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The graph decomposition problem

Given a set S of graphs, an S-decomposition of a graph G is a
partition of E (G ) into subgraphs, all of which are isomorphic to a
graph in S .

Example (S = connected graphs on four edges)

S-decomposition

Input: a graph G = (V ,E ), a set S of graphs.
Question: does G admit an S-decomposition?

S-decomposition is NP-complete, even when S contains a single
connected graph with at least three edges [Dor and Tarsi, 1997].
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Graph decompositions for cubic graphs

We study the S-decomposition problem in the case where G is
cubic and S is the set of all connected graphs on three edges.

Example

C6 =

K3 +K1,3 + P4

S ′-decomposition

Input: a cubic graph G = (V ,E ), a non-empty set S ′ ⊆ S .
Question: does G admit a S ′-decomposition?
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Our contributions

Here is a summary of what is known about decomposing graphs
using subsets of { , , }:

Allowed subgraphs Complexity according to graph class

cubic arbitrary

X
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We need the following result:

Proposition ([Kotzig, 1957])

A cubic graph admits a P4-decomposition if and only if it has a
perfect matching.
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Decomposing cubic graphs without P4’s

Let us start with K1,3-decompositions:

Proposition

A cubic graph admits a K1,3-decomposition if and only if it is
bipartite.

Proof.

⇒ A center (red) belongs to only one subgraph
⇒ Bipartition: centers – leaves
(each edge connects a center and a leaf)

⇐
Use one part for centers, the other for
leaves
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What if we also allow K3’s?

We distinguish between isolated and nonisolated triangles:

Lemma

If a cubic graph G admits a {K1,3,K3}-decomposition D, then
every isolated K3 in G belongs to D.
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Decomposing cubic graphs without P4’s

If G also contains nonisolated K3’s, then we only have two choices
to try:



Summary of algorithm

I Select a diamond, pick one K3

I Follow degree-1,2 nodes:

I Degree 1: pick as leaf of K1,3

I Degree 2 outside any K3:
pick as leaf of K1,3

I Degree 2 inside a K3: pick the K3

I If it fails, try the other starting K3

I Only one branching ⇒ polynomial
time algorithm
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Hardness results

We now show that {K1,3, P4}-decomposition is NP-complete,
using three reductions:

cubic planar monotone 1-in-3 satisfiability

≤P degree-2,3 {K1,3, K3, P4}-decomposition with marked edges
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Hardness results 1/3: marked edges

The co-fish gadget
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This gadget is equivalent to an edge . . . .

{K1,3, K3, P4}-decomposition with marked edges

Input: a cubic graph G = (V ,E ) and a subset M ⊆ E of edges.
Question: does G admit a {K1,3, K3, P4}-decomposition D such that no

edge in M is the middle edge of a P4 in D and such that every
K3 in D has either one or two edges in M?
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Hardness results 2/3: leafless subcubic graphs
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The net gadget is equivalent to 3 degree-2 nodes

We can restrict our attention to degree-2,3 {K1,3, K3,
P4}-decomposition with marked edges, a variant where the
input graph contains vertices with degree 2 or 3.
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Hardness results 3/3: satisfiability

cubic (planar) monotone 1-in-3 satisfiability

Input: a Boolean formula φ = C1∧C2∧· · · without negations; |Ci | = 3
for each i and each literal appears in exactly three clauses;

Question: is there an assignment of truth values f : Σ→ {true, false}
such that each clause of φ contains exactly one true literal?

cubic planar monotone 1-in-3 satisfiability

≤P degree-2,3 {K1,3, K3, P4}-decomposition with marked edges
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The reduction from cubic mono-1-in-3-sat

VariableClause

C = xi ∨ xj ∨ xk

xi

xj xk

The reduction
I Map clauses onto C5’s and variables onto marked K1,3’s.

I From assignments to decompositions: variables set to false
yield red K1,3’s, those set to true yield green K1,3’s.

I From decompositions to assignments: show that a
decomposable graph must conform to the above configuration
⇒ truth assignment
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Conclusions

I Future work:

I hardness for planar cubic graphs?
I complexity of those problems for subcubic graphs?
I generalise positive results to k-regular graphs for k > 3;



Thank you!
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