The Clever Shopper Problem

Laurent Bulteau Danny Hermelin Anthony Labarre Stéphane
Vialette

The 13th International Computer Science Symposium in Russia

CIS[R

June 6th, 2018

UNIVERSITE
PARIS-EST
MARNE-LA-VALLEE

NODIINR (P
202

Introduction

@ CLEVER SHOPPER
- —

Introduction

9 CLEVER SHOPPER
Input:
by . a set of books B,

Introduction

@ CLEVER SHOPPER

Input:
51 a set of books B,
a set of shops S,

Introduction

9 CLEVER SHOPPER
Input:
b1 s1 a set of books B,

a set of shops S,
edges E C B x S,

-@ @
-@ ®

S4

S5

®
a @

Introduction

2

CLEVER SHOPPER

Input:

a set of books B,
a set of shops S,

edges E C B x S,

Introduction

CLEVER SHOPPER

Input:

a set of books B,

a set of shops S,

edges E C B x S,

with weights w: E — N7,

Introduction

CLEVER SHOPPER

y —
Input:
by t 5 51 a set of books B,
6 a set of shops S,
7 edges E C B x S,
by (8 52 with weights w: E — NT,
8
6
b3 53
8
7

Introduction
0P
- —
@@
6
7
- @@
8
6
b3 53
8
2

ba Z

CLEVER SHOPPER

Input:

a set of books B,

a set of shops S,

edges E C B x S,

with weights w: E — NT,

Output:

E’' C E such that:

e each b € B has 1 incident
edge

e minimum total cost

Introduction

/7
e . Total: (20

- —
by ‘: 5 51
6 12
7
by (8 2
6

8

b3) 53
8 0

7

by 2 S4
2

3

CLEVER SHOPPER

Input:

a set of books B,

a set of shops S,

edges E C B x S,

with weights w: E — NT,

Output:

E’' C E such that:

e each b € B has 1 incident
edge

e minimum total cost

Introduction

o™

b1 *5
6
7

. @
8
6

bs
8
2

ba Z

S1

12

Total: 20

CLEVER SHOPPER

Input:

a set of books B,

a set of shops S,

edges E C B x S,

with weights w: E — NT,
a discount function D,

Output:

E’' C E such that:

e each b € B has 1 incident
edge

e minimum total cost

Introduction

o

b1 5
&
7
bz(8
8
6

bs
8

7

b42

3

Total: 19

0

S1

53

CLEVER SHOPPER

Input:

a set of books B,

a set of shops S,

edges E C B x S,

with weights w: E — NT,
a discount function D,

Output:

E’' C E such that:

e each b € B has 1 incident
edge

e minimum total cost

Introduction

CLEVER SHOPPER

Input:

a set of books B,

a set of shops S,

edges E C B x S,

with weights w: E — NT,
a discount function D,

Output:

E’' C E such that:

e each b € B has 1 incident
edge

e minimum total cost

Introduction

CLEVER SHOPPER

Input:

a set of books B,

a set of shops S,

edges EC B x S,

with weights w: E — NT,
a discount function D,

a budget K € N*

Output:

E’ C E such that:

e each b € B has 1 incident
edge

e total price < K

Introduction

» Variant of INTERNET SHOPPING problem
[Blazewicz et al., 2010]
» Discounts <+ free shipping depending on specific sets of
purchased items
» Strongly NP-hard, even with free items and unit shipping costs

Introduction

» Variant of INTERNET SHOPPING problem
[Blazewicz et al., 2010]
» Discounts <+ free shipping depending on specific sets of
purchased items
» Strongly NP-hard, even with free items and unit shipping costs

» We seek a complete picture of the tractability of CLEVER
SHOPPER, with respect to:

» Number of books (n)
» Number of shops (m)
» Price range
Constant? Polynomially bounded? Unconstrained?
» Degree
Few books per shops ? Few shops selling each book?

Introduction

» Variant of INTERNET SHOPPING problem
[Blazewicz et al., 2010]
» Discounts <+ free shipping depending on specific sets of
purchased items
» Strongly NP-hard, even with free items and unit shipping costs

» We seek a complete picture of the tractability of CLEVER
SHOPPER, with respect to:
» Number of books (n)
» Number of shops (m)
» Price range
Constant? Polynomially bounded? Unconstrained?

» Degree
Few books per shops ? Few shops selling each book?

» Any approximation algorithm?

Results
Sparse instances:

Results

Sparse instances:

(¥ 2 NP-hard with book-degree 2, shop-degree 3 and unit prices 3-SaT

Results
Sparse instances:
(¥ 2 NP-hard with book-degree 2, shop-degree 3 and unit prices 3-SaT

ir 2 Polynomial if shop degree <2 Matching

Results

Sparse instances:
(¥ 2 NP-hard with book-degree 2, shop-degree 3 and unit prices 3-SaT
ir 2 Polynomial if shop degree <2 Matching

Few shops (parameter m):

Results

[+
i

[y

Sparse instances:
NP-hard with book-degree 2, shop-degree 3 and unit prices 3-SAT

2

Polynomial if shop degree <2

Few shops (parameter m):

NP-hard with 2 shops and unbounded prices

Matching

PARTITION

Results
Sparse instances:
(¥ 2 NP-hard with book-degree 2, shop-degree 3 and unit prices 3-SAT

ir 2 Polynomial if shop degree <2 Matching
Few shops (parameter m):
k7 £ NP-hard with 2 shops and unbounded prices PARTITION

£ XP for m with polynomial prices dynamic programming

Results

Sparse instances:

(¥ 2 NP-hard with book-degree 2, shop-degree 3 and unit prices 3-SAT

ir 2 Polynomial if shop degree <2 Matching
Few shops (parameter m):

k7 £ NP-hard with 2 shops and unbounded prices PARTITION
£ XP for m with polynomial prices dynamic programming

ke 2 W(1]-hard for m with polynomial prices BIN-PACKING

Results
Sparse instances:

[+

.a
|y

2 NP-hard with book-degree 2, shop-degree 3 and unit prices 3-SAT
=4 Polynomial if shop degree <2 Matching
Few shops (parameter m):

2 NP-hard with 2 shops and unbounded prices PARTITION
£ XP for m with polynomial prices dynamic programming
=3 W(1]-hard for m with polynomial prices BIN-PACKING
2 FPT for m with unit prices f-star subgraphs

Results
Sparse instances:

[+

.a
|y

2 NP-hard with book-degree 2, shop-degree 3 and unit prices 3-SAT
=4 Polynomial if shop degree <2 Matching
Few shops (parameter m):

2 NP-hard with 2 shops and unbounded prices PARTITION
£ XP for m with polynomial prices dynamic programming
=3 W(1]-hard for m with polynomial prices BIN-PACKING
2 FPT for m with unit prices f-star subgraphs
2 WI(1]-hard for “selected shops" with unit prices PerrecT CODE

Results
Sparse instances:

(¥ 2 NP-hard with book-degree 2, shop-degree 3 and unit prices 3-SAT

ir 2 Polynomial if shop degree <2 Matching
Few shops (parameter m):

k7 £ NP-hard with 2 shops and unbounded prices PARTITION
£ XP for m with polynomial prices dynamic programming

ke 2 W(1]-hard for m with polynomial prices BIN-PACKING
2 FPT for m with unit prices f-star subgraphs
(-]

= WI[1]-hard for “selected shops” with unit prices PerrecT CODE
Approximation:

Results

Sparse instances:

(¥ 2 NP-hard with book-degree 2, shop-degree 3 and unit prices 3-SAT

ir 2 Polynomial if shop degree <2 Matching
Few shops (parameter m):
k7 £ NP-hard with 2 shops and unbounded prices PARTITION
£ XP for m with polynomial prices dynamic programming
ke 2 W(1]-hard for m with polynomial prices BIN-PACKING
2 FPT for m with unit prices f-star subgraphs
2 WI(1]-hard for “selected shops" with unit prices PerrecT CODE
Approximation:
k2 2 No approximation is possible NP-hard with K =0

Results

Sparse instances:

(¥ 2 NP-hard with book-degree 2, shop-degree 3 and unit prices 3-SAT

ir 2 Polynomial if shop degree <2 Matching
Few shops (parameter m):
k7 £ NP-hard with 2 shops and unbounded prices PARTITION
£ XP for m with polynomial prices dynamic programming
ke 2 W(1]-hard for m with polynomial prices BIN-PACKING
2 FPT for m with unit prices f-star subgraphs
2 WI(1]-hard for “selected shops" with unit prices PerrecT CODE
Approximation:
k2 2 No approximation is possible NP-hard with K =0
k7 2 APX-hard to maximise the total discount... MAX 3-SAT

Results

Sparse instances:
(¥ 2 NP-hard with book-degree 2, shop-degree 3 and unit prices 3-SAT
ir 2 Polynomial if shop degree <2 Matching

Few shops (parameter m):

k7 £ NP-hard with 2 shops and unbounded prices PARTITION
£ XP for m with polynomial prices dynamic programming

ke 2 W(1]-hard for m with polynomial prices BIN-PACKING
2 FPT for m with unit prices f-star subgraphs
2 WI(1]-hard for “selected shops" with unit prices PerrecT CODE
Approximation:

k2 2 No approximation is possible NP-hard with K =0

k7 2 APX-hard to maximise the total discount... MAX 3-SAT
2 . but k-approximable for shop-degree k greedy

Results

Sparse instances:
(¥ 2 NP-hard with book-degree 2, shop-degree 3 and unit prices 3-SAT
ir 2 Polynomial if shop degree <2 Matching

Few shops (parameter m):

k7 £ NP-hard with 2 shops and unbounded prices PARTITION

£ XP for m with polynomial prices dynamic programming

ke 2 W(1]-hard for m with polynomial prices BIN-PACKING

2 FPT for m with unit prices f-star subgraphs

2 WI(1]-hard for “selected shops" with unit prices PerrecT CODE
Approximation:

k2 2 No approximation is possible NP-hard with K =0

k7 2 APX-hard to maximise the total discount... MAX 3-SAT

2 . but k-approximable for shop-degree k greedy

Few books (parameter n):

Results

Sparse instances:
(¥ 2 NP-hard with book-degree 2, shop-degree 3 and unit prices 3-SAT
ir 2 Polynomial if shop degree <2 Matching

Few shops (parameter m):

k7 £ NP-hard with 2 shops and unbounded prices PARTITION

£ XP for m with polynomial prices dynamic programming

ke 2 W(1]-hard for m with polynomial prices BIN-PACKING

2 FPT for m with unit prices f-star subgraphs

2 WI(1]-hard for “selected shops" with unit prices PerrecT CODE
Approximation:

k2 2 No approximation is possible NP-hard with K =0

k7 2 APX-hard to maximise the total discount... MAX 3-SAT

2 . but k-approximable for shop-degree k greedy

Few books (parameter n):

:';: 2 FPT dynamic programming

Results

Sparse instances:
(¥ 2 NP-hard with book-degree 2, shop-degree 3 and unit prices 3-SAT
ir 2 Polynomial if shop degree <2 Matching

Few shops (parameter m):

k7 £ NP-hard with 2 shops and unbounded prices PARTITION
£ XP for m with polynomial prices dynamic programming
ke 2 W(1]-hard for m with polynomial prices BIN-PACKING
£ FPT for m with unit prices f-star subgraphs
2 WI(1]-hard for “selected shops" with unit prices PerrecT CODE
Approximation:
k2 2 No approximation is possible NP-hard with K =0
k7 2 APX-hard to maximise the total discount... MAX 3-SAT
2 . but k-approximable for shop-degree k greedy
Few books (parameter n):
:';: 2 FPT dynamic programming
2 No polynomial kernel OR-composition of X3C

Results

Sparse instances:
(¥ 2 NP-hard with book-degree 2, shop-degree 3 and unit prices 3-SaT
ir 2 Polynomial if shop degree <2 Matching

Few shops (parameter m):

R
»N
jojo o jo e

Approximation:
e 2
i 2

2

Few books (parameter n):
[y

jo o

2 NP-hard with book-degree 2, shop-degree 3, unit prices

Reduction from Max 3-SAT, with 2 occurrences per literal

(x1Vx V.. (x2 V. 2Vx3V...) 2V x3Vx)

NN

m clauses, n variables

2 NP-hard with book-degree 2, shop-degree 3, unit prices
Reduction from MAX 3-SAT, with 2 occurrences per literal

‘ qf\ 67 M
X1 X2 X2 X3 Xa

m clauses, n variables

2 NP-hard with book-degree 2, shop-degree 3, unit prices
Reduction from MAX 3-SAT, with 2 occurrences per literal

m clauses, n variables

2 NP-hard with book-degree 2, shop-degree 3, unit prices
Reduction from MAX 3-SAT, with 2 occurrences per literal

e -

G Gy

All prices = 1

m clauses, n variables

2 NP-hard with book-degree 2, shop-degree 3, unit prices

Reduction from MAX 3-SAT, with 2 occurrences per literal

=R

‘4
........ ““

set xop = true

All prices = 1

m clauses, n variables

2 NP-hard with book-degree 2, shop-degree 3, unit prices

Reduction from MAX 3-SAT, with 2 occurrences per literal

NS

‘4
........ ““

set xop = true

All prices = 1

m clauses, n variables

2 NP-hard with book-degree 2, shop-degree 3, unit prices

Reduction from MAX 3-SAT, with 2 occurrences per literal

SRR

‘4
........ ““

set xop = true

All prices = 1

m clauses, n variables

2 NP-hard with book-degree 2, shop-degree 3, unit prices

Reduction from MAX 3-SAT, with 2 occurrences per literal

P

‘4
........ ““

set xop = true

All prices = 1

m clauses, n variables

2 NP-hard with book-degree 2, shop-degree 3, unit prices
Reduction from MAX 3-SAT, with 2 occurrences per literal

set xo =true

o _— Total discount:
_pnces = 2n + (1 per satisfied clause)

m clauses, n variables

£ Polynomial for shop-degree < 2

Algorithm
» Subtract minimum price for each book from its incident edges

2 0 0 @

10 9 11,7 4 5

=4 Vs

greedy solution = (12—-3) + 9+ 4+ 8 +7 =37

£ Polynomial for shop-degree < 2

Algorithm
» Subtract minimum price for each book from its incident edges

» Connect books sold by same shop with remaining cost

P AN

Bwy Z "0
get >

|

greedy solution =)+9+4+8+7=37

£ Polynomial for shop-degree < 2

Algorithm
» Subtract minimum price for each book from its incident edges

» Connect books sold by same shop with remaining cost

» (Subtract discount) wherever threshold is reached

greedy solution = (12—-3) + 9+ 4 4+ 8 +7 =37

£ Polynomial for shop-degree < 2

Algorithm
» Subtract minimum price for each book from its incident edges

» Connect books sold by same shop with remaining cost

» (Subtract discount) wherever threshold is reached

» Find max weight matching (on graph with opposite weights)

greedy solution = (12—-3) + 9+ 4 4+ 8 +7 =37

£ Polynomial for shop-degree < 2

Algorithm
» Subtract minimum price for each book from its incident edges
» Connect books sold by same shop with remaining cost

» (Subtract discount) wherever threshold is reached

» Find max weight matching (on graph with opposite weights)
» Matched edges yield a solution

Buy 2 10

get

greedy solution = (12—-3) + 9+ 4 4+ 8 +7 =37

£ Polynomial for shop-degree < 2

Algorithm
» Subtract minimum price for each book from its incident edges

» Connect books sold by same shop with remaining cost

» (Subtract discount) wherever threshold is reached

» Find max weight matching (on graph with opposite weights)
» Matched edges yield a solution

e o9

12 10 9 11 7

=N\

greedy solution = (12—-3) + 9+ 4 4+ 8 +7 =37
optimal solution = (12 —-3)+(11-3)+(5+8—-3)+7 =34

Results

[+
&2

Sparse instances:
(-]

o}

Few shops (parameter m):

2 NP-hard with 2 shops and unbounded prices PARTITION
£ XP for m with polynomial prices dynamic programming
=3 W(1]-hard for m with polynomial prices BIN-PACKING
2 FPT for m with unit prices f-star subgraphs
2 WI(1]-hard for “selected shops” with unit prices PerrecT CODE
Approximation:

2

2

2

Few books (parameter n):

}o o

2 NP-hard with 2 shops, unbounded prices

Reduction from PARTITION weakly NP-hard
Input: X ={x1,....xp} with 3 x; = 2A.

Question: 37X’ C X such that ./ x = A

> 2 shops, n books

» book i has cost x; (in both shops)
» discounts: buy A get —1

> budget: 2A —2

2 NP-hard with 2 shops, unbounded prices

Reduction from PARTITION weakly NP-hard
Input: X ={x1,....xp} with 3 x; = 2A.

Question: 37X’ C X such that ./ x = A

> 2 shops, n books

» book i has cost x; (in both shops)
» discounts: buy A get —1

> budget: 2A —2

2 NP-hard with 2 shops, unbounded prices

Reduction from PARTITION weakly NP-hard
Input: X ={x1,....xp} with 3 x; = 2A.

Question: 37X’ C X such that ./ x = A

> 2 shops, n books

» book i has cost x; (in both shops)
» discounts: buy A get —1

> budget: 2A —2

2 W([1]-hard for m shops, polynomial prices

Reduction from BIN-PACKING
Input: X ={x1,....xn} with 3° x xi = mB.

Question: 3?(Xi,..., Xy) partition of X with Zx,-er x; = B.

v

m shops, n books

v

book i has cost x; (in all shops)

v

discounts: buy B get —1
budget: m(B — 1)

v

2 W([1]-hard for m shops, polynomial prices

Reduction from BIN-PACKING <erongly w(]-hard
Input: X ={x1,....xn} with 3° x xi = mB.

Question: 3?(X1, ..., X,) partition of X with Zx,-er x; = B.

» m shops, n books

» book i has cost x; (in all shops)

> discounts: buy B get —1
» budget: m(B —1)

2 W([1]-hard for m shops, polynomial prices

Reduction from BIN-PACKING <erongly w(]-hard
Input: X ={x1,....xn} with 3° x xi = mB.

Question: 3?(X1, ..., X,) partition of X with Zx,-er x; = B.

» m shops, n books

» book i has cost x; (in all shops)

> discounts: buy B get —1
» budget: m(B —1)

Results

[+
&2

Sparse instances:
(-]

o}

Few shops (parameter m):

jojo jojo e

A
= No approximation is possible

proximation:

®o

.9. APX-hard to maximise the total discount...

2 . but k-approximable for shop-degree k

Few books (parameter n):

2
-4

NP-hard with K =0
MAX 3-SAT
greedy

2 The problem with approximations

When minimising the total cost: no approximation is possible.

2 The problem with approximations

When minimising the total cost: no approximation is possible.

> Take the (commercially questionable) discount function:

Buy > A
Get —A

» PARTITION, BIN-PACKING or PERFECT CODE reductions
yield:

CLEVER SHOPPER is NP-hard, even with K =0

2 The problem with approximations

When minimising the total cost: no approximation is possible.

> Take the (commercially questionable) discount function:

Buy > A
Get —A

» PARTITION, BIN-PACKING or PERFECT CODE reductions
yield:

CLEVER SHOPPER is NP-hard, even with K =0

Other optimisation strategy: maximise the total discount
» Meaningful only if each book has a uniform price
» MaX 3-SAT reduction yields APX-hardness.

Results
Sparse instances:

i 2
ik 2

Few shops (parameter m):

R
»N
jojo o jo e

Approximation:
2 2
i 2
2
Few books (parameter n):
E: 2 FPT dynamic programming

2 No polynomial kernel OR-composition of X3C

2 FPT for number of books n

Dynamic Programming Table:

VB' C B, j < m, p<j(B’) := Lowest possible price when buying
books of B’ from shops {s1,...,s;}.

Recurrence:

p<;(B") := min_ {p<j—1(B"\ B") + cost for books B” in s;}

2 FPT for number of books n

Dynamic Programming Table:

VB' C B, j < m, p<j(B’) := Lowest possible price when buying
books of B’ from shops {s1,...,s;}.

Recurrence:

p<;(B") := min_ {p<j—1(B"\ B") + cost for books B” in s;}

2 FPT for number of books n

Dynamic Programming Table:

VB' C B, j < m, p<j(B’) := Lowest possible price when buying
books of B’ from shops {s1,...,s;}.

Recurrence:

p<;(B") := min_ {p<j—1(B"\ B") + cost for books B” in s;}

2 FPT for number of books n

Dynamic Programming Table:

VB' C B, j < m, p<j(B’) := Lowest possible price when buying
books of B’ from shops {s1,...,s;}.

Recurrence:

p<;(B") := min_ {p<j—1(B"\ B") + cost for books B” in s;}

2 FPT for number of books n

Dynamic Programming Table:

VB' C B, j < m, p<j(B’) := Lowest possible price when buying
books of B’ from shops {s1,...,s;}.

Recurrence:

p<;(B") := min_ {p<j—1(B"\ B") + cost for books B” in s;}

2 FPT for number of books n

Dynamic Programming Table:

VB' C B, j < m, p<j(B’) := Lowest possible price when buying
books of B’ from shops {s1,...,s;}.

Recurrence:

p<;(B") := min_ {p<j—1(B"\ B") + cost for books B” in s;}

For each j: enumerate every
B// g Bl g B

— O(m3")

£?? Open questions

v

Constant-factor approximation (maximising total discount)?

v

Kernel for parameter m with unit prices?

v

FPT for number of shops + max. price?

v

What if all books are available everywhere at constant price?

£ Thank you! £

