Sorting With Forbidden Intermediates

Carlo Comin Anthony Labarre Romeo Rizzi Stéphane Vialette

February 15th, 2016

Genome rearrangements for permutations

Permutations model genomes with the same "contents" without duplication:

- ▶ The actual numbering is irrelevant, so we assume either genome is the **identity permutation** $\iota = \langle 1 \ 2 \ \cdots \ n \rangle;$
- ► The classical (family of) problem(s):

GENOME REARRANGEMENT (PERMUTATIONS)

Input: a permutation π in S_n , a set S of (per)mutations; **Goal:** find a shortest sorting sequence of elements of S for π .

.

Three examples

Let us sort $\pi = \langle 3\ 2\ 1\ 9\ 8\ 7\ 6\ 5\ 4 \rangle$ using three different sets of operations:

Reversals

```
\begin{array}{c} \langle \underline{3\ 2\ 1}\ 9\ 8\ 7\ 6\ 5\ 4 \rangle \\ \langle 1\ 2\ 3\ \underline{9\ 8\ 7\ 6\ 5\ 4} \rangle \\ \langle 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9 \rangle \end{array}
```

Block-interchanges

```
$\langle 3 2 1 9 8 7 6 5 4 \rangle$$ $\langle 1 9 8 7 6 5 2 3 4 \rangle$$ $\langle 1 2 3 4 8 7 6 5 9 \rangle$$ $\langle 1 2 3 4 5 7 6 8 9 \rangle$$$ $\langle 1 2 3 4 5 6 7 8 9 \rangle$$$$$$$$$$$$$$$$$
```

Block-transpositions

```
\(\langle 3 \) 2 \) 1 \( 9 \) 8 \) 7 \( 6 \) 5 \\(\langle 4 \) 2 \) 1 \( 9 \) 8 \) 3 \( 4 \) 2 \( 7 \) 6 \( 9 \) 8 \) 3 \( 4 \) 5 \\(\langle 1 \) 2 \( 7 \) 8 \( 3 \) 4 \( 5 \) 6 \( 9 \) \\(\langle 1 \) 2 \( 3 \) 4 \( 5 \) 6 \( 7 \) 8 \( 9 \) \\(\langle 1 \) 2 \( 3 \) 4 \( 5 \) 6 \( 7 \) 8 \( 9 \) \\(\langle 1 \) 3 \( 4 \) 5 \( 6 \) 7 \( 8 \) 9 \\(\langle 1 \) 3 \( 4 \) 5 \( 6 \) 7 \( 8 \) 9 \(\langle 1 \)
```

- All these sequences are optimal (proofs omitted);
- ▶ The **distance** of π is the length of an optimal sequence;

Issues with the model

- ▶ The overall approach is criticised for various reasons:
 - permutations are too restricted;
 - ... but many other models exist
 - operations are too restricted;
 - ... but we can consider several of them at once
 - complexity issues;
 - ... but we have SAT and LP solvers if need be
 - **...**
- Another critical issue needs addressing (next slide);

Phylogenies

 One motivation for measuring similarities between genomes is to reconstruct ancestral genomes and phylogenies;

source: https://commons.wikimedia.org/wiki/File:Drynarioid_phylogeny.png

Phylogenies

 One motivation for measuring similarities between genomes is to reconstruct ancestral genomes and phylogenies;

But some mutations are lethal;

 Which means some ancestors cannot exist and therefore cannot have led to present-day species;

A more realistic model

- We must therefore forbid some intermediate configurations in our search for a sorting sequence;
- Our problem becomes:

GUIDED SORTING (PERMUTATIONS)

Input: a permutation π in S_n , a set S of (per)mutations, a set F of forbidden permutations;

Goal: find a shortest sorting sequence of elements of S for π that avoids all elements of F:

- ▶ Here "shortest" means "as if F were empty";
- Note: we do not try to restrict operations themselves or the structure of genomes;

Example

▶ If $\pi = \langle 2 \ 3 \ 1 \ 4 \rangle$, $S = \{\text{exchanges}\}\$ and $F = \{\langle 1 \ 3 \ 2 \ 4 \rangle, \langle 3 \ 2 \ 1 \ 4 \rangle\}$:

the black paths are optimal but do not avoid F

Example

▶ If $\pi = \langle 2\ 3\ 1\ 4 \rangle$, $S = \{\text{exchanges}\}\$ and $F = \{\langle 1\ 3\ 2\ 4 \rangle, \langle 3\ 2\ 1\ 4 \rangle\}$:

the black paths are optimal but do not avoid *F* the blue path avoids *F* but is not optimal

ç

Example

▶ If $\pi = \langle 2\ 3\ 1\ 4 \rangle$, $S = \{\text{exchanges}\}\$ and $F = \{\langle 1\ 3\ 2\ 4 \rangle, \langle 3\ 2\ 1\ 4 \rangle\}$:

the black paths are optimal but do not avoid *F* the blue path avoids *F* but is not optimal the green path avoids *F* and is optimal

In this talk

- ▶ We focus on "exchanges" (i.e. algebraic transpositions);
 - strongly connected to cycles of permutations;
 - hopefully some connections carry on to cycles in breakpoint graphs;
- We give a polynomial-time algorithm for solving the problem on involutions;

Obvious and generic solution: Cayley graph

Definition

The **Cayley graph** G of S_n with generating set S is defined by:

- 1. $V(G) = \{\pi \mid \pi \in S_n\};$
- 2. $E(G) = \{ \{\pi, \sigma\} \mid d_S(\pi, \sigma) = 1 \}.$

- Here's a straightforward solution to all variants of GUIDED SORTING:
 - 1. build the part of the Cayley graph we are interested in;
 - 2. find a shortest path between π and ι (e.g. Dijkstra);

The Cayley graph approach in action

▶ Here's what would happen using our previous example:

The Cayley graph approach in action

▶ Here's what would happen using our previous example:

▶ Obviously, the approach does not scale (O(n!) vertices, O(n!|S|) edges);

Involutions

- An **involution** is a permutation π such that $\pi = \pi^{-1}$;
- ▶ Equivalently: all its **cycles** have length ≤ 2 ;

Example

A simpler view of sorting by exchanges

- ▶ Involutions are "conceptually simpler" to sort:
 - ▶ 1-cycles are left alone;
 - ▶ a single exchange splits a 2-cycle, and we can always find one;

Example (split 2-cycles from left to right)

▶ π is an involution \Rightarrow we only need to worry about forbidden involutions whose 2-cycles appear in π ;

- π is an involution ⇒ we only need to worry about forbidden involutions whose 2-cycles appear in π;
- We map (π, F) onto ([k], F'), where:
 - k is the number of 2-cycles of π ;
 - ightharpoonup F' is a collection of forbidden subsets of [k];

- ▶ π is an involution \Rightarrow we only need to worry about forbidden involutions whose 2-cycles appear in π ;
- We map (π, F) onto ([k], F'), where:
 - k is the number of 2-cycles of π ;
 - ightharpoonup F' is a collection of forbidden subsets of [k];

Example

- ▶ π is an involution \Rightarrow we only need to worry about forbidden involutions whose 2-cycles appear in π ;
- We map (π, F) onto ([k], F'), where:
 - k is the number of 2-cycles of π ;
 - ightharpoonup F' is a collection of forbidden subsets of [k];

Example

- ▶ π is an involution \Rightarrow we only need to worry about forbidden involutions whose 2-cycles appear in π ;
- We map (π, F) onto ([k], F'), where:
 - k is the number of 2-cycles of π ;
 - ightharpoonup F' is a collection of forbidden subsets of [k];

Example

Properties of involutions and exchanges

- Involutions behave nicely with respect to exchanges;
- ▶ Only elements of F whose 2-cycles all appear in π need to be considered;
- ► GUIDED SORTING under these hypotheses reduces to the following problem:

(s,t)-PATHS IN HYPERCUBE NETWORK

Input: the set $[k] = \{1, 2, ..., k\}$, a collection \mathcal{F} of subsets of [k]; **Goal:** find a sequence of element deletions for [k] that empties it while avoiding \mathcal{F} .

- We follow the Cayley graph approach but avoid its explicit construction;
 - otherwise: $O(2^k)$ vertices and $O(2^{k-1}k)$ edges;
- ▶ The main algorithm goes as follows:

$$\{1,2,\ldots,k\}$$

- We follow the Cayley graph approach but avoid its explicit construction;
 - otherwise: $O(2^k)$ vertices and $O(2^{k-1}k)$ edges;
- ► The main algorithm goes as follows:

- We follow the Cayley graph approach but avoid its explicit construction;
 - otherwise: $O(2^k)$ vertices and $O(2^{k-1}k)$ edges;
- ▶ The main algorithm goes as follows:

- 1. $S \leftarrow \{[k]\}, \mathcal{T} \leftarrow \{\emptyset\};$
- 2. launch a double BFS on S and T;

- We follow the Cayley graph approach but avoid its explicit construction;
 - otherwise: $O(2^k)$ vertices and $O(2^{k-1}k)$ edges;
- ▶ The main algorithm goes as follows:

- 1. $S \leftarrow \{[k]\}, \mathcal{T} \leftarrow \{\emptyset\};$
- 2. launch a double BFS on ${\mathcal S}$ and ${\mathcal T}$;
- 3. if a solution exists: return it;

- We follow the Cayley graph approach but avoid its explicit construction;
 - otherwise: $O(2^k)$ vertices and $O(2^{k-1}k)$ edges;
- ▶ The main algorithm goes as follows:

- 1. $S \leftarrow \{[k]\}, \mathcal{T} \leftarrow \{\emptyset\};$
- 2. launch a double BFS on ${\mathcal S}$ and ${\mathcal T}$;
- 3. if a solution exists: return it;
- 4. if no solution exists: return NO;

- We follow the Cayley graph approach but avoid its explicit construction;
 - otherwise: $O(2^k)$ vertices and $O(2^{k-1}k)$ edges;
- ▶ The main algorithm goes as follows:

- 1. $S \leftarrow \{[k]\}, \mathcal{T} \leftarrow \{\emptyset\};$
- 2. launch a double BFS on S and T;
- 3. if a solution exists: return it;
- 4. if no solution exists: return NO;
- 5. otherwise: compress ${\cal S}$ and ${\cal T}$ and go back to 2;

The compression phase ensures the running time remains polynomial;

The double BFS phase

- ▶ Classical breadth-first searches, skipping elements from \mathcal{F} :
 - 1. one upwards from the current bottom;
 - 2. one downwards from the current top;
- ▶ To keep the running time polynomial, searches stop when we have $O(|\mathcal{F}|dn)$ vertices (d is the difference in cardinality between \mathcal{S} and \mathcal{T});

Obvious case where a solution exists

▶ If $S \cap T \neq \emptyset$, then a solution exists;

Obvious case where a solution exists

▶ If $S \cap T \neq \emptyset$, then a solution exists;

Obvious case where a solution exists

▶ If $S \cap T \neq \emptyset$, then a solution exists;

Obvious cases where no solution exists

- ▶ If S or T is empty, then no solution exists;
- ▶ If we've gone "deep (resp. high) enough" and $S \cap T$ is empty, then no solution exists:

The other cases

We may have collected enough vertices to stop the BFS's, but \mathcal{S} and \mathcal{T} don't intersect yet:

▶ In this case, we may either compute a solution, or launch the compression and keep going;

Interlude: Lehman and Ron's theorem

We need the following result¹.

Theorem

Given $n, m \in \mathbb{N}$, consider two families of sets $\mathcal{R} \subseteq \mathcal{H}_n^{(r)}$ and $\mathcal{S} \subseteq \mathcal{H}_n^{(s)}$ where $|\mathcal{R}| = |\mathcal{S}| = m$ and $0 \le r < s \le n$. Assume there exists a bijection $\varphi : \mathcal{S} \to \mathcal{R}$ such that $\varphi(\mathcal{S}) \subset \mathcal{S}$ for every $\mathcal{S} \in \mathcal{S}$. Then there exist m vertex-disjoint directed paths in \mathcal{H}_n whose union contains all the subsets in \mathcal{S} and \mathcal{R} .

In other words:

¹E. Lehman and D. Ron, "On Disjoint Chains of Subsets", *Journal of Combinatorial Theory, Series A*, 94(2):399–404, 2001.

Finding a solution with Theorem 1

- 1. Build a bipartite graph B with:
 - ▶ vertex set $S \cup T$;
 - edges connecting each element s of S with an element t of T if $t \subset s$;
- 2. Compute a maximum matching \mathcal{M} of B;
- 3. If $|\mathcal{M}| > |\mathcal{F}|$, there is at least one $(\mathcal{S}, \mathcal{T})$ -path that avoids \mathcal{F} (thanks to Lehman and Ron's theorem);
- 4. Otherwise, we keep going but reduce the size of \mathcal{T} by removing "non essential" vertices;

The compression phase

- ▶ Compute a minimum vertex cover $\mathcal{X} = \mathcal{X}_{\mathcal{S}} \cup \mathcal{X}_{\mathcal{T}}$ of B;
 - $(\mathcal{X}_{\mathcal{S}} = \mathcal{X} \cap \mathcal{S}, \ \mathcal{X}_{\mathcal{T}} = \mathcal{X} \cap \mathcal{T})$
- ▶ Since \mathcal{X} is a vertex cover, no relevant path from $S \setminus \mathcal{X}_{\mathcal{S}}$ to $T \setminus \mathcal{X}_{\mathcal{T}}$ exists;
- ▶ We then search for a solution using $\mathcal{X}_{\mathcal{S}}$ and \mathcal{T} , and repeat the process until we find one or reach the threshold of $|\mathcal{F}| dn$ vertices;
- ▶ If no solution has been found, we return to the main algorithm with $\mathcal{T}' = \bigcup_i \mathcal{X}_{\mathcal{T}}^{(i)}$;
 - $lackbrack (\mathcal{X}_{\mathcal{T}}^{(i)} ext{ is the } \mathcal{X}_{\mathcal{T}} ext{ computed at the } i^{ ext{th}} ext{ iteration})$

Summary of results

- ► We can solve GUIDED SORTING by exchanges on involutions in time:
 - ► $O(\min(\sqrt{|\mathcal{F}| d k}, |\mathcal{F}|) |\mathcal{F}|^2 d^4 k^2)$ ("decision version");
 - ▶ $O(\min(\sqrt{|\mathcal{F}| d k}, |\mathcal{F}|) |\mathcal{F}|^2 d^4 k^2 + |\mathcal{F}|^{5/2} k^{3/2} d)$ ("search version");
- (k is the number of 2-cycles in π);

Future work

- Complexity of (variants of) GUIDED SORTING?
- ▶ Other tractable cases?
- ▶ What if we relax "optimal" to "minimal"?
- Do the algorithms generalise?
- Can we compute or benefit from an "implicit" encoding of F?
 - $F = Av_n$ (some patterns);
 - ightharpoonup F = < some generators $> \setminus$ some small set;
 - **.** . . .