Decomposing Cubic Graphs into Connected Subgraphs of Size Three

Laurent Bulteau Guillaume Fertin **Anthony Labarre** Romeo Rizzi Irena Rusu

International Computing and Combinatorics Conference (COCOON)

August 3rd, 2016

Given a set S of graphs, an S-decomposition of a graph G is a partition of E(G) into subgraphs, all of which are isomorphic to a graph in S.

Given a set S of graphs, an S-decomposition of a graph G is a partition of E(G) into subgraphs, all of which are isomorphic to a graph in S.

Example (S = connected graphs on four edges)

Given a set S of graphs, an S-decomposition of a graph G is a partition of E(G) into subgraphs, all of which are isomorphic to a graph in S.

Example (S = connected graphs on four edges)

Given a set S of graphs, an S-decomposition of a graph G is a partition of E(G) into subgraphs, all of which are isomorphic to a graph in S.

Example (S = connected graphs on four edges)

S-DECOMPOSITION

Input: a graph G = (V, E), a set S of graphs. **Question:** does G admit an S-decomposition?

S-DECOMPOSITION is NP-complete, even when S contains a single connected graph with at least three edges [Dor and Tarsi, 1997].

We study the S-decomposition problem in the case where G is cubic and S is the set of all connected graphs on three edges.

$$\overline{C_6} =$$

We study the S-decomposition problem in the case where G is cubic and S is the set of all connected graphs on three edges.

$$\overline{C_6} = K_3 +$$

We study the S-decomposition problem in the case where G is cubic and S is the set of all connected graphs on three edges.

$$\overline{C_6} = K_3 + K_{1,3} +$$

We study the S-decomposition problem in the case where G is cubic and S is the set of all connected graphs on three edges.

$$\overline{C_6} = K_3 + K_{1,3} + P_4$$

We study the S-decomposition problem in the case where G is cubic and S is the set of all connected graphs on three edges.

Example

$$\overline{C_6} = K_3 + K_{1,3} + P_4$$

S'-DECOMPOSITION

Input: a cubic graph G = (V, E), a non-empty set $S' \subseteq S$.

Question: does G admit a S'-decomposition?

Our contributions

Here is a summary of what is known about decomposing graphs using subsets of $\{ \stackrel{*}{\wedge} , \stackrel{*}{\wedge} , \stackrel{*}{\leadsto} \}$:

Allowed subgraphs			Complexity according to graph class		
؞ڵ؞	٨	0-0-0	cubic	arbitrary	
\checkmark				NP-complete [Dyer and Frieze, 1985]	
	✓		O(1) (impossible)	NP-complete [Holyer, 1981]	
		✓	in P [Kotzig, 1957]	NP-complete [Dyer and Frieze, 1985]	
√	√			NP-complete [Dyer and Frieze, 1985]	
✓		✓		NP-complete [Dyer and Frieze, 1985]	
	✓	✓		NP-complete [Dyer and Frieze, 1985]	
√	√	✓		NP-complete [Dyer and Frieze, 1985]	

Our contributions

Here is a summary of what is known about decomposing graphs using subsets of $\{ \stackrel{*}{\wedge} , \stackrel{*}{\wedge} , \stackrel{*}{\leadsto} \}$:

Allowed subgraphs			Complexity according to graph class	
؞ڵ؞	٨	••••	cubic	arbitrary
\checkmark			in P	NP-complete [Dyer and Frieze, 1985]
	✓		O(1) (impossible)	NP-complete [Holyer, 1981]
		✓	in P [Kotzig, 1957]	NP-complete [Dyer and Frieze, 1985]
√	√		in P	NP-complete [Dyer and Frieze, 1985]
✓		✓	NP-complete	NP-complete [Dyer and Frieze, 1985]
	✓	✓	in P	NP-complete [Dyer and Frieze, 1985]
\checkmark	✓	✓	NP-complete	NP-complete [Dyer and Frieze, 1985]

our contributions

We need the following result:

Proposition ([Kotzig, 1957])

We need the following result:

Proposition ([Kotzig, 1957])

A cubic graph admits a P_4 -decomposition if and only if it has a perfect matching.

We strengthen this result as follows:

Proposition

We need the following result:

Proposition ([Kotzig, 1957])

A cubic graph admits a P_4 -decomposition if and only if it has a perfect matching.

We strengthen this result as follows:

Proposition

A cubic graph admits a $\{K_3, P_4\}$ -decomposition if and only if it has a perfect matching.

Degree constraint:

A red vertex (degree 2) in some subgraph of the decomposition must be blue (degree 1) in another.

We need the following result:

Proposition ([Kotzig, 1957])

A cubic graph admits a P_4 -decomposition if and only if it has a perfect matching.

We strengthen this result as follows:

Proposition

A cubic graph admits a $\{K_3, P_4\}$ -decomposition if and only if it has a perfect matching.

Degree constraint:

A red vertex (degree 2) in some subgraph of the decomposition must be blue (degree 1) in another.

Use counting argument \Rightarrow no K_3 can be used.

Let us start with $K_{1,3}$ -decompositions:

Proposition

A cubic graph admits a $K_{1,3}$ -decomposition if and only if it is bipartite.

Proof.

A center (red) belongs to only one subgraph

 \Rightarrow Bipartition: centers – leaves

(each edge connects a center and a leaf)

Let us start with $K_{1,3}$ -decompositions:

Proposition

A cubic graph admits a $K_{1,3}$ -decomposition if and only if it is bipartite.

Let us start with $K_{1,3}$ -decompositions:

Proposition

A cubic graph admits a $K_{1,3}$ -decomposition if and only if it is bipartite.

Let us start with $K_{1,3}$ -decompositions:

Proposition

A cubic graph admits a $K_{1,3}$ -decomposition if and only if it is bipartite.

Let us start with $K_{1,3}$ -decompositions:

Proposition

A cubic graph admits a $K_{1,3}$ -decomposition if and only if it is bipartite.

Let us start with $K_{1,3}$ -decompositions:

Proposition

A cubic graph admits a $K_{1,3}$ -decomposition if and only if it is bipartite.

٨ ٨

What if we also allow K_3 's?

What if we also allow K_3 's?

We distinguish between *isolated* and *nonisolated* triangles:

1. 4

What if we also allow K_3 's?

We distinguish between *isolated* and *nonisolated* triangles:

What if we also allow K_3 's?

We distinguish between isolated and nonisolated triangles:

Lemma

If a cubic graph G admits a $\{K_{1,3}, K_3\}$ -decomposition D, then every isolated K_3 in G belongs to D.

What if we also allow K_3 's?

We distinguish between isolated and nonisolated triangles:

Lemma

If a cubic graph G admits a $\{K_{1,3}, K_3\}$ -decomposition D, then every isolated K_3 in G belongs to D.

What if we also allow K_3 's?

We distinguish between isolated and nonisolated triangles:

Lemma

If a cubic graph G admits a $\{K_{1,3}, K_3\}$ -decomposition D, then every isolated K_3 in G belongs to D.

If G also contains nonisolated K_3 's, then we only have two choices to try:

Summary of algorithm

▶ Select a diamond, pick one K_3

▶ Select a diamond, pick one K_3

- ▶ Select a diamond, pick one K_3
- ► Follow degree-1,2 nodes:
 - ▶ Degree 1: pick as leaf of $K_{1,3}$

- ▶ Select a diamond, pick one K_3
- ► Follow degree-1,2 nodes:
 - ▶ Degree 1: pick as leaf of $K_{1,3}$
 - ▶ Degree 2 outside any K_3 : pick as leaf of $K_{1,3}$
 - ▶ Degree 2 inside a K_3 : pick the K_3

- ▶ Select a diamond, pick one K_3
- ► Follow degree-1,2 nodes:
 - ▶ Degree 1: pick as leaf of $K_{1,3}$
 - ▶ Degree 2 outside any K_3 : pick as leaf of $K_{1,3}$
 - ▶ Degree 2 inside a K_3 : pick the K_3

- ▶ Select a diamond, pick one K_3
- ► Follow degree-1,2 nodes:
 - ▶ Degree 1: pick as leaf of $K_{1,3}$
 - ▶ Degree 2 outside any K_3 : pick as leaf of $K_{1,3}$
 - ▶ Degree 2 inside a K_3 : pick the K_3
- ▶ If it fails, try the other starting K_3

- ▶ Select a diamond, pick one K_3
- ► Follow degree-1,2 nodes:
 - ▶ Degree 1: pick as leaf of $K_{1,3}$
 - ▶ Degree 2 outside any K_3 : pick as leaf of $K_{1,3}$
 - ▶ Degree 2 inside a K_3 : pick the K_3
- ▶ If it fails, try the other starting K_3

- ▶ Select a diamond, pick one K_3
- ► Follow degree-1,2 nodes:
 - ▶ Degree 1: pick as leaf of $K_{1,3}$
 - ▶ Degree 2 outside any K_3 : pick as leaf of $K_{1,3}$
 - ▶ Degree 2 inside a K_3 : pick the K_3
- ▶ If it fails, try the other starting K_3

- ▶ Select a diamond, pick one K_3
- ► Follow degree-1,2 nodes:
 - ▶ Degree 1: pick as leaf of $K_{1,3}$
 - ▶ Degree 2 outside any K_3 : pick as leaf of $K_{1,3}$
 - ▶ Degree 2 inside a K_3 : pick the K_3
- ▶ If it fails, try the other starting K_3

- ▶ Select a diamond, pick one K_3
- ► Follow degree-1,2 nodes:
 - ▶ Degree 1: pick as leaf of $K_{1,3}$
 - ▶ Degree 2 outside any K_3 : pick as leaf of $K_{1,3}$
 - ▶ Degree 2 inside a K_3 : pick the K_3
- ▶ If it fails, try the other starting K_3

- ▶ Select a diamond, pick one K_3
- ► Follow degree-1,2 nodes:
 - ▶ Degree 1: pick as leaf of $K_{1,3}$
 - ▶ Degree 2 outside any K_3 : pick as leaf of $K_{1,3}$
 - ▶ Degree 2 inside a K_3 : pick the K_3
- ▶ If it fails, try the other starting K_3
- ▶ Only one branching ⇒ polynomial time algorithm

We now show that $\{K_{1,3}, P_4\}$ -DECOMPOSITION is NP-complete, using three reductions:

CUBIC PLANAR MONOTONE 1-IN-3 SATISFIABILITY

 \leq_P DEGREE-2,3 $\{K_{1,3}, K_3, P_4\}$ -DECOMPOSITION WITH MARKED EDGES

 $\leq_P \{K_{1,3}, K_3, P_4\}$ -DECOMPOSITION WITH MARKED EDGES

 $\leq_P \{K_{1,3}, P_4\}$ -DECOMPOSITION

We now show that $\{K_{1,3}, P_4\}$ -DECOMPOSITION is NP-complete, using three reductions:

cubic planar monotone 1-in-3 satisfiability

 \leq_P degree-2,3 $\{K_{1,3}, K_3, P_4\}$ -decomposition with marked edges

 $\leq_P \{K_{1,3}, K_3, P_4\}$ -DECOMPOSITION WITH MARKED EDGES

 $\leq_P \{K_{1,3}, P_4\}$ -DECOMPOSITION

A similar approach can be used to show the NP-completeness of $\{K_{1,3}, K_3, P_4\}$ -DECOMPOSITION.

The co-fish gadget

The co-fish gadget

The co-fish gadget

This gadget is equivalent to an edge

The co-fish gadget

This gadget is equivalent to an edge that cannot be in the middle of a $P_4 \Rightarrow$ marked edges.

The co-fish gadget

This gadget is equivalent to an edge that cannot be in the middle of a $P_4 \Rightarrow$ marked edges.

$\{K_{1,3}, K_3, P_4\}$ -DECOMPOSITION WITH MARKED EDGES

Input: a cubic graph G = (V, E) and a subset $M \subseteq E$ of edges.

Question: does G admit a $\{K_{1,3}, K_3, P_4\}$ -decomposition D such that no

edge in M is the middle edge of a P_4 in D and such that every

 K_3 in D has either one or two edges in M?

The net gadget

The net gadget

The net gadget

The net gadget is equivalent to 3 degree-2 nodes

The net gadget

The net gadget is equivalent to 3 degree-2 nodes

We can restrict our attention to DEGREE-2,3 $\{K_{1,3}, K_3, P_4\}$ -DECOMPOSITION WITH MARKED EDGES, a variant where the input graph contains vertices with degree 2 or 3.

Hardness results 3/3: satisfiability

CUBIC (PLANAR) MONOTONE 1-IN-3 SATISFIABILITY

Input: a Boolean formula $\phi = C_1 \wedge C_2 \wedge \cdots$ without negations; $|C_i| = 3$

for each i and each literal appears in exactly three clauses;

Question: is there an assignment of truth values $f: \Sigma \to \{\text{TRUE, FALSE}\}$ such that each clause of ϕ contains exactly one TRUE literal?

CUBIC PLANAR MONOTONE 1-IN-3 SATISFIABILITY

 \leq_{P} degree-2,3 $\{K_{1,3},\ K_{3},\ P_{4}\}\text{-decomposition with marked edges}$

 $\leq_P \{K_{1,3},\; K_3,\; P_4\}\text{-DECOMPOSITION WITH MARKED EDGES}$

 $\leq_P \{K_{1,3}, P_4\}$ -DECOMPOSITION

Clause

Variable

The reduction

▶ Map clauses onto C_5 's and variables onto marked $K_{1,3}$'s.

Clause

Variable

$$C = x_i \vee x_i \vee x_k$$

The reduction

▶ Map clauses onto C_5 's and variables onto marked $K_{1,3}$'s.

- ▶ Map clauses onto C_5 's and variables onto marked $K_{1,3}$'s.
- ▶ From assignments to decompositions: variables set to FALSE yield red $K_{1,3}$'s, those set to TRUE yield green $K_{1,3}$'s.

Clause Variable $C = x_i \lor x_j \lor x_k$

- ▶ Map clauses onto C_5 's and variables onto marked $K_{1,3}$'s.
- ▶ From assignments to decompositions: variables set to FALSE yield red $K_{1,3}$'s, those set to TRUE yield green $K_{1,3}$'s.

- ▶ Map clauses onto C_5 's and variables onto marked $K_{1,3}$'s.
- ▶ From assignments to decompositions: variables set to FALSE yield red $K_{1,3}$'s, those set to TRUE yield green $K_{1,3}$'s.

- ▶ Map clauses onto C_5 's and variables onto marked $K_{1,3}$'s.
- ▶ From assignments to decompositions: variables set to FALSE yield red $K_{1,3}$'s, those set to TRUE yield green $K_{1,3}$'s.
- ► From decompositions to assignments: show that a decomposable graph **must** conform to the above configuration ⇒ truth assignment

Conclusions

- Future work:
 - hardness for *planar* cubic graphs?
 - complexity of those problems for subcubic graphs?
 - generalise positive results to k-regular graphs for k > 3;

Thank you!

References

Dor, D. and Tarsi, M. (1997).

Graph decomposition is NP-complete: A complete proof of Holyer's conjecture. SIAM J. Comput., 26:1166–1187.

Dyer, M. E. and Frieze, A. M. (1985).

On the complexity of partitioning graphs into connected subgraphs.

Discrete Appl. Math., 10(2):139-153.

Holyer, I. (1981).

The NP-completeness of some edge-partition problems.

SIAM J. Comput., 10(4):713-717.

Kotzig, A. (1957).

 ${\sf Z}$ teorie konečných pravidelných grafov tretieho a štvrtého stupňa.

Časopis pro pěstování matematiky, pages 76-92.