoint graph

The breakpoint graph is 2-regular and decomposes as such
into alternating cycles in a unique way;

The breakpoint graph of 〈1 2 · · · n〉 contains the largest
number of cycles:
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⇒ goal: create new cycles in as few moves as possible;
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A lower bound on the signed reversal distance

A signed reversal involves black edges belonging to at most
two cycles;

The only way to increase c(BG (π)) is to split cycles:

π′2i π′2i+1 π′2j π′2j+1

· · ·
π′2i π′2j π′2i+1 π

′
2j+1

· · ·

Therefore, for all π in S±n :

srd(π) ≥ n + 1− c(BG (π)).
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A signed reversal involves black edges belonging to at most
two cycles;

The only way to increase c(BG (π)) is to split cycles:

π′2i π′2i+1 π′2j π′2j+1

· · ·
π′2i π′2j π′2i+1 π

′
2j+1

· · ·

Therefore, for all π in S±n :

srd(π) ≥ n + 1− c(BG (π)).
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An exact formula for computing the signed reversal distance

It is not always possible to split cycles;

Worse: some collections of cycles in the breakpoint graph,
called hurdles, each require an additional move;

Theorem ([Hannenhalli and Pevzner, 1999])

For all π in S±n :

srd(π) = n + 1− c(BG (π)) + h(BG (π))︸ ︷︷ ︸
number of hurdles

+ f (BG (π))︸ ︷︷ ︸
special “fortress” case

.

Computing srd(·) / sorting can be done in polynomial time;
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Integrating other constraints: “perfection”

(recall Mathilde Bouvel’s talk)

As seen before, some genes “stick together”;

Problem (perfect sorting by signed reversals)

Given: a permutation π in S±n , and a set S of intervals of π.
Find: a minimum-length sequence of signed reversals that sorts π

and whose elements do not overlap with intervals from S.

Example (not sorting sequences)

〈−3 2 − 1 4 5〉

invalid

〈−3 2 − 1 4 5〉

valid
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A more general view: double cut-and-join

The “double-cut-and-join” (DCJ) operation is defined directly
on the breakpoint graph:

Idea: cut two black edges and join their endpoints;

Simulates signed reversals and block-interchanges (2 DCJs for
the latter);
⇒ sorting by DCJs ≡ sorting by signed reversals with weight 1
and block-interchanges with weight 2;

Theorem ([Yancopoulos et al., 2005])

For any π in S±n : dcj(π) = n + 1− c(BG (π)).
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Some results and some questions (non exhaustive)

What has been done:
Operation Sorting Distance Best approximation

signed reversal O(n3/2) [Han, 2006] O(n) [Bader et al., 2001] 1
perfect signed reversal NP-hard [Figeac and Varré, 2004] ?
prefix signed reversal ? ? 2 [Cohen and Blum, 1995]
double cut and join O(n) [Yancopoulos et al., 2005] 1

What could be done:
Prefix signed reversals:

1 complexity of sorting / computing the distance?
2 largest value the distance can reach?
3 “better-than-2”-approximation?

Characterise “hard instances” using pattern
matching/avoidance;
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Unsigned permutations

In some situations, gene orientation may be unknown or can
be disregarded;

Genomes are then modelled by the more traditional unsigned
permutations;

Of course, rearrangements in that setting do not affect
orientation;
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The breakpoint graph in the unsigned case

More direct construction than in the signed case;

Let’s build the breakpoint graph of π = 〈4 1 6 2 5 7 3〉:

1

4

0

3

7

5

2

6

1 build the ordered vertex set
(π0 = 0, π1, π2, . . . , πn);

2 add black arcs for every
ordered pair
(πi , πi−1 (mod n+1));

3 add grey arcs for every ordered
pair (i , i + 1 (mod n + 1));

BG (π) decomposes in a unique way into alternating cycles
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Breakpoint graphs as permutations

Nice property of BG (π): its alternating cycle decomposition
matches the traditional disjoint cycle decomposition of

π = (0, 1, 2, . . . , n) ◦ (0, πn, πn−1, . . . , π1);

As a consequence, we can express the action of any
rearrangement σ on π using π:

Lemma ([Labarre, 2012])

For all π, σ in Sn, we have π ◦ σ = π ◦ σπ.

... and we can recycle known results in this context;
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Obtaining lower bounds

Lower bounds can be automatically obtained as follows:

Initial problem:

computing dS (π):

π π ◦ x1 π ◦ x1 ◦ x2
· · ·

ι

New problem:

computing dC(π): π ι = ι

dC(π) ≤ dS (π)

π ◦ y1 π ◦ y1 ◦ y2

· · ·

This yields tight lower bounds on:
1 the block-interchange distance [Christie, 1996];
2 the transposition distance [Bafna and Pevzner, 1998];
3 the prefix transposition distance [Labarre, 2012];
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Three examples

How one can obtain bounds on the following distances:
1 block-interchange distance (bid(·)):

1 block-interchange = pair of 2-cycles;
2 bid(π) ≥ dC(π) = n+1−c(BG(π))

2
;

2 transposition distance (td(·)):

1 transposition = 3-cycle;
2 td(π) ≥ dC(π) = n+1−codd (BG(π))

2
;

3 prefix transposition distance (ptd(·)):

1 prefix transposition = 3-cycle containing 0;
2 ptd(π) ≥ dC(π) =

n+1+c(BG(π))
2

− 2c1(BG(π))−
{

0 if π1 = 1,
1 otherwise.

;
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A word of caution

Don’t think that sorting unsigned permutations is trivial;

bid(·) and exc(·) are indeed easy to compute, but:
1 sorting by (prefix or arbitrary) reversals becomes NP-hard;
2 sorting by transpositions is NP-hard;
3 sorting by double cut-and-joins is NP-hard;
4 sorting by prefix transpositions is open;
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Results on sorting unsigned permutations

What has been done:
Operation Sorting Distance Best approximation

exchange O(n) [Knuth, 1995] 1
block-interchange O(n) [Christie, 1996] 1
double cut-and-joins NP-hard [Chen, 2010] ?
reversal NP-hard [Caprara, 1999b] 11/8 [Berman et al., 2002]
transposition NP-hard [Bulteau et al., 2011b] 11/8 [Elias and Hartman, 2006]

pr
efi

x exchange O(n) [Akers et al., 1987] 1
reversal NP-hard [Bulteau et al., 2011a] 2 [Fischer and Ginzinger, 2005]
transposition ? ? 2 [Dias and Meidanis, 2002]

What could be done:

better approximations;
complexity of prefix transposition problems?
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Counting problems

What is the distribution of a given rearrangement distance?

Most tight bounds on rearrangement distances are obtained
using the breakpoint graph and its cycles;

Use the distribution of cycles in the breakpoint graph to
approximately answer the above;

Anthony Labarre Permutations in comparative genomics



Introduction
Comparing signed permutations

Comparing unsigned permutations
Counting problems

Median problems
Conclusions

Hultman numbers
Approximating distance distributions
“Listing” problems

Hultman numbers

Hultman numbers count permutations whose breakpoint
graph contains k cycles:

SH(n, k) = |{π ∈ Sn | c(BG (π)) = k}| unsigned case
S±H (n, k) = |{π ∈ S±n | c(BG (π)) = k}| signed case

Similar in spirit to Stirling numbers of the first kind;

Explicit formulas are available for computing SH(n, k) and
S±H (n, k) (see e.g. [Grusea and Labarre, 2011]);

Also available: generating functions, expected value and
variance;

Anthony Labarre Permutations in comparative genomics



Introduction
Comparing signed permutations

Comparing unsigned permutations
Counting problems

Median problems
Conclusions

Hultman numbers
Approximating distance distributions
“Listing” problems

Approximating distance distributions using Hultman numbers

unsigned permutations signed permutations
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(distance distributions from [Galvão and Dias, 2011])
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Experiments wrap-up and perspectives

Some distance distributions are extremely well approximated
using (some function of) the Hultman numbers;

Can bounds be tightened by trying to minimise the difference
between the distributions?

Can the proximity of distributions be used to argue that exact
computation of hard distances is overrated?
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Listing optimal sequences

Distances are informative;

... but an actual sorting sequence is more informative;

What if the given sequence we found makes no biological
sense?

⇒ can we list all optimal sequences for a given instance?

Efficient algorithms exist for listing:

all optimal signed reversals [Swenson et al., 2011];
all optimal sequences [Badr et al., 2011];
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Median problems

Measures of similarities between genomes are useful in
reconstructing phylogenies;

Example (phylogeny from distance matrix)

a b c d e

a 0 2 3 6 6
b 2 0 3 6 6
c 3 3 0 5 5
d 6 6 5 0 4
e 6 6 5 4 0

a 1

b 1

1 2

c

1
d

2

e2

(The matrix must satisfy some conditions [Buneman, 1971]);
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Median problems

Parsimony again: search for a tree that minimises the total
number of evolutionary events (i.e. the sum of all edge
weights);

In its simplest form, the problem we want to solve is:

Problem (median of three)

Given: π, σ, τ in S±n ; a distance d : S±n × S±n → N.
Find: a permutation µ in S±n that minimises

w(µ) = d(π, µ) + d(σ, µ) + d(τ, µ).

Can be generalised to more than three input permutations;

Anthony Labarre Permutations in comparative genomics



Introduction
Comparing signed permutations

Comparing unsigned permutations
Counting problems

Median problems
Conclusions

Motivation
Bounds
Selected results

Generic bounds [Siepel and Moret, 2001]

Generic lower and upper bounds for any distance:
π

σ τ

d(π, σ) d(π, τ)

d(σ, τ)

µ

d(π, µ)

d(µ, σ) d(µ, τ)

w(µ) ≤ min{

if µ=π︷ ︸︸ ︷
d(π, σ) + d(π, τ),

if µ=σ︷ ︸︸ ︷
d(π, σ) + d(σ, τ),

if µ=τ︷ ︸︸ ︷
d(π, τ) + d(σ, τ)}.

≥ d(π, σ) + d(π, τ) + d(σ, τ) (triangle inequalities)
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Results on median problems

What has been done:
Operation or measure Median of three Best approximation

breakpoint NP-hard [Bryant, 1998] 5/3 [Caprara, 2002]
signed breakpoint NP-hard [Bryant, 1998] 7/6 [Pe’er and Shamir, 2000]
exchange ? ?
signed reversal NP-hard [Caprara, 2003] 4/3 [Caprara, 1999a]
signed double-cut-and-join NP-hard [Caprara, 2003] 4/3 [Caprara, 1999a]
transposition NP-hard [Bader, 2011] ?

What could be done:
1 complexity of the exchange median problem?

(trivial for 2 permutations, NP-hard for ≥ 4; what about 3?)
2 better approximations;
3 “median clouds” [Eriksen, 2009];
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Possible future directions

More realistic distances:

several kinds of operations, weighted differently;
learning ad hoc distances?

Generalising the bijection π 7→ π:

obtain upper bounds;
extend to signed permutations;

Can we build bridges to other fields (e.g. pattern matching)?

Complexity and approximability issues;
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Thanks!!!
... and all apologies for (to) everything (everyone) I had to leave out.

CombinatoriCs of  
Genome rearranGements

Guillaume fertin, anthony Labarre, irena rusu, eric tannier, and stéphane Vialette

with Guillaume Fertin,
Irena Rusu, Eric Tannier
and Stéphane Vialette.
The MIT Press, 2009.
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