
Decomposing Cubic Graphs into Connected
Subgraphs of Size Three

Laurent Bulteau Guillaume Fertin Anthony Labarre
Romeo Rizzi Irena Rusu

International Computing and Combinatorics Conference (COCOON)

August 3rd, 2016

The graph decomposition problem

Given a set S of graphs, an S-decomposition of a graph G is a
partition of E (G) into subgraphs, all of which are isomorphic to a
graph in S .

Example (S = connected graphs on four edges)

S-decomposition

Input: a graph G = (V ,E), a set S of graphs.
Question: does G admit an S-decomposition?

S-decomposition is NP-complete, even when S contains a single
connected graph with at least three edges [Dor and Tarsi, 1997].

The graph decomposition problem

Given a set S of graphs, an S-decomposition of a graph G is a
partition of E (G) into subgraphs, all of which are isomorphic to a
graph in S .

Example (S = connected graphs on four edges)

S-decomposition

Input: a graph G = (V ,E), a set S of graphs.
Question: does G admit an S-decomposition?

S-decomposition is NP-complete, even when S contains a single
connected graph with at least three edges [Dor and Tarsi, 1997].

The graph decomposition problem

Given a set S of graphs, an S-decomposition of a graph G is a
partition of E (G) into subgraphs, all of which are isomorphic to a
graph in S .

Example (S = connected graphs on four edges)

S-decomposition

Input: a graph G = (V ,E), a set S of graphs.
Question: does G admit an S-decomposition?

S-decomposition is NP-complete, even when S contains a single
connected graph with at least three edges [Dor and Tarsi, 1997].

The graph decomposition problem

Given a set S of graphs, an S-decomposition of a graph G is a
partition of E (G) into subgraphs, all of which are isomorphic to a
graph in S .

Example (S = connected graphs on four edges)

S-decomposition

Input: a graph G = (V ,E), a set S of graphs.
Question: does G admit an S-decomposition?

S-decomposition is NP-complete, even when S contains a single
connected graph with at least three edges [Dor and Tarsi, 1997].

Graph decompositions for cubic graphs

We study the S-decomposition problem in the case where G is
cubic and S is the set of all connected graphs on three edges.

Example

C6 =

K3 +K1,3 + P4

S ′-decomposition

Input: a cubic graph G = (V ,E), a non-empty set S ′ ⊆ S .
Question: does G admit a S ′-decomposition?

Graph decompositions for cubic graphs

We study the S-decomposition problem in the case where G is
cubic and S is the set of all connected graphs on three edges.

Example

C6 = K3 +

K1,3 + P4

S ′-decomposition

Input: a cubic graph G = (V ,E), a non-empty set S ′ ⊆ S .
Question: does G admit a S ′-decomposition?

Graph decompositions for cubic graphs

We study the S-decomposition problem in the case where G is
cubic and S is the set of all connected graphs on three edges.

Example

C6 = K3 +K1,3 +

P4

S ′-decomposition

Input: a cubic graph G = (V ,E), a non-empty set S ′ ⊆ S .
Question: does G admit a S ′-decomposition?

Graph decompositions for cubic graphs

We study the S-decomposition problem in the case where G is
cubic and S is the set of all connected graphs on three edges.

Example

C6 = K3 +K1,3 + P4

S ′-decomposition

Input: a cubic graph G = (V ,E), a non-empty set S ′ ⊆ S .
Question: does G admit a S ′-decomposition?

Graph decompositions for cubic graphs

We study the S-decomposition problem in the case where G is
cubic and S is the set of all connected graphs on three edges.

Example

C6 = K3 +K1,3 + P4

S ′-decomposition

Input: a cubic graph G = (V ,E), a non-empty set S ′ ⊆ S .
Question: does G admit a S ′-decomposition?

Our contributions

Here is a summary of what is known about decomposing graphs
using subsets of { , , }:

Allowed subgraphs Complexity according to graph class

cubic arbitrary

X

in P

NP-complete [Dyer and Frieze, 1985]
X O(1) (impossible) NP-complete [Holyer, 1981]

X in P [Kotzig, 1957] NP-complete [Dyer and Frieze, 1985]

X X

in P

NP-complete [Dyer and Frieze, 1985]
X X

NP-complete

NP-complete [Dyer and Frieze, 1985]
X X

in P

NP-complete [Dyer and Frieze, 1985]

X X X

NP-complete

NP-complete [Dyer and Frieze, 1985]

our contributions

Our contributions

Here is a summary of what is known about decomposing graphs
using subsets of { , , }:

Allowed subgraphs Complexity according to graph class

cubic arbitrary

X in P NP-complete [Dyer and Frieze, 1985]
X O(1) (impossible) NP-complete [Holyer, 1981]

X in P [Kotzig, 1957] NP-complete [Dyer and Frieze, 1985]

X X in P NP-complete [Dyer and Frieze, 1985]
X X NP-complete NP-complete [Dyer and Frieze, 1985]

X X in P NP-complete [Dyer and Frieze, 1985]

X X X NP-complete NP-complete [Dyer and Frieze, 1985]

our contributions

Decomposing cubic graphs without K1,3’s

We need the following result:

Proposition ([Kotzig, 1957])

A cubic graph admits a P4-decomposition if and only if it has a
perfect matching.

Decomposing cubic graphs without K1,3’s

We need the following result:

Proposition ([Kotzig, 1957])

A cubic graph admits a P4-decomposition if and only if it has a
perfect matching.

Decomposing cubic graphs without K1,3’s

We need the following result:

Proposition ([Kotzig, 1957])

A cubic graph admits a P4-decomposition if and only if it has a
perfect matching.

Decomposing cubic graphs without K1,3’s

We need the following result:

Proposition ([Kotzig, 1957])

A cubic graph admits a P4-decomposition if and only if it has a
perfect matching.

Decomposing cubic graphs without K1,3’s

We need the following result:

Proposition ([Kotzig, 1957])

A cubic graph admits a P4-decomposition if and only if it has a
perfect matching.

Decomposing cubic graphs without K1,3’s

We need the following result:

Proposition ([Kotzig, 1957])

A cubic graph admits a P4-decomposition if and only if it has a
perfect matching.

Decomposing cubic graphs without K1,3’s

We need the following result:

Proposition ([Kotzig, 1957])

A cubic graph admits a P4-decomposition if and only if it has a
perfect matching.

Decomposing cubic graphs without K1,3’s

We need the following result:

Proposition ([Kotzig, 1957])

A cubic graph admits a P4-decomposition if and only if it has a
perfect matching.

We strengthen this result as follows:

Proposition

A cubic graph admits a {K3,P4}-decomposition if and only if it has
a perfect matching.

Degree constraint:

A red vertex (degree 2) in some subgraph of the
decomposition must be blue (degree 1) in another.

Use counting argument ⇒ no K3 can be used.

Decomposing cubic graphs without K1,3’s

We need the following result:

Proposition ([Kotzig, 1957])

A cubic graph admits a P4-decomposition if and only if it has a
perfect matching.

We strengthen this result as follows:

Proposition

A cubic graph admits a {K3,P4}-decomposition if and only if it has
a perfect matching.

Degree constraint:

A red vertex (degree 2) in some subgraph of the
decomposition must be blue (degree 1) in another.

Use counting argument ⇒ no K3 can be used.

Decomposing cubic graphs without K1,3’s

We need the following result:

Proposition ([Kotzig, 1957])

A cubic graph admits a P4-decomposition if and only if it has a
perfect matching.

We strengthen this result as follows:

Proposition

A cubic graph admits a {K3,P4}-decomposition if and only if it has
a perfect matching.

Degree constraint:

A red vertex (degree 2) in some subgraph of the
decomposition must be blue (degree 1) in another.

Use counting argument ⇒ no K3 can be used.

Decomposing cubic graphs without P4’s

Let us start with K1,3-decompositions:

Proposition

A cubic graph admits a K1,3-decomposition if and only if it is
bipartite.

Proof.

⇒ A center (red) belongs to only one subgraph
⇒ Bipartition: centers – leaves
(each edge connects a center and a leaf)

⇐
Use one part for centers, the other for
leaves

Decomposing cubic graphs without P4’s

Let us start with K1,3-decompositions:

Proposition

A cubic graph admits a K1,3-decomposition if and only if it is
bipartite.

Proof.

⇒ A center (red) belongs to only one subgraph
⇒ Bipartition: centers – leaves
(each edge connects a center and a leaf)

⇐
Use one part for centers, the other for
leaves

Decomposing cubic graphs without P4’s

Let us start with K1,3-decompositions:

Proposition

A cubic graph admits a K1,3-decomposition if and only if it is
bipartite.

Proof.

⇒ A center (red) belongs to only one subgraph
⇒ Bipartition: centers – leaves
(each edge connects a center and a leaf)

⇐
Use one part for centers, the other for
leaves

Decomposing cubic graphs without P4’s

Let us start with K1,3-decompositions:

Proposition

A cubic graph admits a K1,3-decomposition if and only if it is
bipartite.

Proof.

⇒ A center (red) belongs to only one subgraph
⇒ Bipartition: centers – leaves
(each edge connects a center and a leaf)

⇐
Use one part for centers, the other for
leaves

Decomposing cubic graphs without P4’s

Let us start with K1,3-decompositions:

Proposition

A cubic graph admits a K1,3-decomposition if and only if it is
bipartite.

Proof.

⇒ A center (red) belongs to only one subgraph
⇒ Bipartition: centers – leaves
(each edge connects a center and a leaf)

⇐
Use one part for centers, the other for
leaves

Decomposing cubic graphs without P4’s

Let us start with K1,3-decompositions:

Proposition

A cubic graph admits a K1,3-decomposition if and only if it is
bipartite.

Proof.

⇒ A center (red) belongs to only one subgraph
⇒ Bipartition: centers – leaves
(each edge connects a center and a leaf)

⇐
Use one part for centers, the other for
leaves

Decomposing cubic graphs without P4’s

What if we also allow K3’s?

We distinguish between isolated and nonisolated triangles:

Lemma

If a cubic graph G admits a {K1,3,K3}-decomposition D, then
every isolated K3 in G belongs to D.

Decomposing cubic graphs without P4’s

What if we also allow K3’s?

We distinguish between isolated and nonisolated triangles:

Lemma

If a cubic graph G admits a {K1,3,K3}-decomposition D, then
every isolated K3 in G belongs to D.

Decomposing cubic graphs without P4’s

What if we also allow K3’s?

We distinguish between isolated and nonisolated triangles:

Lemma

If a cubic graph G admits a {K1,3,K3}-decomposition D, then
every isolated K3 in G belongs to D.

Decomposing cubic graphs without P4’s

What if we also allow K3’s?

We distinguish between isolated and nonisolated triangles:

Lemma

If a cubic graph G admits a {K1,3,K3}-decomposition D, then
every isolated K3 in G belongs to D.

Decomposing cubic graphs without P4’s

What if we also allow K3’s?

We distinguish between isolated and nonisolated triangles:

Lemma

If a cubic graph G admits a {K1,3,K3}-decomposition D, then
every isolated K3 in G belongs to D.

Decomposing cubic graphs without P4’s

What if we also allow K3’s?

We distinguish between isolated and nonisolated triangles:

Lemma

If a cubic graph G admits a {K1,3,K3}-decomposition D, then
every isolated K3 in G belongs to D.

Decomposing cubic graphs without P4’s

If G also contains nonisolated K3’s, then we only have two choices
to try:

Summary of algorithm

I Select a diamond, pick one K3

I Follow degree-1,2 nodes:

I Degree 1: pick as leaf of K1,3

I Degree 2 outside any K3:
pick as leaf of K1,3

I Degree 2 inside a K3: pick the K3

I If it fails, try the other starting K3

I Only one branching ⇒ polynomial
time algorithm

Summary of algorithm

I Select a diamond, pick one K3

I Follow degree-1,2 nodes:

I Degree 1: pick as leaf of K1,3

I Degree 2 outside any K3:
pick as leaf of K1,3

I Degree 2 inside a K3: pick the K3

I If it fails, try the other starting K3

I Only one branching ⇒ polynomial
time algorithm

Summary of algorithm

I Select a diamond, pick one K3

I Follow degree-1,2 nodes:

I Degree 1: pick as leaf of K1,3

I Degree 2 outside any K3:
pick as leaf of K1,3

I Degree 2 inside a K3: pick the K3

I If it fails, try the other starting K3

I Only one branching ⇒ polynomial
time algorithm

Summary of algorithm

I Select a diamond, pick one K3

I Follow degree-1,2 nodes:

I Degree 1: pick as leaf of K1,3

I Degree 2 outside any K3:
pick as leaf of K1,3

I Degree 2 inside a K3: pick the K3

I If it fails, try the other starting K3

I Only one branching ⇒ polynomial
time algorithm

Summary of algorithm

I Select a diamond, pick one K3

I Follow degree-1,2 nodes:

I Degree 1: pick as leaf of K1,3

I Degree 2 outside any K3:
pick as leaf of K1,3

I Degree 2 inside a K3: pick the K3

I If it fails, try the other starting K3

I Only one branching ⇒ polynomial
time algorithm

Summary of algorithm

I Select a diamond, pick one K3

I Follow degree-1,2 nodes:

I Degree 1: pick as leaf of K1,3

I Degree 2 outside any K3:
pick as leaf of K1,3

I Degree 2 inside a K3: pick the K3

I If it fails, try the other starting K3

I Only one branching ⇒ polynomial
time algorithm

Summary of algorithm

I Select a diamond, pick one K3

I Follow degree-1,2 nodes:

I Degree 1: pick as leaf of K1,3

I Degree 2 outside any K3:
pick as leaf of K1,3

I Degree 2 inside a K3: pick the K3

I If it fails, try the other starting K3

I Only one branching ⇒ polynomial
time algorithm

Summary of algorithm

I Select a diamond, pick one K3

I Follow degree-1,2 nodes:

I Degree 1: pick as leaf of K1,3

I Degree 2 outside any K3:
pick as leaf of K1,3

I Degree 2 inside a K3: pick the K3

I If it fails, try the other starting K3

I Only one branching ⇒ polynomial
time algorithm

Summary of algorithm

I Select a diamond, pick one K3

I Follow degree-1,2 nodes:

I Degree 1: pick as leaf of K1,3

I Degree 2 outside any K3:
pick as leaf of K1,3

I Degree 2 inside a K3: pick the K3

I If it fails, try the other starting K3

I Only one branching ⇒ polynomial
time algorithm

Summary of algorithm

I Select a diamond, pick one K3

I Follow degree-1,2 nodes:

I Degree 1: pick as leaf of K1,3

I Degree 2 outside any K3:
pick as leaf of K1,3

I Degree 2 inside a K3: pick the K3

I If it fails, try the other starting K3

I Only one branching ⇒ polynomial
time algorithm

Summary of algorithm

I Select a diamond, pick one K3

I Follow degree-1,2 nodes:

I Degree 1: pick as leaf of K1,3

I Degree 2 outside any K3:
pick as leaf of K1,3

I Degree 2 inside a K3: pick the K3

I If it fails, try the other starting K3

I Only one branching ⇒ polynomial
time algorithm

Hardness results

We now show that {K1,3, P4}-decomposition is NP-complete,
using three reductions:

cubic planar monotone 1-in-3 satisfiability

≤P degree-2,3 {K1,3, K3, P4}-decomposition with marked edges

≤P {K1,3, K3, P4}-decomposition with marked edges

≤P {K1,3, P4}-decomposition

A similar approach can be used to show the NP-completeness of
{K1,3, K3, P4}-decomposition.

Hardness results

We now show that {K1,3, P4}-decomposition is NP-complete,
using three reductions:

cubic planar monotone 1-in-3 satisfiability

≤P degree-2,3 {K1,3, K3, P4}-decomposition with marked edges

≤P {K1,3, K3, P4}-decomposition with marked edges

≤P {K1,3, P4}-decomposition

A similar approach can be used to show the NP-completeness of
{K1,3, K3, P4}-decomposition.

Hardness results 1/3: marked edges

The co-fish gadget

v
w

v

w

This gadget is equivalent to an edge

{K1,3, K3, P4}-decomposition with marked edges

Input: a cubic graph G = (V ,E) and a subset M ⊆ E of edges.
Question: does G admit a {K1,3, K3, P4}-decomposition D such that no

edge in M is the middle edge of a P4 in D and such that every
K3 in D has either one or two edges in M?

Hardness results 1/3: marked edges

The co-fish gadget

v
w

v

w

This gadget is equivalent to an edge

{K1,3, K3, P4}-decomposition with marked edges

Input: a cubic graph G = (V ,E) and a subset M ⊆ E of edges.
Question: does G admit a {K1,3, K3, P4}-decomposition D such that no

edge in M is the middle edge of a P4 in D and such that every
K3 in D has either one or two edges in M?

Hardness results 1/3: marked edges

The co-fish gadget

v
w

v

w

This gadget is equivalent to an edge

{K1,3, K3, P4}-decomposition with marked edges

Input: a cubic graph G = (V ,E) and a subset M ⊆ E of edges.
Question: does G admit a {K1,3, K3, P4}-decomposition D such that no

edge in M is the middle edge of a P4 in D and such that every
K3 in D has either one or two edges in M?

Hardness results 1/3: marked edges

The co-fish gadget

v
w

v

w

This gadget is equivalent to an edge that cannot be in the middle
of a P4 ⇒ marked edges.

{K1,3, K3, P4}-decomposition with marked edges

Input: a cubic graph G = (V ,E) and a subset M ⊆ E of edges.
Question: does G admit a {K1,3, K3, P4}-decomposition D such that no

edge in M is the middle edge of a P4 in D and such that every
K3 in D has either one or two edges in M?

Hardness results 1/3: marked edges

The co-fish gadget

v
w

v

w

This gadget is equivalent to an edge that cannot be in the middle
of a P4 ⇒ marked edges.

{K1,3, K3, P4}-decomposition with marked edges

Input: a cubic graph G = (V ,E) and a subset M ⊆ E of edges.
Question: does G admit a {K1,3, K3, P4}-decomposition D such that no

edge in M is the middle edge of a P4 in D and such that every
K3 in D has either one or two edges in M?

Hardness results 2/3: leafless subcubic graphs

The net gadget

t1

t2 t3

t1

t2 t3

The net gadget is equivalent to 3 degree-2 nodes

We can restrict our attention to degree-2,3 {K1,3, K3,
P4}-decomposition with marked edges, a variant where the
input graph contains vertices with degree 2 or 3.

Hardness results 2/3: leafless subcubic graphs

The net gadget

t1

t2 t3

t1

t2 t3

The net gadget is equivalent to 3 degree-2 nodes

We can restrict our attention to degree-2,3 {K1,3, K3,
P4}-decomposition with marked edges, a variant where the
input graph contains vertices with degree 2 or 3.

Hardness results 2/3: leafless subcubic graphs

The net gadget

t1

t2 t3

t1

t2 t3

The net gadget is equivalent to 3 degree-2 nodes

We can restrict our attention to degree-2,3 {K1,3, K3,
P4}-decomposition with marked edges, a variant where the
input graph contains vertices with degree 2 or 3.

Hardness results 2/3: leafless subcubic graphs

The net gadget

t1

t2 t3

t1

t2 t3

The net gadget is equivalent to 3 degree-2 nodes

We can restrict our attention to degree-2,3 {K1,3, K3,
P4}-decomposition with marked edges, a variant where the
input graph contains vertices with degree 2 or 3.

Hardness results 3/3: satisfiability

cubic (planar) monotone 1-in-3 satisfiability

Input: a Boolean formula φ = C1∧C2∧· · · without negations; |Ci | = 3
for each i and each literal appears in exactly three clauses;

Question: is there an assignment of truth values f : Σ→ {true, false}
such that each clause of φ contains exactly one true literal?

cubic planar monotone 1-in-3 satisfiability

≤P degree-2,3 {K1,3, K3, P4}-decomposition with marked edges

≤P {K1,3, K3, P4}-decomposition with marked edges

≤P {K1,3, P4}-decomposition

The reduction from cubic mono-1-in-3-sat

VariableClause

C = xi ∨ xj ∨ xk

xi

xj xk

The reduction
I Map clauses onto C5’s and variables onto marked K1,3’s.

I From assignments to decompositions: variables set to false
yield red K1,3’s, those set to true yield green K1,3’s.

I From decompositions to assignments: show that a
decomposable graph must conform to the above configuration
⇒ truth assignment

The reduction from cubic mono-1-in-3-sat

VariableClause C = xi ∨ xj ∨ xk

xi

xj xk

The reduction
I Map clauses onto C5’s and variables onto marked K1,3’s.

I From assignments to decompositions: variables set to false
yield red K1,3’s, those set to true yield green K1,3’s.

I From decompositions to assignments: show that a
decomposable graph must conform to the above configuration
⇒ truth assignment

The reduction from cubic mono-1-in-3-sat

VariableClause C = xi ∨ xj ∨ xk

xi

xj xk

The reduction
I Map clauses onto C5’s and variables onto marked K1,3’s.

I From assignments to decompositions: variables set to false
yield red K1,3’s, those set to true yield green K1,3’s.

I From decompositions to assignments: show that a
decomposable graph must conform to the above configuration
⇒ truth assignment

The reduction from cubic mono-1-in-3-sat

VariableClause C = xi ∨ xj ∨ xk

xi

xj xk

The reduction
I Map clauses onto C5’s and variables onto marked K1,3’s.

I From assignments to decompositions: variables set to false
yield red K1,3’s, those set to true yield green K1,3’s.

I From decompositions to assignments: show that a
decomposable graph must conform to the above configuration
⇒ truth assignment

The reduction from cubic mono-1-in-3-sat

VariableClause C = xi ∨ xj ∨ xk

xi

xj xk

The reduction
I Map clauses onto C5’s and variables onto marked K1,3’s.

I From assignments to decompositions: variables set to false
yield red K1,3’s, those set to true yield green K1,3’s.

I From decompositions to assignments: show that a
decomposable graph must conform to the above configuration
⇒ truth assignment

The reduction from cubic mono-1-in-3-sat

VariableClause C = xi ∨ xj ∨ xk

xi

xj xk

The reduction
I Map clauses onto C5’s and variables onto marked K1,3’s.

I From assignments to decompositions: variables set to false
yield red K1,3’s, those set to true yield green K1,3’s.

I From decompositions to assignments: show that a
decomposable graph must conform to the above configuration
⇒ truth assignment

Conclusions

I Future work:

I hardness for planar cubic graphs?
I complexity of those problems for subcubic graphs?
I generalise positive results to k-regular graphs for k > 3;

Thank you!

References
Dor, D. and Tarsi, M. (1997).

Graph decomposition is NP-complete: A complete proof of Holyer’s conjecture.
SIAM J. Comput., 26:1166–1187.

Dyer, M. E. and Frieze, A. M. (1985).

On the complexity of partitioning graphs into connected subgraphs.
Discrete Appl. Math., 10(2):139–153.

Holyer, I. (1981).

The NP-completeness of some edge-partition problems.
SIAM J. Comput., 10(4):713–717.

Kotzig, A. (1957).

Z teorie konečných pravidelných grafov tretieho a štvrtého stupňa.
Časopis pro pěstováńı matematiky, pages 76–92.

	Context and motivations
	Problem statement
	Positive results
	Negative results
	Future work

