
Sorting With Forbidden Intermediates

Carlo Comin Anthony Labarre Romeo Rizzi Stéphane Vialette

February 15th, 2016

1

Genome rearrangements for permutations

I Permutations model genomes with the same “contents” without
duplication:

5 1 2 4 7 3 6 (A)

1 2 3 4 5 6 7 (B)

genome rearrangements (only affect order)

I The actual numbering is irrelevant, so we assume either genome is
the identity permutation ι = 〈1 2 · · · n〉;

I The classical (family of) problem(s):

genome rearrangement (permutations)

Input: a permutation π in Sn, a set S of (per)mutations;
Goal: find a shortest sorting sequence of elements of S for π.

2

Three examples

I Let us sort π = 〈3 2 1 9 8 7 6 5 4〉 using three different sets
of operations:

Reversals

〈3 2 1 9 8 7 6 5 4〉
〈1 2 3 9 8 7 6 5 4〉
〈1 2 3 4 5 6 7 8 9〉

Block-interchanges

〈3 2 1 9 8 7 6 5 4〉
〈1 9 8 7 6 5 2 3 4〉
〈1 2 3 4 8 7 6 5 9〉
〈1 2 3 4 5 7 6 8 9〉
〈1 2 3 4 5 6 7 8 9〉

Block-transpositions

〈3 2 1 9 8 7 6 5 4〉
〈3 4 2 1 9 8 7 6 5〉
〈1 9 8 3 4 2 7 6 5〉
〈1 2 7 6 9 8 3 4 5〉
〈1 2 7 8 3 4 5 6 9〉
〈1 2 3 4 5 6 7 8 9〉

I All these sequences are optimal (proofs omitted);

I The distance of π is the length of an optimal sequence;

3

Issues with the model

I The overall approach is criticised for various reasons:
I permutations are too restricted ;

... but many other models exist
I operations are too restricted;

... but we can consider several of them at once
I complexity issues;

... but we have SAT and LP solvers if need be
I ...

I Another critical issue needs addressing (next slide);

4

Phylogenies
I One motivation for measuring similarities between genomes is

to reconstruct ancestral genomes and phylogenies;

source: https://commons.wikimedia.org/wiki/File:Drynarioid_phylogeny.png

(except the •’s)

I But some mutations are lethal;
I Which means some ancestors cannot exist and therefore

cannot have led to present-day species;

5

https://commons.wikimedia.org/wiki/File:Drynarioid_phylogeny.png

Phylogenies
I One motivation for measuring similarities between genomes is

to reconstruct ancestral genomes and phylogenies;

source: https://commons.wikimedia.org/wiki/File:Drynarioid_phylogeny.png

(except the •’s)

I But some mutations are lethal;
I Which means some ancestors cannot exist and therefore

cannot have led to present-day species;
6

https://commons.wikimedia.org/wiki/File:Drynarioid_phylogeny.png

A more realistic model

I We must therefore forbid some intermediate configurations in
our search for a sorting sequence;

I Our problem becomes:

guided sorting (permutations)

Input: a permutation π in Sn, a set S of (per)mutations,
a set F of forbidden permutations;

Goal: find a shortest sorting sequence of elements of S for π
that avoids all elements of F ;

I Here “shortest” means “as if F were empty”;

I Note: we do not try to restrict operations themselves or the
structure of genomes;

7

Example

I If π = 〈2 3 1 4〉, S = {exchanges} and F = {〈1 3 2 4〉, 〈3 2 1 4〉}:

〈2 3 1 4〉

〈1 3 2 4〉 〈3 2 1 4〉

〈1 2 3 4〉

〈2 1 3 4〉

〈4 3 1 2〉

〈4 3 2 1〉

〈4 2 3 1〉

the black paths are optimal but do not avoid F

the blue path avoids F but is not optimal
the green path avoids F and is optimal

8

Example

I If π = 〈2 3 1 4〉, S = {exchanges} and F = {〈1 3 2 4〉, 〈3 2 1 4〉}:

〈2 3 1 4〉

〈1 3 2 4〉 〈3 2 1 4〉

〈1 2 3 4〉

〈2 1 3 4〉

〈4 3 1 2〉

〈4 3 2 1〉

〈4 2 3 1〉

the black paths are optimal but do not avoid F
the blue path avoids F but is not optimal

the green path avoids F and is optimal

9

Example

I If π = 〈2 3 1 4〉, S = {exchanges} and F = {〈1 3 2 4〉, 〈3 2 1 4〉}:

〈2 3 1 4〉

〈1 3 2 4〉 〈3 2 1 4〉

〈1 2 3 4〉

〈2 1 3 4〉

〈4 3 1 2〉

〈4 3 2 1〉

〈4 2 3 1〉

the black paths are optimal but do not avoid F
the blue path avoids F but is not optimal

the green path avoids F and is optimal

10

In this talk

I We focus on “exchanges” (i.e. algebraic transpositions);
I strongly connected to cycles of permutations;
I hopefully some connections carry on to cycles in breakpoint

graphs;

I We give a polynomial-time algorithm for solving the problem
on involutions;

11

Obvious and generic solution: Cayley graph

Definition

The Cayley graph G of Sn with generating set S is defined by:

1. V (G) = {π | π ∈ Sn};
2. E (G) = {{π, σ} | dS(π, σ) = 1}.

I Here’s a straightforward solution to all variants of guided
sorting:

1. build the part of the Cayley graph we are interested in;
2. find a shortest path between π and ι (e.g. Dijkstra);

12

The Cayley graph approach in action

I Here’s what would happen using our previous example:

1234

1243 1324 1432 2134 3214 4231

1342 1423 2143 2314 2431 3124 3241 3412 4132 4213 4321

2341 2413 3142 3421 4123 4312

I Obviously, the approach does not scale (O(n!) vertices,
O(n!|S |) edges);

13

The Cayley graph approach in action

I Here’s what would happen using our previous example:

1234

1243 1324 1432 2134 3214 4231

1342 1423 2143 2314 2431 3124 3241 3412 4132 4213 4321

2341 2413 3142 3421 4123 4312

I Obviously, the approach does not scale (O(n!) vertices,
O(n!|S |) edges);

14

Involutions

I An involution is a permutation π such that π = π−1;

I Equivalently: all its cycles have length ≤ 2;

Example

3 2 1 5 4 9 10 8 6 7

15

A simpler view of sorting by exchanges

I Involutions are “conceptually simpler” to sort:

I 1-cycles are left alone;
I a single exchange splits a 2-cycle, and we can always find one;

Example (split 2-cycles from left to right)

3 2 1 5 4 9 10 8 6 7

321 5 4 9 10 8 6 7

321 54 9 10 8 6 7

321 54 910 86 7

321 54 9 1086 7

16

From involutions to the hypercube graph
I π is an involution ⇒ we only need to worry about forbidden

involutions whose 2-cycles appear in π;

I We map (π,F) onto ([k],F ′), where:

I k is the number of 2-cycles of π;
I F ′ is a collection of forbidden subsets of [k];

Example

2 1 4 3 6 5

1 2 3

π =

2 1 3 4 5 6

1

φ1 =

1 2 4 3 5 6

2

φ2 =

2 1 4 3 5 6

1 2

φ3 =

2 1 3 4 6 5

1 3

φ4 =

F =

{1, 2, 3} = [3]

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

∅

F ′

17

From involutions to the hypercube graph
I π is an involution ⇒ we only need to worry about forbidden

involutions whose 2-cycles appear in π;
I We map (π,F) onto ([k],F ′), where:

I k is the number of 2-cycles of π;
I F ′ is a collection of forbidden subsets of [k];

Example

2 1 4 3 6 5

1 2 3

π =

2 1 3 4 5 6

1

φ1 =

1 2 4 3 5 6

2

φ2 =

2 1 4 3 5 6

1 2

φ3 =

2 1 3 4 6 5

1 3

φ4 =

F =

{1, 2, 3} = [3]

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

∅

F ′

18

From involutions to the hypercube graph
I π is an involution ⇒ we only need to worry about forbidden

involutions whose 2-cycles appear in π;
I We map (π,F) onto ([k],F ′), where:

I k is the number of 2-cycles of π;
I F ′ is a collection of forbidden subsets of [k];

Example

2 1 4 3 6 5

1 2 3

π =

2 1 3 4 5 6

1

φ1 =

1 2 4 3 5 6

2

φ2 =

2 1 4 3 5 6

1 2

φ3 =

2 1 3 4 6 5

1 3

φ4 =

F =

{1, 2, 3} = [3]

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

∅

F ′

19

From involutions to the hypercube graph
I π is an involution ⇒ we only need to worry about forbidden

involutions whose 2-cycles appear in π;
I We map (π,F) onto ([k],F ′), where:

I k is the number of 2-cycles of π;
I F ′ is a collection of forbidden subsets of [k];

Example

2 1 4 3 6 5

1 2 3

π =

2 1 3 4 5 6

1

φ1 =

1 2 4 3 5 6

2

φ2 =

2 1 4 3 5 6

1 2

φ3 =

2 1 3 4 6 5

1 3

φ4 =

F =

{1, 2, 3} = [3]

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

∅

F ′

20

From involutions to the hypercube graph
I π is an involution ⇒ we only need to worry about forbidden

involutions whose 2-cycles appear in π;
I We map (π,F) onto ([k],F ′), where:

I k is the number of 2-cycles of π;
I F ′ is a collection of forbidden subsets of [k];

Example

2 1 4 3 6 5

1 2 3

π =

2 1 3 4 5 6

1

φ1 =

1 2 4 3 5 6

2

φ2 =

2 1 4 3 5 6

1 2

φ3 =

2 1 3 4 6 5

1 3

φ4 =

F =

{1, 2, 3} = [3]

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

∅

F ′

21

Properties of involutions and exchanges

I Involutions behave nicely with respect to exchanges;

I Only elements of F whose 2-cycles all appear in π need to be
considered;

I guided sorting under these hypotheses reduces to the
following problem:

(s, t)-paths in hypercube network

Input: the set [k] = {1, 2, . . . , k}, a collection F of subsets of [k];
Goal: find a sequence of element deletions for [k] that empties it
while avoiding F .

22

Overview of the main algorithm
I We follow the Cayley graph approach but avoid its explicit

construction;
I otherwise: O(2k) vertices and O(2k−1k) edges;

I The main algorithm goes as follows:

BFS↓

BFS↑

{1, 2, . . . , k}

S

∅

T

1. S ← {[k]}, T ← {∅};
2. launch a double BFS on S and T ;
3. if a solution exists: return it;

4. if no solution exists: return NO;

5. otherwise: compress S and T and
go back to 2;

I The compression phase ensures the running time remains
polynomial;

23

Overview of the main algorithm
I We follow the Cayley graph approach but avoid its explicit

construction;
I otherwise: O(2k) vertices and O(2k−1k) edges;

I The main algorithm goes as follows:

BFS↓

BFS↑

{1, 2, . . . , k}

S

∅

T

1. S ← {[k]}, T ← {∅};

2. launch a double BFS on S and T ;
3. if a solution exists: return it;

4. if no solution exists: return NO;

5. otherwise: compress S and T and
go back to 2;

I The compression phase ensures the running time remains
polynomial;

24

Overview of the main algorithm
I We follow the Cayley graph approach but avoid its explicit

construction;
I otherwise: O(2k) vertices and O(2k−1k) edges;

I The main algorithm goes as follows:

BFS↓

BFS↑

{1, 2, . . . , k}

S

∅

T

1. S ← {[k]}, T ← {∅};
2. launch a double BFS on S and T ;

3. if a solution exists: return it;

4. if no solution exists: return NO;

5. otherwise: compress S and T and
go back to 2;

I The compression phase ensures the running time remains
polynomial;

25

Overview of the main algorithm
I We follow the Cayley graph approach but avoid its explicit

construction;
I otherwise: O(2k) vertices and O(2k−1k) edges;

I The main algorithm goes as follows:

BFS↓

BFS↑

{1, 2, . . . , k}

S

∅

T

1. S ← {[k]}, T ← {∅};
2. launch a double BFS on S and T ;
3. if a solution exists: return it;

4. if no solution exists: return NO;

5. otherwise: compress S and T and
go back to 2;

I The compression phase ensures the running time remains
polynomial;

26

Overview of the main algorithm
I We follow the Cayley graph approach but avoid its explicit

construction;
I otherwise: O(2k) vertices and O(2k−1k) edges;

I The main algorithm goes as follows:

BFS↓

BFS↑

{1, 2, . . . , k}

S

∅

T

1. S ← {[k]}, T ← {∅};
2. launch a double BFS on S and T ;
3. if a solution exists: return it;

4. if no solution exists: return NO;

5. otherwise: compress S and T and
go back to 2;

I The compression phase ensures the running time remains
polynomial;

27

Overview of the main algorithm
I We follow the Cayley graph approach but avoid its explicit

construction;
I otherwise: O(2k) vertices and O(2k−1k) edges;

I The main algorithm goes as follows:

BFS↓

BFS↑

{1, 2, . . . , k}

S

∅

T

1. S ← {[k]}, T ← {∅};
2. launch a double BFS on S and T ;
3. if a solution exists: return it;

4. if no solution exists: return NO;

5. otherwise: compress S and T and
go back to 2;

I The compression phase ensures the running time remains
polynomial;

28

The double BFS phase

I Classical breadth-first searches, skipping elements from F :

1. one upwards from the current bottom;
2. one downwards from the current top;

I To keep the running time polynomial, searches stop when we
have O(|F|dn) vertices (d is the difference in cardinality
between S and T);

29

Obvious case where a solution exists

I If S ∩ T 6= ∅, then a solution exists;

{1, 2, . . . , k}

S

∅

T

30

Obvious case where a solution exists

I If S ∩ T 6= ∅, then a solution exists;

{1, 2, . . . , k}

S

∅

T

31

Obvious case where a solution exists

I If S ∩ T 6= ∅, then a solution exists;

{1, 2, . . . , k}

S

∅

T

32

Obvious cases where no solution exists

I If S or T is empty, then no solution exists;

I If we’ve gone “deep (resp. high) enough” and S ∩ T is empty,
then no solution exists:

T

{1, 2, . . . , k}

S

∅

33

The other cases
I We may have collected enough vertices to stop the BFS’s, but
S and T don’t intersect yet:

{1, 2, . . . , k}

S

∅

T

I In this case, we may either compute a solution, or launch the
compression and keep going;

34

Interlude: Lehman and Ron’s theorem
We need the following result1.

Theorem

Given n,m ∈ N, consider two families of sets R ⊆ H(r)
n and

S ⊆ H(s)
n where |R| = |S| = m and 0 ≤ r < s ≤ n. Assume there

exists a bijection ϕ : S → R such that ϕ(S) ⊂ S for every S ∈ S.
Then there exist m vertex-disjoint directed paths in Hn whose
union contains all the subsets in S and R.

In other words:

S

R

⇒

S

R

1E. Lehman and D. Ron, ”On Disjoint Chains of Subsets ”, Journal of
Combinatorial Theory, Series A, 94(2):399–404, 2001.

35

Finding a solution with Theorem 1

1. Build a bipartite graph B with:
I vertex set S ∪ T ;
I edges connecting each element s of S with an element t of T

if t ⊂ s;

2. Compute a maximum matching M of B;

3. If |M| > |F|, there is at least one (S, T)-path that avoids F
(thanks to Lehman and Ron’s theorem);

4. Otherwise, we keep going but reduce the size of T by
removing “non essential” vertices;

36

The compression phase

I Compute a minimum vertex cover X = XS ∪ XT of B;
I (XS = X ∩ S, XT = X ∩ T)

I Since X is a vertex cover, no relevant path from S \ XS to
T \ XT exists;

I We then search for a solution using XS and T , and repeat the
process until we find one or reach the threshold of |F|dn
vertices;

I If no solution has been found, we return to the main algorithm

with T ′ =
⋃

i X
(i)
T ;

I (X (i)
T is the XT computed at the i th iteration)

37

Summary of results

I We can solve guided sorting by exchanges on involutions
in time:

I O(min(
√
|F| d k , |F|) |F|2 d4 k2) (“decision version”);

I O(min(
√
|F| d k , |F|) |F|2 d4 k2 + |F|5/2k3/2d) (“search

version”);

I (k is the number of 2-cycles in π);

38

Future work

I Complexity of (variants of) guided sorting?

I Other tractable cases?

I What if we relax “optimal” to “minimal”?

I Do the algorithms generalise?

I Can we compute or benefit from an “implicit” encoding of F?

I F = Avn(some patterns);
I F =< some generators > \ some small set;
I . . .

39

	Context
	Motivations and problem statement
	Solution
	Future work

