Sorting With Forbidden Intermediates

Carlo Comin Anthony Labarre Romeo Rizzi Stéphane Vialette

foa]- 1)
"'ﬁ“"\"" SCHLOSS DAGSTUHL
junfelll L

Leibniz-Zentrum fiir Informatik

February 15th, 2016

Genome rearrangements for permutations

» Permutations model genomes with the same “contents” without

duplication:
5 1 2 4 7 3 6 (A)
genome rearrangements (only affect order)
1 2 3 4 3 6 7 (B)

> The actual numbering is irrelevant, so we assume either genome is
the identity permutation . = (12 --- n);

> The classical (family of) problem(s):

GENOME REARRANGEMENT (PERMUTATIONS)

Input: a permutation 7 in S, a set S of (per)mutations;
Goal: find a shortest sorting sequence of elements of S for 7.

Three examples

» Letussort m=(321987 605 4) using three different sets

of operations:

Reversals Block-interchanges

(321987654) (3 2 198765 4)
(12398765 4) 198765234)
(123456789) 1234876509)

)

(
(
(1234576809
(123456789)

v

Block-transpositions

(32198765 4)
(3421798 765)
(198341276 5)
(12769 8345)
(12783456 9)
(1234567809)

» All these sequences are optimal (proofs omitted);

» The distance of 7 is the length of an optimal sequence;

Issues with the model

» The overall approach is criticised for various reasons:
> permutations are too restricted ;
... but many other models exist
» operations are too restricted;
... but we can consider several of them at once
» complexity issues;
... but we have SAT and LP solvers if need be

> ..

» Another critical issue needs addressing (next slide);

Phylogenies
» One motivation for measuring similarities between genomes

to reconstruct ancestral genomes and phylogenies;

Atropoides mexicanus

Cerrophidion wilsoni

2% Bothriechis schlegelii

Bothriechis supraciliaris

10100 |Costa Rica

Honduras | Bothriechis schlegelii
0892 INicaragua

Bothriechis nigroviridis
Bothriechis lateralis

1.0/100

USNM 579873
USNM 579874
USNM 579875 | Bothriechis sp. nov.

& Bothriechis marchi
uatemala

Bothriechis thalassinus
Bothriechis bicolor
Bothriechis aurifer
Bothriechis rowleyi

source: https://commons.wikimedia.org/wiki/File:Drynarioid_phylogeny.png

S

https://commons.wikimedia.org/wiki/File:Drynarioid_phylogeny.png

Phylogenies

» One motivation for measuring similarities between genomes is
to reconstruct ancestral genomes and phylogenies;

Atropoides mexicanus
Cerrophidion wilsoni

2 Bothriechis schlegelii

Bothriechis supraciliaris
091778 | 10100 _|Costa Rica

Honduras | Bothriechis schlegelii
0892 INicaragua

Bothriechis nigroviridis

Bothriechis lateralis
10100

USNM 579873
USNM 579874
USNM 579875 | Bothriechis sp. nov.

Hond o .
(: newras | Bothriechis marchi
uatemala

Bothriechis thalassinus
Bothriechis bicolor
Bothriechis aurifer
Bothriechis rowleyi

source: https://commons.wikimedia.org/wiki/File:Drynarioid_phylogeny.png

1.0/100

0.72/44
1.083

(except the o’s)

» But some mutations are lethal;

» Which means some ancestors cannot exist and therefore
cannot have led to present-day species;

https://commons.wikimedia.org/wiki/File:Drynarioid_phylogeny.png

A more realistic model

» We must therefore forbid some intermediate configurations in
our search for a sorting sequence;

» Qur problem becomes:

GUIDED SORTING (PERMUTATIONS)

Input: a permutation 7 in Sp,, a set S of (per)mutations,
a set F of forbidden permutations,

Goal: find a shortest sorting sequence of elements of S for 7
that avoids all elements of F:

> Here “shortest” means “as if F were empty";

» Note: we do not try to restrict operations themselves or the
structure of genomes;

Example
> If 7=(2314), S = {exchanges} and F ={(1324),(3214)}

(2314)

/

(1324) (3214)

N

(1234)

the black paths are optimal but do not avoid F

Example
> If 7=(2314), S = {exchanges} and F ={(1324),(3214)}

4312)
7\
(2314) 4321)
/ |
(1324) (3214) 4231)
N\
(1234)

the black paths are optimal but do not avoid F
the blue path avoids F but is not optimal

Example
> If 7=(2314), S = {exchanges} and F ={(1324),(3214)}

(4312)

7N

(2314) (4321)

N

(1324) (3214) (2134) (4231)

Nl

(1234)

the black paths are optimal but do not avoid F
the blue path avoids F but is not optimal
the green path avoids F and is optimal

10

In this talk

» We focus on “exchanges” (i.e. algebraic transpositions);
» strongly connected to cycles of permutations;
» hopefully some connections carry on to cycles in breakpoint
graphs;
» We give a polynomial-time algorithm for solving the problem
on involutions;

11

Obvious and generic solution: Cayley graph

Definition

The Cayley graph G of S, with generating set S is defined by:
1. V(G)={r|me Sy}
2. E(G)={{m, 0} | ds(m,0) = 1}.

» Here's a straightforward solution to all variants of GUIDED
SORTING:

1. build the part of the Cayley graph we are interested in;
2. find a shortest path between 7 and ¢ (e.g. Dijkstra);

12

The Cayley graph approach in action

» Here's what would happen using our previous example:

13

The Cayley graph approach in action

» Here's what would happen using our previous example:

» Obviously, the approach does not scale (O(n!) vertices,
O(n'|S|) edges);

14

Involutions

» An involution is a permutation 7 such that # = 7~

» Equivalently: all its cycles have length < 2;

Example

(¢} o

9 10

32 1 5 4

Q)

1.

0

~ O

15

A simpler view of sorting by exchanges

» Involutions are “conceptually simpler” to sort:

» 1-cycles are left alone;
» a single exchange splits a 2-cycle, and we can always find one;

Example (split 2-cycles from left to right)

N oy L)

3 2 1 5 4 9 10 8 6 7

R =P
SIS S
S S
s P D
SIS
o9
D \e0)=
RS

Y
~Q
Y
>
Y
P
~Q
Y
9

&Y

16

From involutions to the hypercube graph

> 7 is an involution = we only need to worry about forbidden
involutions whose 2-cycles appear in 7;

17

From involutions to the hypercube graph

> 7 is an involution = we only need to worry about forbidden
involutions whose 2-cycles appear in 7;
» We map (m, F) onto ([k], F’), where:
> k is the number of 2-cycles of ;
» F’is a collection of forbidden subsets of [k];

18

From involutions to the hypercube graph

> 7 is an involution = we only need to worry about forbidden
involutions whose 2-cycles appear in 7;
» We map (m, F) onto ([k], F’), where:
> k is the number of 2-cycles of ;
» F’is a collection of forbidden subsets of [k];

Example

$r1= 2 1
@ @ ¥ ¥ @ @
P2 = 2 4 3 5 6
F= £y ¥y @ @
g3 = 2 1 4 3 5 6

10

From involutions to the hypercube graph

> 7 is an involution = we only need to worry about forbidden
involutions whose 2-cycles appear in 7;
» We map (m, F) onto ([k], F’), where:
> k is the number of 2-cycles of ;
» F’is a collection of forbidden subsets of [k];

Example
1 2 3
Y Y § %
T=2 1 4 3 6 5
Yy @ @ @ @
=12 1 3,4 5 6
@ P ¥ Y @ @
=1 ,2 4,3 5 6

)
)

S
<&
I
N
—
—
I
w

)
)

()]
o

20

From involutions to the hypercube graph

> 7 is an involution = we only need to worry about forbidden
involutions whose 2-cycles appear in 7;
» We map (m, F) onto ([k], F’), where:
> k is the number of 2-cycles of ;
» F’is a collection of forbidden subsets of [k];

Example
1 2 3

Y ¢ Y) {123} = 03]
T=2,1 4 3 6 5

Y @ @ @ @
=2 1 3,4 5 6

@ @ ¥ @ @
h2=1,2 4,3 5 6

)
)

S
<&
I
N
—
—
I
w

21

Properties of involutions and exchanges

» Involutions behave nicely with respect to exchanges;

» Only elements of F whose 2-cycles all appear in 7 need to be
considered:;

> GUIDED SORTING under these hypotheses reduces to the
following problem:

(s, t)-PATHS IN HYPERCUBE NETWORK

Input: the set [k] = {1,2,..., k}, a collection F of subsets of [k];
Goal: find a sequence of element deletions for [k] that empties it
while avoiding F.

29

Overview of the main algorithm

» We follow the Cayley graph approach but avoid its explicit
construction;
> otherwise: O(2) vertices and O(2¥~1k) edges;

» The main algorithm goes as follows:

(1,2,....k}

o

=0

bl

Overview of the main algorithm

» We follow the Cayley graph approach but avoid its explicit
construction;
> otherwise: O(2) vertices and O(2¥~1k) edges;

» The main algorithm goes as follows:
(1,2,....k}

l 1. S {[K]}, T + {0};

24

Overview of the main algorithm

» We follow the Cayley graph approach but avoid its explicit
construction;

» otherwise: O(2K) vertices and O(2%~1k) edges;
» The main algorithm goes as follows:

(1,2,....k}

BFS. 1S« {[K]}, T « {0};

2. launch a double BFS on S and T;

BFS;

25

Overview of the main algorithm

» We follow the Cayley graph approach but avoid its explicit
construction;
> otherwise: O(2) vertices and O(2¥~1k) edges;

» The main algorithm goes as follows:

{1,2,...,k}
BFS,
1. S+ {[K]}, T + {0};
2. launch a double BFS on S and T;
3. if a solution exists: return it;
BFS;

26

Overview of the main algorithm

» We follow the Cayley graph approach but avoid its explicit
construction;
> otherwise: O(2) vertices and O(2¥~1k) edges;

» The main algorithm goes as follows:

{1,2,...,k}
BFS,
1. S+ {[K]}, T + {0};
2. launch a double BFS on S and T;
3. if a solution exists: return it;
4. if no solution exists: return NO;
BFS;

27

Overview of the main algorithm

» We follow the Cayley graph approach but avoid its explicit
construction;
> otherwise: O(2) vertices and O(2¥~1k) edges;

» The main algorithm goes as follows:

(1,2,....k}

BFS. S {[K]}, T « {0};

if a solution exists: return it;

if no solution exists: return NO;

o s N

otherwise: compress S and 7 and
BFS; go back to 2;

0

» The compression phase ensures the running time remains
polynomial;

launch a double BFS on S and T;

28

The double BFS phase

> Classical breadth-first searches, skipping elements from F:
1. one upwards from the current bottom;
2. one downwards from the current top;
» To keep the running time polynomial, searches stop when we
have O(|F|dn) vertices (d is the difference in cardinality
between S and T);

20

Obvious case where a solution exists

» If SNT # 0, then a solution exists;

(1,2,...,k}

20

Obvious case where a solution exists

» If SNT # 0, then a solution exists;

(1,2,...,k}

21

Obvious case where a solution exists

» If SNT # 0, then a solution exists;

(1,2,...,k}

29

Obvious cases where no solution exists

» If S or T is empty, then no solution exists;

» If we've gone “deep (resp. high) enough” and SN T is empty,
then no solution exists:

1,2,... Kk}

213

The other cases

» We may have collected enough vertices to stop the BFS's, but
S and T don't intersect yet:

{1,2,....k}

0

> In this case, we may either compute a solution, or launch the

compression and keep going; 5

Interlude: Lehman and Ron’'s theorem

We need the following result?.
Theorem

Given n,m € N, consider two families of sets R C Hf{) and

S C Hg,s) where |R| =|S| = m and 0 < r < s < n. Assume there
exists a bijection ¢ : S — R such that ¢(S) C S for every S € S.
Then there exist m vertex-disjoint directed paths in H,, whose
union contains all the subsets in S and R.

In other words:

S S
G ¢ o o o o (&] Q g <)

i

- - > T C I N N N N>
R R

'E. Lehman and D. Ron, "On Disjoint Chains of Subsets ", Journal of
Combinatorial Theory, Series A, 94(2):399-404, 2001.

25K

Finding a solution with Theorem 1

1. Build a bipartite graph B with:

> vertex set SUT;
» edges connecting each element s of S with an element t of T
if t Cs;

2. Compute a maximum matching M of B;

3. If M| > |F|, there is at least one (S, T)-path that avoids F
(thanks to Lehman and Ron's theorem);

4. Otherwise, we keep going but reduce the size of 7 by
removing “non essential” vertices;

26

The compression phase

» Compute a minimum vertex cover X = Xs U X7 of B;
» (Xs=XNS, Xr=XNT)
» Since X is a vertex cover, no relevant path from S\ Xs to
T \ X7 exists;
» We then search for a solution using Xs and 7, and repeat the
process until we find one or reach the threshold of |F|dn

vertices;
» If no solution has been found, we return to the main algorithm
with 77 =, x0.

> (Xp is the X7 computed at the /* iteration)

7

Summary of results

» We can solve GUIDED SORTING by exchanges on involutions
in time:

» O(min(y\/|F| d k, |F|) | F|> d* k?) (“decision version”);
» O(min(\/|F| d k, | F|)|F|? d* k? + | F|>/2k3/2d) (“search

version”);

> (k is the number of 2-cycles in 7);

28

Future work

v

Complexity of (variants of) GUIDED SORTING?
» Other tractable cases?

» What if we relax “optimal” to “minimal”?

v

Do the algorithms generalise?
» Can we compute or benefit from an “implicit” encoding of F?

» F = Av,(some patterns);
» F =< some generators > \ some small set;
> ...

20

	Context
	Motivations and problem statement
	Solution
	Future work

