Graphs, permutations and sets in genome rearrangement

Anthony Labarre¹ alabarre@ulb.ac.be

Université Libre de Bruxelles

February 6, 2006

Computers in Scientific Discovery III

¹Funded by the "Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture" (F.R.I.A.).

Introduction

A few biological definitions Sequence alignment Genome rearrangement General statement of the problem

Some problems and models in genome rearrangement

Sorting by transpositions Syntenic distance

The contribution of computers

Comparative genomics The On-Line Encyclopedia of Integer Sequences Computer-assisted proofs Parallel computing Further possible uses

A few biological definitions

- ► Life = DNA;
- ▶ DNA = double helix of *nucleotides* (A, C, G and T);
- Genes = sequences of nucleotides;
- Chromosome = (ordered) set of genes;

Sequence alignment

- Comparison at the nucleotide level;
- ► Example:

▶ Matches, differences, insertions and deletions;

Genome rearrangement

- Comparison at the gene level;
- ▶ Species differ not only by "content", but also by <u>order</u>:
 - genes spread over different sets of chromosomes;
 - genes ordered differently on the same chromosome;
- ► Example:
 - many genes in cabbage and turnip are 99% identical;

General statement of the problem

▶ The problem to solve can be summarized as:

Given two (or more) genomes, find a sequence of mutations that transforms one into the other and is of minimal length.

- ▶ Different assumptions yield different models:
 - gene order;
 - gene orientation;
 - duplications/deletions in the genome;
 - mutations taken into account;
 - weights given to mutations;
 - miscellaneous restrictions;

Known gene order: permutations

- Assumptions:
 - gene order is known;
 - each gene appears exactly once in each genome;
- ► Therefore:
 - $\{genes\} = \{1, 2, \dots, n\};$
 - genome = permutation of $\{1, 2, ..., n\}$;
- One or several operations;
- "Computing the X distance" \equiv "Sorting by X's";

Sorting by transpositions [Bafna and Pevzner, 1995]

A transposition exchanges adjacent intervals:

Cycle graph:

Complexity and diameter are unknown;

Sorting by transpositions: example

Sorting by transpositions: some personal results

- ▶ In [Labarre, 2005]:
 - Classes of permutations for which the distance can be computed;
 - New tight upper bound;
- In [Doignon and Labarre, 2006]:
 - Bijection between cycle graph structures and factorisations of permutations;
 - ► Formula for the number of permutations with a given cycle graph structure;
- ▶ In [Labarre, 2006]: tighter bounds and other tractable classes of permutations;

Genes spread over different chromosomes: sets

- ▶ A genome *G* is defined by:
 - \blacktriangleright a set of n genes $\{1, 2, \dots, n\}$, and
 - ▶ a collection of k chromosomes C_1 , C_2 , ..., C_k ;
- Problem: given genomes

$$\begin{cases}
G_1 = \{C_{1,1}, C_{1,2}, \dots, C_{1,k}\} \\
G_2 = \{C_{2,1}, C_{2,2}, \dots, C_{2,l}\}
\end{cases}$$

and a set of operations, find the minimum sequence of operations bringing G_1 into G_2 ;

Syntenic distance [Ferretti et al., 1996]

- Two genes on the same chromosome are "in synteny";
- ▶ The set of operations consists of:
 - 1. fissions;

$$C \rightarrow \{C_1, C_2\}$$

2. fusions;

$$\{D_1,D_2\}\to D$$

3. translocations;

$$\{C_1 \cup C_2, D_1 \cup D_2\} \rightarrow \{C_1 \cup D_1, C_2 \cup D_2\}$$

- ▶ Canonical form for this problem: Transform genome $G = \{C_1, C_2, \dots, C_k\}$ into $\{\{1\}, \{2\}, \dots, \{n\}\}$;
- Problem is NP-hard [DasGupta et al., 1998];

- ▶ Vertices are subsets C_i;
- ▶ Edges are $\{C_i, C_j\}$ $(i \neq j)$ such that $C_i \cap C_j \neq \emptyset$;

- ► Goal: eliminate all edges and obtain only singletons;
 - translocations: 0
 - ▶ fissions: 0

- ▶ Vertices are subsets C_i;
- ▶ Edges are $\{C_i, C_j\}$ $(i \neq j)$ such that $C_i \cap C_j \neq \emptyset$;

- ► Goal: eliminate all edges and obtain only singletons;
 - ▶ translocations: 1
 - ▶ fissions: 0

- ▶ Vertices are subsets C_i;
- ▶ Edges are $\{C_i, C_j\}$ $(i \neq j)$ such that $C_i \cap C_j \neq \emptyset$;

- ► Goal: eliminate all edges and obtain only singletons;
 - translocations: 2
 - ▶ fissions: 0

- Vertices are subsets C_i;
- ▶ Edges are $\{C_i, C_i\}$ $(i \neq j)$ such that $C_i \cap C_i \neq \emptyset$;

$$\{3,4\}$$
 $\{6,8\}$

- ▶ Goal: eliminate all edges and obtain only singletons;
 - translocations: 3
 - ▶ fissions: 0

- Vertices are subsets C_i;
- ▶ Edges are $\{C_i, C_i\}$ $(i \neq j)$ such that $C_i \cap C_j \neq \emptyset$;

$$\{3,4\}$$
 $\{6,8\}$

- ▶ Goal: eliminate all edges and obtain only singletons;
 - translocations: 4
 - ▶ fissions: 0

- Vertices are subsets C_i;
- ▶ Edges are $\{C_i, C_i\}$ $(i \neq j)$ such that $C_i \cap C_i \neq \emptyset$;

$$\{6, 8\}$$

{9}

$$\{1\}$$

- Goal: eliminate all edges and obtain only singletons;
 - translocations: 5
 - ▶ fissions: 0

- Vertices are subsets C_i;
- ▶ Edges are $\{C_i, C_i\}$ $(i \neq j)$ such that $C_i \cap C_i \neq \emptyset$;

$$\{6,8\}$$

{9}

$$\{1\}$$

- ▶ Goal: eliminate all edges and obtain only singletons;
 - translocations: 5
 - ▶ fissions, 1

- \triangleright Vertices are subsets C_i ;
- ► Edges are $\{C_i, C_j\}$ $(i \neq j)$ such that $C_i \cap C_j \neq \emptyset$; $\{3\}\{4\}$ $\{6\}\{8\}$ $\{2\}$

$$\{5\} \qquad \{1\}$$

- Goal: eliminate all edges and obtain only singletons;
 - translocations: 5
 - ▶ fissions: 2

Comparative genomics The On-Line Encyclopedia of Integer Sequences Computer-assisted proofs Parallel computing Further possible uses

Comparative genomics

- Extensive use of computers; in order to compare a set of species, you need to:
 - 1. get their genomes:
 - from a database if it has been done;
 - by sequencing them otherwise;
 - infer their phylogeny:
 - 2.1 compute distances pairwise (can be **NP**-hard);
 - 2.2 reconstruct putative scenarios (exponential number);
 - 2.3 discriminate (exponential number of good scenarios);
 - 3. make a choice between topologies;
- Use of software for each task;

Comparative genomics
The On-Line Encyclopedia of Integer Sequences
Computer-assisted proofs
Parallel computing
Further possible uses

The On-Line Encyclopedia of Integer Sequences²

- "What is the set of all objects that satisfy property P?";
 - 1. for k = 0, 1, 2, ..., generate all elements and count those that verify P;
 - 2. cardinalities form a sequence;
 - 3. input sequence into the Encyclopedia;
 - assuming there are matches, try to relate the sets of objects counted;
- Examples:
 - maximal instances for a particular distance;
 - ▶ instances with distance k (distribution);
 - graphs with a given structure [Doignon and Labarre, 2006];

²http://www.research.att.com/~njas/sequences/

Computer-assisted proofs

- ▶ Best approximation ratio for sorting by transpositions is 11/8 [Elias and Hartman, 2005];
- ▶ The proof is computer-assisted:
 - 1. generate cases to test (more than 80,000);
 - 2. solve cases:
 - verify solutions;
- Previous notorious examples:
 - ▶ the Four Colour Theorem [Appel and Haken, 1977, Appel et al., 1977];
 - the proof of Kepler's conjecture, which is to become even more computer-driven (see papers by Thomas Hales³);
- Heated topic;

³http://www.math.pitt.edu/~thales/

Parallel computing

- Genomes can be huge;
- So are the running times of exact algorithms for NP-hard (GR) problems;
- ▶ When possible:
 - partition instances into "independently sortable components";
 - assign each component to a different CPU/machine;

Further possible uses

- Underlying graph problems in genome rearrangement;
 - possible uses of GraPHedron?
- Characterization of special classes of permutations:
 - development of a conjecture-making tool on permutations?
- Efficiently solving GR problems (work by Fertin et al.):
 - SAT is a well-studied NP-hard problem;
 - transform instances of GR into instances of SAT;
 - solve GR problem through SAT solvers;

Comparative genomics
The On-Line Encyclopedia of Integer Sequences
Computer-assisted proofs
Parallel computing
Further possible uses

Appel, K. and Haken, W. (1977). Every planar map is four colorable. I. Discharging. *Illinois J. Math.*, 21(3):429–490.

Appel, K., Haken, W., and Koch, J. (1977). Every planar map is four colorable. II. Reducibility. *Illinois J. Math.*, 21(3):491–567.

Sorting permutations by transpositions. In *Proceedings of SODA*, pages 614–623, ACM/SIAM.

DasGupta, B., Jiang, T., Kannan, S., Li, M., and Sweedyk, E. (1998). On the complexity and approximation of syntenic distance. *Discrete Applied Mathematics*, 88 (1-3):59-82.

Doignon, J.-P. and Labarre, A. (2006). On Hultman numbers. Submitted

Bafna, V. and Pevzner, P. A. (1995).

Elias, I. and Hartman, T. (2005).

A 1.375-approximation algorithm for sorting by transpositions.

In Proceedings of WABI, LNBI 3692, pages 204-214.

Comparative genomics
The On-Line Encyclopedia of Integer Sequences
Computer-assisted proofs
Parallel computing
Further possible uses

Ferretti, V., Nadeau, J. H., and Sankoff, D. (1996). Original synteny.

In Proceedings of CPM, LNCS 1075, pages 159-167.

Labarre, A. (2005).

A new tight upper bound on the transposition distance. In *Proceedings of WABI*, LNBI 3692, pages 216–227.

Labarre, A. (2006).

New bounds and tractable instances for the transposition distance. *Submitted*.