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Genome rearrangements for permutations

¢ (Signed) permutations model duplication-free genomes with
the same contents;

® The actual numbering is irrelevant, so we assume either
genome is the identity Id = (12 --- n);

Example (disregarding / considering gene orientation)
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Genome rearrangements for permutations
¢ (Signed) permutations model duplication-free genomes with
the same contents;

® The actual numbering is irrelevant, so we assume either
genome is the identity Id = (12 --- n);

® We aim to reconstruct evolutionary scenarios between species;

GENOME SORTING (PERMUTATIONS)

Input: a (signed) permutation 7, a set S of (per)mutations;
Goal: find a shortest sorting sequence of elements of S for 7.
(the length of that sequence is the distance of 7)

Example (disregarding / considering gene orientation)
A= EECIDIDID»EID -

mutations mutations

;- CDEDEDEDCDCD I IDIDD I IO T -v
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Modelling genomes

A more unified treatment is provided by:
@ unsigned genomes: paths on {0,1,2,...,n+1};
@® signed genomes: perfect matchings on {0,1,2,...,2n+ 1};

Example (from permutations to genomes)

5 1 2 4 3 6
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Modelling genomes

A more unified treatment is provided by:
@ unsigned genomes: paths on {0,1,2,...,n+1};
@® signed genomes: perfect matchings on {0,1,2,...,2n+ 1};

Example (from permutations to genomes)

5 1 2 4 3 6
0 5 1 2 4 3 6 7
Id: o o o o o o o o
0 1 2 3 4 5 6 7
EEID ID ID @& T
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Modelling genomes

A more unified treatment is provided by:

@ unsigned genomes: paths on {0,1,2,...,n+1};

@® signed genomes: perfect matchings on {0,1,2,...,2n+ 1};

Example (from permutations to genomes)

5 1 2 4 3 6

0 5 1 2 4 3 6 7
Id: o o o o o o o o
0 1 2 3 4 5 6 7

) mmmo  ommmy  cmmms

010 9 1 2 3 4 7 8 6 5 11 1213

1d: 0==0  Owm0  OmmO  OwemO  OwemO  OwemO  Ow=O
01 2 3 4 5 6 7 8 9 10 11 1213

x <0 (2[x[,2]x| —1); x>0 (2[x] — 1,2[x]);
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The double cut-and-join (DCJ) operation

A double cut-and-join (DCJ) removes two edges {u, v} and {w, x}
from a graph, then connects the four endpoints in one of two ways.

Example
u v u v u v
OO
w X w X w X
The graph might be directed, belong to a particular class, ... which may

restrict our options for reconnecting the endpoints (see examples later
on).
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DClJs in a biological setting

® DClJs generalise several well-studied mutations, e.g.:

® transpositions; 3M5@426—345026
® reversals; 315426—+324516
® signed reversals; 3-15 —-426—-3-24 —-516
® block-transpositions; 3 65342156
[ ]

block-interchanges; 3 4 —326415



DClJs in a biological setting

® DClJs generalise several well-studied mutations, e.g.:

® transpositions; 3M5@426—345026
® reversals; 315426—+324516
® signed reversals; 3-15 —-426—-3-24 —-516
® block-transpositions; 3 6342156
® block-interchanges; 3 4 —326415

® Sorting genomes by DClJs is:
® in P in the signed case [7];
® NP-hard in the unsigned case [5];
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The prefix constraint

e We study prefix DCJs: one of the cut edges must be incident
with 0;

® The constraint has no biological relevance: it originates from
interconnection network design;

® Theoretical interest: many “unrestricted” problems remain
open under the prefix constraint;

14



Results

We obtain:

® new lower bounds for sorting by prefix reversals or DClJs
(signed or unsigned);
® a polynomial time algorithm for sorting by signed prefix DCls;

® a 3/2-approximation for sorting by unsigned prefix DClJs;

To the best of our knowledge, this is the first (2 — )-approximation
for a prefix sorting problem not known to be in P.
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Mimicking other rearrangements using DClJs

16



Algebraic transpositions as DClJs

Let m be a permutation and () be its graph; i.e., the cycles of =
are exactly those of ().

Example
Let us compute (1,2,3)(4,5,6) = (1,4) o (1,2,3,4,5,6).
1
2 / N& 6

L]

3\/kRA /5

4
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Algebraic transpositions as DClJs

Let m be a permutation and () be its graph; i.e., the cycles of =
are exactly those of ().

Example
Let us compute (1,2,3)(4,5,6) = (1,4) o (1,2,3,4,5,6).

2L/1 6 2/1N&6
P2 el B
3 4/75 3\&4/5

We must obtain a collection of cycles, so the red option is invalid.
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Algebraic transpositions as DClJs

Let m be a permutation and () be its graph; i.e., the cycles of =
are exactly those of ().

Example
Let us compute (1,2,3)(4,5,6) = (1,4) o (1,2,3,4,5,6).

2/1 6 2/1N&6 2/1 6
X v

e e N s A4

. S, L

We must obtain a collection of cycles, so the red option is invalid.



Reversals as DCJs

Viewing permutations of {1,2,...,n} as paths on
{0,1,2...,n,n+ 1} allows us to express reversals as DCJs.
Example
o [ ) .
0 3 § 5 4 2) 6 7
[ ]

o9
w

(o]
ES
o

=)
(=)}
~3d
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Reversals as DCJs

Viewing permutations of {1,2,...,n} as paths on
{0,1,2...,n,n+ 1} allows us to express reversals as DCJs.
Example

O 0
0 3 1 5 4 2 6 7
/]\

o [ ] .
0 3 § 5 4 2) 6 7
o [ ) .
0 3 L2 4 5 1) 6 7

We must obtain a path, so the red option is forbidden.



Reversals as DCJs

Viewing permutations of {1,2,...,n} as paths on
{0,1,2...,n,n+ 1} allows us to express reversals as DCJs.
Example

O 0
0 3 1 5 4 2 6 7
/]\

o [ ) .
0 3 § 5 4 2) 6 7
1
] m 3
0 3 1 5 4 2 6 7
o [ ] .
0 3 L2 4 5 1) 6 7

We must obtain a path, so the red option is forbidden.

bl



Block-transpositions as DClJs

We can also simulate block-transpositions using two DClJs.

Example

oo
w
=
o
S
N
(=)}
~3d

o9
w
IS
[N}
=
&
o
~0o
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Block-transpositions as DClJs

We can also simulate block-transpositions using two DClJs.

Example

oo
w
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Block-transpositions as DClJs

We can also simulate block-transpositions using two DClJs.

Example

oo
w
=
o
S
N
(=)}
~3d

oo
w
—
o
£y
N
(=)}
~3d

o9
w
IS
[N}
=
&
o
~0o
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Block-transpositions as DClJs

We can also simulate block-transpositions using two DClJs.

Example
O 0
0 3 1 5 4 2 6 7
) /-)/(-\\ ]
0 3 1 5 4 2 6 7

oo
w
—
o
£y
N
(=)}
~3d

o9
w
IS
[N}
=
&
o
~0o
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Signed reversals as DClJs
Likewise, we can represent signed permutations and mimick signed
reversals using DCls.

Example

010 9 1 2 3 4 7 8 6 5 11 12 13

010 9 5 6 8 7 4 3 2 1 11 1213
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Signed reversals as DClJs
Likewise, we can represent signed permutations and mimick signed
reversals using DCls.

Example

=0 00 OO0 O&—0 —0 &0 0=—0

010 9 1 2 3 4 7 8 6 5 11 12 13

010 9 5 6 8 7 4 3 2 1 11 1213
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Signed reversals as DClJs
Likewise, we can represent signed permutations and mimick signed
reversals using DCls.

Example

=0 00 OO0 O&—0 —0 &0 0=—0

010 9 1 2 3 4 7 8 6 5 11 12 13

010 9 5 6 8 7 4 3 2 1 11 1213




Results
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Preliminary results

Theorem (Cayley distance)

Sorting any permutation 7 in S, requires n — c(m) transpositions.

Example

Y

—Q
N
“P
=P
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Preliminary results

Theorem (Cayley distance)

Sorting any permutation 7 in S, requires n — c(m) transpositions.

Theorem (“Prefix” Cayley distance)

[1] For any permutation 7 in S,, the number of prefix transpositions
required to sort T is exactly (c1(m) = number of trivial cycles)

0 if’/Tl = 1,
2 otherwise.

n+ c(r) — 2c(m) — {

Example

¢ ¢

—Q
N
w
=9
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Preliminary results

Theorem (Cayley distance)

Sorting any permutation 7 in S, requires n — c(m) transpositions.

Theorem (“Prefix” Cayley distance)

[1] For any permutation 7 in S,, the number of prefix transpositions

required to sort T is exactly

n+ c(r) — 2c(m) — {

(c1(7) = number of trivial cycles)

0 if’/Tl = 1,
2 otherwise.

Intuition

® we can only split the
cycle that contains 7y;

Example

¢ ¢

—Q
N
w
=9
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Preliminary results

Theorem (Cayley distance)

Sorting any permutation 7 in S, requires n — c(w) transpositions.

Theorem (“Prefix” Cayley distance)

[1] For any permutation 7 in S,, the number of prefix transpositions

required to sort  is exactly

n+ c(r) — 2c(m) — {

(c1(7) = number of trivial cycles)

0 if’/Tl = 1,
2 otherwise.

Intuition

® we can only split the
cycle that contains 7y;

® if m;y = 1 but 7 is not
sorted, we must waste
one operation to access
another nontrivial cycle.

Example

¢ 2>

—Q
N
w
=9
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Preliminary results

Theorem (Cayley distance)

Sorting any permutation 7 in S, requires n — c(w) transpositions.

Theorem (“Prefix” Cayley distance)

[1] For any permutation 7 in S,, the number of prefix transpositions
required to sort  is exactly (c1(m) = number of trivial cycles)

0 if’/Tl = 1,
2 otherwise.

n+ c(r) — 2c(m) — {

Intuition Example

° i .
we can only Sp|l1.2 the 2 @ oY @
cycle that contains 7y; 14 2 &1 2

® if 1y = 1 but 7 is not l(“)
sorted, we must waste
one operatlon-tf) access 2 2 2 @ 2 o
another nontrivial cycle. 12 3 4 = ¥ 7 )

v




Preliminary results

Theorem (Cayley distance)

Sorting any permutation 7 in S, requires n — c(w) transpositions.

Theorem (“Prefix” Cayley distance)

[1] For any permutation 7 in S,, the number of prefix transpositions

required to sort  is exactly

n+ c(r) — 2c(m) — {

(c1(7) = number of trivial cycles)

0 if’/Tl = 1,
2 otherwise.

Intuition

® we can only split the
cycle that contains 7y;

® if m;y = 1 but 7 is not
sorted, we must waste
one operation to access
another nontrivial cycle.

Example
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Approach

® As we have seen, (prefix) transpositions are (prefix) DCls;
e Strategy:
® find “the right graph” representation for pairs of genomes,
depending on the mutations we want to use;

® rely on the prefix Cayley distance to obtain bounds based on
that graph;

40



Signed prefix DClJs

® A signed genome is a perfect matching G over {0,1,...,2n+ 1};
® We want to obtain Id = {{0,1},{2,3},...,{2n,2n+ 1}};

Example
G e e OO OO OO OO
8 6 10 11
Id o o o) o o o o) o o)

0 1 2 3 4 5 6 7 8 9 10 11




Signed prefix DClJs

® A signed genome is a perfect matching G over {0,1,...,2n+ 1};
® We want to obtain Id = {{0,1},{2,3},...,{2n,2n+ 1}};
® The breakpoint graph BG(G) is the union of G and Id;

Example
G OO OO OO OO OO OO
8 6 10 11
Id o o o) o o o o) o o)
0 1 2 3 4 5 6 7 8 9 10 11

0 2 1 7 8 6 5 4 3 9 10 11




Signed prefix DClJs

® A signed genome is a perfect matching G over {0,1,...,2n+ 1};

® We want to obtain Id = {{0,1},{2,3},...,{2n,2n+ 1}};
® The breakpoint graph BG(G) is the union of G and Id;

Example
G OO OO OO OO OO
1 8 6
Id o o o) o) o o o)
0 1 2 3 4 5 6 7 8 9
0 2 1 7 8 6 5 4 3 9

10 11

@] o]
10 11

10 11

Every vertex has degree 2 = collection of cycles.
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Signed prefix DClJs

e Prefix DCJs have the same effect on BG(G) as on the cycles of a
permutation; therefore:

A4



Signed prefix DClJs

e Prefix DCJs have the same effect on BG(G) as on the cycles of a
permutation; therefore:

Theorem
For any signed genome G, we have

0 if{0,1} € G,

psdcj(G) > n+1+ ¢(BG(G)) — 2c1(BG(G)) — { > otherwise.
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Signed prefix DClJs

e Prefix DCJs have the same effect on BG(G) as on the cycles of a
permutation; therefore:

Theorem
For any signed genome G, we have

0 if{0,1} € G,

psdcj(G) > n+1+ ¢(BG(G)) — 2¢1(BG(G)) — { 2> othermise.

Example
With G as in the previous slide:

BG(G): o e O S o o) formm—) OO om0}

we have psd¢j(G) >6+3—-2x2—-2=3.
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Sorting by signed prefix DCJs is in P

Algorithm outline
Until G = Id, check edge {0, v} € G:

Example
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Sorting by signed prefix DClJs is

Algorithm outline
Until G = Id, check edge {0, v} € G:

@ if v # 1. connect v to its "grey
neighbour” in Id;

in P

Example
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Sorting by signed prefix DClJs is

Algorithm outline
Until G = Id, check edge {0, v} € G:

@ if v # 1. connect v to its "grey
neighbour” in Id;

in P

Example

OmmC O Ome=0 OO
4 3 6 5 7

A0



Sorting by signed prefix DCJs is in P

Algorithm outline
Until G = Id, check edge {0, v} € G:

@ if v # 1. connect v to its "grey
neighbour” in Id;

Example
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Sorting by signed prefix DCJs is in P

Algorithm outline
Until G = Id, check edge {0, v} € G:
@ if v # 1. connect v to its "grey
neighbour” in Id;
® otherwise v = 1: apply any
prefix DCJ that involves a black
edge from a nontrivial cycle.

Example

51



Sorting by signed prefix DCJs is in P

Algorithm outline
Until G = Id, check edge {0, v} € G:
@ if v # 1. connect v to its "grey
neighbour” in Id;
® otherwise v = 1: apply any
prefix DCJ that involves a black
edge from a nontrivial cycle.

Example
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Sorting by signed prefix DCJs is in P

Algorithm outline
Until G = Id, check edge {0, v} € G:
@ if v # 1. connect v to its "grey
neighbour” in Id;
® otherwise v = 1: apply any
prefix DCJ that involves a black
edge from a nontrivial cycle.

Example
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Sorting by signed prefix DCJs is in P

Algorithm outline
Until G = Id, check edge {0, v} € G:
@ if v # 1. connect v to its "grey
neighbour” in Id;
® otherwise v = 1: apply any
prefix DCJ that involves a black
edge from a nontrivial cycle.

Example

o
w
o
o
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Sorting by signed prefix DCJs is in P

Algorithm outline

Until G = Id, check edge {0, v} € G:

@ if v # 1. connect v to its "grey
neighbour” in Id;

® otherwise v = 1: apply any
prefix DCJ that involves a black
edge from a nontrivial cycle.

Example
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Sorting by signed prefix DCJs is in P

Algorithm outline
Until G = Id, check edge {0, v} € G:
@ if v # 1. connect v to its "grey
neighbour” in Id;
® otherwise v = 1: apply any
prefix DCJ that involves a black
edge from a nontrivial cycle.

Example

o
w
o
o
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Sorting by signed prefix DCJs is in P

Algorithm outline

Until G = Id, check edge {0, v} € G:

@ if v # 1. connect v to its "grey
neighbour” in Id;

® otherwise v = 1: apply any
prefix DCJ that involves a black
edge from a nontrivial cycle.

Example

57



Sorting by signed prefix DCJs is in P

Algorithm outline Example
Until G = Id, check edge {0, v} € G:
® if v # 1: connect v to its “grey bt Lt N3

neighbour” in Id;
® otherwise v = 1: apply any S

prefix DCJ that involves a black

edge from a nontrivial cycle.

Every operation decreases the value
of our lower bound by 1 = algorithm
is optimal. AN NN ¢ ]
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Signed prefix reversals

® Signed prefix reversals are signed prefix DCJs that must
preserve an additional structural constraint (details omitted);
v therefore, psrd(G) > psdcj(G);
X but previous algorithm cannot be used,;

50



Unsigned prefix DCJs

® An unsigned genome is a path G over {0,1,...,n+1};
® We want to obtain the path Id = (0,1,...,n+1);

Example
G: O O e e e ()
0 3 2 5 4 1 6
Id: O Qe Qe Qe Qe Qe QO
0 1 2 3 4 5 6

® An unsigned version of the breakpoint graph yields a similar lower
bound to the signed case (no time for details);
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A lower bound for sorting by unsigned prefix DClJs

Theorem

For any genome G, we have:

pdci(G) > n+ 1+ c*(UBG(G)) — 2¢; (UBG(G))
0 if{0,1} € G and {1,2} € G,
—<¢ 1 if{0,1} € G and {1,2} ¢ G,
2 otherwise.

where c*(-) (resp. ¢;(-)) is the number of (trivial) cycles in an
optimal decomposition of UBG(G).

An optimal decomposition can be computed as follows:
@ remove all edges that belong to trivial cycles;

® each connected component that remains is Eulerian and
therefore constitutes a nontrivial cycle.
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Approximating the unsigned prefix DCJ distance
An edge e € G is a breakpoint if 0 ¢ e and e ¢ Id, and an
adjacency otherwise;

Example

The following genome has 3 breakpoints and 3 adjacencies:
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Approximating the unsigned prefix DCJ distance
An edge e € G is a breakpoint if 0 ¢ e and e ¢ Id, and an
adjacency otherwise;

Example

The following genome has 3 breakpoints and 3 adjacencies:

O O
0 3 2 5 4 1 6
4
Lemma

For any genome G, we have pdcj(G) > b(G).




Approximating the unsigned prefix DCJ distance
An edge e € G is a breakpoint if 0 ¢ e and e ¢ Id, and an
adjacency otherwise;

Example

The following genome has 3 breakpoints and 3 adjacencies:

O O
0 3 2 5 4 1 6
4
Lemma

For any genome G, we have pdcj(G) > b(G).

Proof.

A prefix DCJ cuts {0, v} and another edge, then reconnects their

endpoints. But {0, v} is never a breakpoint, so b(G) can only
decrease by 1.

O

v

A



A 3/2-approximation algorithm for unsigned prefix DCls

Algorithm outline
Until G = Id, consider edge {0, v} € G:

@ifv#£l

Example
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A 3/2-approximation algorithm for unsigned prefix DCls

Algorithm outline
Until G = Id, consider edge {0, v} € G:

@ifv#£l

@® otherwise v = 1:

@ if {1,2} ¢ G: 3 breakpoint {2, z}
= create {{0, z},{1,2}}

@ otherwise {1,2} € G:
extract the longest run of
adjacencies from 1; and then we
can apply case 1 twice.

Example
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A 3/2-approximation algorithm for unsigned prefix DCls

Algorithm outline
Until G = Id, consider edge {0, v} € G:

@ifv#£l
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@ if {1,2} ¢ G: 3 breakpoint {2, z}
= create {{0, z},{1,2}}
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A 3/2-approximation algorithm for unsigned prefix DCls

Algorithm outline
Until G = Id, consider edge {0, v} € G:

@ifv#£l

@® otherwise v = 1:

® if {1,2} ¢ G: 3 breakpoint {2,z}
= create {{0, z},{1,2}}

@® otherwise {1,2} € G:
extract the longest run of
adjacencies from 1; and then we
can apply case 1 twice.

Example
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A 3/2-approximation algorithm for unsigned prefix DCls

Algorithm outline
Until G = Id, consider edge {0, v} € G:

@ if v £ 1, then at least one of {v —1, x}
or {v+1,y} is a breakpoint;
= create {{0,x},{v—1,v}} or
{0,y} {v,v+ 13}

@® otherwise v = 1:

® if {1,2} ¢ G: 3 breakpoint {2, z}
= create {{0, z},{1,2}}

@® otherwise {1,2} € G:
extract the longest run of
adjacencies from 1; and then we
can apply case 1 twice.

Example
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A 3/2-approximation algorithm for unsigned prefix DCls

Algorithm outline
Until G = Id, consider edge {0, v} € G:

@ if v £ 1, then at least one of {v —1, x}
or {v+1,y} is a breakpoint;
= create {{0,x},{v—1,v}} or
{0,y} {v,v+ 13}

@® otherwise v = 1:

® if {1,2} ¢ G: 3 breakpoint {2, z}
= create {{0, z},{1,2}}

@® otherwise {1,2} € G:
extract the longest run of
adjacencies from 1; and then we
can apply case 1 twice.

Example
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A 3/2-approximation algorithm for unsigned prefix DCls

Algorithm outline
Until G = Id, consider edge {0, v} € G:
@ if v £ 1, then at least one of {v —1, x}
or {v+1,y} is a breakpoint;
= create {{0,x},{v—1,v}} or
{{0,y} {viv +1}};

@® otherwise v = 1:

® if {1,2} ¢ G: 3 breakpoint {2, z}
= create {{0, z},{1,2}}

@® otherwise {1,2} € G:
extract the longest run of
adjacencies from 1; and then we
can apply case 1 twice.

Example
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A 3/2-approximation algorithm for unsigned prefix DCls

Algorithm outline
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or {v+1,y} is a breakpoint;
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{{0,y} {viv +1}};

@® otherwise v = 1:

® if {1,2} ¢ G: 3 breakpoint {2, z}
= create {{0, z},{1,2}}

@® otherwise {1,2} € G:
extract the longest run of
adjacencies from 1; and then we
can apply case 1 twice.

Example
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A 3/2-approximation algorithm for unsigned prefix DCls

Algorithm outline
Until G = Id, consider edge {0, v} € G:
@ if v £ 1, then at least one of {v —1, x}
or {v+1,y} is a breakpoint;
= create {{0,x},{v—1,v}} or
{{0,y} {viv +1}};

@® otherwise v = 1:

® if {1,2} ¢ G: 3 breakpoint {2, z}
= create {{0, z},{1,2}}

@® otherwise {1,2} € G:
extract the longest run of
adjacencies from 1; and then we
can apply case 1 twice.

Example
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A 3/2-approximation algorithm for unsigned prefix DCls

Algorithm outline
Until G = Id, consider edge {0, v} € G:

@ if v £ 1, then at least one of {v —1, x}
or {v+1,y} is a breakpoint;
= create {{0,x},{v—1,v}} or
{{0,y} {v,v+1}};

@® otherwise v = 1:

® if {1,2} ¢ G: 3 breakpoint {2,z}
= create {{0, z},{1,2}}

@® otherwise {1,2} € G:
extract the longest run of
adjacencies from 1; and then we
can apply case 1 twice.

Approximation guarantee

® Case 1: b(G) decreases
by 1;
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A 3/2-approximation algorithm for unsigned prefix DCls

Algorithm outline
Until G = Id, consider edge {0, v} € G:

@ if v £ 1, then at least one of {v —1, x}
or {v+1,y} is a breakpoint;
= create {{0,x},{v—1,v}} or
{{0,y} {v,v+1}};

@® otherwise v = 1:

® if {1,2} ¢ G: 3 breakpoint {2,z}
= create {{0, z},{1,2}}

@® otherwise {1,2} € G:
extract the longest run of
adjacencies from 1; and then we
can apply case 1 twice.

Approximation guarantee

® Case 1: b(G) decreases
by 1;

® Case 2.1: b(G) decreases
by 1;
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A 3/2-approximation algorithm for unsigned prefix DCls

Algorithm outline
Until G = Id, consider edge {0, v} € G:
@ if v £ 1, then at least one of {v —1, x}
or {v+1,y} is a breakpoint;
= create {{0,x},{v—1,v}} or
{{0,y} {viv+1}};

@® otherwise v = 1:

® if {1,2} ¢ G: 3 breakpoint {2,z}
= create {{0, z},{1,2}}

@® otherwise {1,2} € G:
extract the longest run of
adjacencies from 1; and then we
can apply case 1 twice.

Approximation guarantee

® Case 1: b(G) decreases
by 1;

® Case 2.1: b(G) decreases
by 1;

® Case 2.2: b(G) decreases
by 0, then by 2 (case 1);
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A 3/2-approximation algorithm for unsigned prefix DCls

Algorithm outline
Until G = Id, consider edge {0, v} € G:
@ if v £ 1, then at least one of {v —1, x}
or {v+1,y} is a breakpoint;
= create {{0,x},{v—1,v}} or
{{0,y} {viv+1}};

@® otherwise v = 1:

® if {1,2} ¢ G: 3 breakpoint {2, z}
= create {{0, z},{1,2}}

@® otherwise {1,2} € G:
extract the longest run of
adjacencies from 1; and then we
can apply case 1 twice.

Approximation guarantee

® Case 1: b(G) decreases
by 1;

® Case 2.1: b(G) decreases
by 1;

® Case 2.2: b(G) decreases
by 0, then by 2 (case 1);

= Worst case: b(G)
decreases by 2 in 3 steps;
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A 3/2-approximation algorithm for unsigned prefix DCls

Algorithm outline Approximation guarantee

Until G = Id, consider edge {0, v} € G: o Case 1: b(G) decreases
@ if v # 1, then at least one of {v—1,x} by 1;

or {v+1,y} is a breakpoint;
= create {{0,x},{v—1,v}} or
{0, y}, {v,v+1}}

@® otherwise v = 1:

® if {1,2} ¢ G: 3 breakpoint {2, z}

= create {{0, z},{1,2}}
@® otherwise {1,2} € G:
extract the longest run of

adjacencies from 1; and then we

can apply case 1 twice.

® Case 2.1: b(G) decreases
by 1;

® Case 2.2: b(G) decreases
by 0, then by 2 (case 1);

= Worst case: b(G)
decreases by 2 in 3 steps;

= [3/2-approximation|
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Unsigned prefix reversals

® Unsigned prefix reversals are unsigned prefix DCJs that must
yield a path at each step;
v therefore, prd(G) > pdcj(G);
X but previous algorithm cannot be used,;
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Open problems

e Complexity issues:

reversals DClJs
unsigned signed unsigned signed
unrestricted | NP-hard [4] | in P [6] | NP-hard [5] | in P [7]
prefix NP-hard [3] | 2?27 77?7 in P(here)
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Open problems

e Complexity issues:

reversals DClJs
unsigned signed unsigned signed
unrestricted | NP-hard [4] | in P [6] | NP-hard [5] | in P [7]
prefix NP-hard [3] | 2?27 77?7 in P(here)

® Approximability: is there a better guarantee than:

e 2 for prefix reversals (signed or unsigned)?
® 3/2 for unsigned prefix DCJs?
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Open problems

e Complexity issues:

reversals DClJs
unsigned signed unsigned signed
unrestricted | NP-hard [4] | in P [6] | NP-hard [5] | in P [7]
prefix NP-hard [3] | 2?27 77?7 in P(here)

® Approximability: is there a better guarantee than:

e 2 for prefix reversals (signed or unsigned)?
® 3/2 for unsigned prefix DCJs?

e Exploring (prefix) DCJs on other graph classes;

® finding a shortest scenario is NP-hard [2];

® there is a 7/4-approximation [2];
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Open problems

e Complexity issues:

reversals DClJs
unsigned signed unsigned signed
unrestricted | NP-hard [4] | in P [6] | NP-hard [5] | in P [7]
prefix NP-hard [3] | 2?27 77?7 in P(here)

® Approximability: is there a better guarantee than:

e 2 for prefix reversals (signed or unsigned)?
® 3/2 for unsigned prefix DCJs?

e Exploring (prefix) DCJs on other graph classes;

® finding a shortest scenario is NP-hard [2];

® there is a 7/4-approximation [2];

Thanks!
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