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[Blazewicz et al., 2010]
» Discounts <+ free shipping depending on specific sets of
purchased items
» Strongly NP-hard, even with free items and unit shipping costs

» We seek a complete picture of the tractability of CLEVER
SHOPPER, with respect to:
» Number of books (n)
» Number of shops (m)
» Price range
Constant? Polynomially bounded? Unconstrained?

» Degree
Few books per shops ? Few shops selling each book?

» Any approximation algorithm?



Results
Sparse instances:



Results

Sparse instances:

(¥ 2 NP-hard with book-degree 2, shop-degree 3 and unit prices  3-SaT



Results
Sparse instances:
(¥ 2 NP-hard with book-degree 2, shop-degree 3 and unit prices  3-SaT

ir 2 Polynomial if shop degree <2 Matching



Results

Sparse instances:
(¥ 2 NP-hard with book-degree 2, shop-degree 3 and unit prices  3-SaT
ir 2 Polynomial if shop degree <2 Matching

Few shops (parameter m):



Results

[+
i

[y

Sparse instances:
NP-hard with book-degree 2, shop-degree 3 and unit prices  3-SAT

2

Polynomial if shop degree <2

Few shops (parameter m):

NP-hard with 2 shops and unbounded prices

Matching

PARTITION



Results
Sparse instances:
(¥ 2 NP-hard with book-degree 2, shop-degree 3 and unit prices  3-SAT

ir 2 Polynomial if shop degree <2 Matching
Few shops (parameter m):
k7 £ NP-hard with 2 shops and unbounded prices PARTITION

£ XP for m with polynomial prices dynamic programming



Results

Sparse instances:

(¥ 2 NP-hard with book-degree 2, shop-degree 3 and unit prices  3-SAT

ir 2 Polynomial if shop degree <2 Matching
Few shops (parameter m):

k7 £ NP-hard with 2 shops and unbounded prices PARTITION
£ XP for m with polynomial prices dynamic programming

ke 2 W(1]-hard for m with polynomial prices BIN-PACKING



Results
Sparse instances:

[+

.a
|y

2 NP-hard with book-degree 2, shop-degree 3 and unit prices  3-SAT
=4 Polynomial if shop degree <2 Matching
Few shops (parameter m):

2 NP-hard with 2 shops and unbounded prices PARTITION
£ XP for m with polynomial prices dynamic programming
=3 W(1]-hard for m with polynomial prices BIN-PACKING
2 FPT for m with unit prices f-star subgraphs



Results
Sparse instances:

[+

.a
|y

2 NP-hard with book-degree 2, shop-degree 3 and unit prices  3-SAT
=4 Polynomial if shop degree <2 Matching
Few shops (parameter m):

2 NP-hard with 2 shops and unbounded prices PARTITION
£ XP for m with polynomial prices dynamic programming
=3 W(1]-hard for m with polynomial prices BIN-PACKING
2 FPT for m with unit prices f-star subgraphs
2 WI(1]-hard for “selected shops" with unit prices PerrecT CODE



Results
Sparse instances:

(¥ 2 NP-hard with book-degree 2, shop-degree 3 and unit prices  3-SAT

ir 2 Polynomial if shop degree <2 Matching
Few shops (parameter m):

k7 £ NP-hard with 2 shops and unbounded prices PARTITION
£ XP for m with polynomial prices dynamic programming

ke 2 W(1]-hard for m with polynomial prices BIN-PACKING
2 FPT for m with unit prices f-star subgraphs
(-]

= WI[1]-hard for “selected shops” with unit prices PerrecT CODE
Approximation:



Results

Sparse instances:

(¥ 2 NP-hard with book-degree 2, shop-degree 3 and unit prices  3-SAT

ir 2 Polynomial if shop degree <2 Matching
Few shops (parameter m):
k7 £ NP-hard with 2 shops and unbounded prices PARTITION
£ XP for m with polynomial prices dynamic programming
ke 2 W(1]-hard for m with polynomial prices BIN-PACKING
2 FPT for m with unit prices f-star subgraphs
2 WI(1]-hard for “selected shops" with unit prices PerrecT CODE
Approximation:
k2 2 No approximation is possible NP-hard with K =0



Results

Sparse instances:

(¥ 2 NP-hard with book-degree 2, shop-degree 3 and unit prices  3-SAT

ir 2 Polynomial if shop degree <2 Matching
Few shops (parameter m):
k7 £ NP-hard with 2 shops and unbounded prices PARTITION
£ XP for m with polynomial prices dynamic programming
ke 2 W(1]-hard for m with polynomial prices BIN-PACKING
2 FPT for m with unit prices f-star subgraphs
2 WI(1]-hard for “selected shops" with unit prices PerrecT CODE
Approximation:
k2 2 No approximation is possible NP-hard with K =0
k7 2 APX-hard to maximise the total discount... MAX 3-SAT



Results

Sparse instances:
(¥ 2 NP-hard with book-degree 2, shop-degree 3 and unit prices  3-SAT
ir 2 Polynomial if shop degree <2 Matching

Few shops (parameter m):

k7 £ NP-hard with 2 shops and unbounded prices PARTITION
£ XP for m with polynomial prices dynamic programming

ke 2 W(1]-hard for m with polynomial prices BIN-PACKING
2 FPT for m with unit prices f-star subgraphs
2 WI(1]-hard for “selected shops" with unit prices PerrecT CODE
Approximation:

k2 2 No approximation is possible NP-hard with K =0

k7 2 APX-hard to maximise the total discount... MAX 3-SAT
2 . but k-approximable for shop-degree k greedy



Results

Sparse instances:
(¥ 2 NP-hard with book-degree 2, shop-degree 3 and unit prices  3-SAT
ir 2 Polynomial if shop degree <2 Matching

Few shops (parameter m):

k7 £ NP-hard with 2 shops and unbounded prices PARTITION

£ XP for m with polynomial prices dynamic programming

ke 2 W(1]-hard for m with polynomial prices BIN-PACKING

2 FPT for m with unit prices f-star subgraphs

2 WI(1]-hard for “selected shops" with unit prices PerrecT CODE
Approximation:

k2 2 No approximation is possible NP-hard with K =0

k7 2 APX-hard to maximise the total discount... MAX 3-SAT

2 . but k-approximable for shop-degree k greedy

Few books (parameter n):



Results

Sparse instances:
(¥ 2 NP-hard with book-degree 2, shop-degree 3 and unit prices  3-SAT
ir 2 Polynomial if shop degree <2 Matching

Few shops (parameter m):

k7 £ NP-hard with 2 shops and unbounded prices PARTITION

£ XP for m with polynomial prices dynamic programming

ke 2 W(1]-hard for m with polynomial prices BIN-PACKING

2 FPT for m with unit prices f-star subgraphs

2 WI(1]-hard for “selected shops" with unit prices PerrecT CODE
Approximation:

k2 2 No approximation is possible NP-hard with K =0

k7 2 APX-hard to maximise the total discount... MAX 3-SAT

2 . but k-approximable for shop-degree k greedy

Few books (parameter n):

:';: 2 FPT dynamic programming



Results

Sparse instances:
(¥ 2 NP-hard with book-degree 2, shop-degree 3 and unit prices  3-SAT
ir 2 Polynomial if shop degree <2 Matching

Few shops (parameter m):

k7 £ NP-hard with 2 shops and unbounded prices PARTITION
£ XP for m with polynomial prices dynamic programming
ke 2 W(1]-hard for m with polynomial prices BIN-PACKING
£ FPT for m with unit prices f-star subgraphs
2 WI(1]-hard for “selected shops" with unit prices PerrecT CODE
Approximation:
k2 2 No approximation is possible NP-hard with K =0
k7 2 APX-hard to maximise the total discount... MAX 3-SAT
2 . but k-approximable for shop-degree k greedy
Few books (parameter n):
:';: 2 FPT dynamic programming
2 No polynomial kernel OR-composition of X3C



Results

Sparse instances:
(¥ 2 NP-hard with book-degree 2, shop-degree 3 and unit prices  3-SaT
ir 2 Polynomial if shop degree <2 Matching

Few shops (parameter m):

R
»N
jojo o jo e

Approximation:
e 2
i 2

2

Few books (parameter n):
[y

jo o



2 NP-hard with book-degree 2, shop-degree 3, unit prices

Reduction from Max 3-SAT, with 2 occurrences per literal

(x1Vx V.. (x2 V. 2Vx3V...) 2V x3Vx)

NN

m clauses, n variables



2 NP-hard with book-degree 2, shop-degree 3, unit prices
Reduction from MAX 3-SAT, with 2 occurrences per literal

‘ qf\ 67 M
X1 X2 X2 X3 Xa

m clauses, n variables



2 NP-hard with book-degree 2, shop-degree 3, unit prices
Reduction from MAX 3-SAT, with 2 occurrences per literal

m clauses, n variables



2 NP-hard with book-degree 2, shop-degree 3, unit prices
Reduction from MAX 3-SAT, with 2 occurrences per literal

e -

G Gy

All prices = 1

m clauses, n variables



2 NP-hard with book-degree 2, shop-degree 3, unit prices

Reduction from MAX 3-SAT, with 2 occurrences per literal

=R

‘4
........ ““

set xop = true

All prices = 1

m clauses, n variables



2 NP-hard with book-degree 2, shop-degree 3, unit prices

Reduction from MAX 3-SAT, with 2 occurrences per literal

NS

‘4
........ ““

set xop = true

All prices = 1

m clauses, n variables



2 NP-hard with book-degree 2, shop-degree 3, unit prices

Reduction from MAX 3-SAT, with 2 occurrences per literal

SRR

‘4
........ ““

set xop = true

All prices = 1

m clauses, n variables



2 NP-hard with book-degree 2, shop-degree 3, unit prices

Reduction from MAX 3-SAT, with 2 occurrences per literal

P

‘4
........ ““

set xop = true

All prices = 1

m clauses, n variables



2 NP-hard with book-degree 2, shop-degree 3, unit prices
Reduction from MAX 3-SAT, with 2 occurrences per literal

set xo =true
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_pnces = 2n + (1 per satisfied clause)
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£ Polynomial for shop-degree < 2

Algorithm
» Subtract minimum price for each book from its incident edges

» Connect books sold by same shop with remaining cost

» (Subtract discount) wherever threshold is reached

» Find max weight matching (on graph with opposite weights)
» Matched edges yield a solution

e o9

12 10 9 11 7

=N\

greedy solution = (12—-3) + 9+ 4 4+ 8 +7 =37
optimal solution = (12 —-3)+(11-3)+(5+8—-3)+7 =34
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2 The problem with approximations

When minimising the total cost: no approximation is possible.

> Take the (commercially questionable) discount function:

Buy > A
Get —A

» PARTITION, BIN-PACKING or PERFECT CODE reductions
yield:

CLEVER SHOPPER is NP-hard, even with K =0

Other optimisation strategy: maximise the total discount
» Meaningful only if each book has a uniform price
» MaX 3-SAT reduction yields APX-hardness.
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2 FPT for number of books n

Dynamic Programming Table:

VB' C B, j < m, p<j(B’) := Lowest possible price when buying
books of B’ from shops {s1,...,s;}.

Recurrence:

p<;(B") := min_ {p<j—1(B"\ B") + cost for books B” in s;}

For each j: enumerate every
B// g Bl g B

— O(m3")




£?? Open questions

v

Constant-factor approximation (maximising total discount)?

v

Kernel for parameter m with unit prices?

v

FPT for number of shops + max. price?

v

What if all books are available everywhere at constant price?

£ Thank you! £



