Sorting Genomes by Prefix Double-Cut-and-Joins

Guillaume Fertin ~ Géraldine Jean Anthony Labarre

b o
Ffﬁ[‘rl" SCHLOSS DAGSTUHL
MIAIE= | Leibniz-Zentrum fiir Informatik

March 23rd, 2023

UNIVERSITE DE NANTES

Genome rearrangements for permutations

¢ (Signed) permutations model duplication-free genomes with
the same contents;

® The actual numbering is irrelevant, so we assume either
genome is the identity Id = (12 --- n);

Example (disregarding / considering gene orientation)

V.

Genome rearrangements for permutations
¢ (Signed) permutations model duplication-free genomes with
the same contents;

® The actual numbering is irrelevant, so we assume either
genome is the identity Id = (12 --- n);
® We aim to reconstruct evolutionary scenarios between species;

Example (disregarding / considering gene orientation)

A= EIDID I I -«

mutations mutations

;- CDEDEDEDCDCD I IDIDD I IO T -v

Genome rearrangements for permutations
¢ (Signed) permutations model duplication-free genomes with
the same contents;

® The actual numbering is irrelevant, so we assume either
genome is the identity Id = (12 --- n);

® We aim to reconstruct evolutionary scenarios between species;

GENOME SORTING (PERMUTATIONS)

Input: a (signed) permutation 7, a set S of (per)mutations;
Goal: find a shortest sorting sequence of elements of S for 7.
(the length of that sequence is the distance of 7)

Example (disregarding / considering gene orientation)
A= EECIDIDID»EID -

mutations mutations

;- CDEDEDEDCDCD I IDIDD I IO T -v

V.

Modelling genomes

A more unified treatment is provided by:
@ unsigned genomes: paths on {0,1,2,...,n+1};
@® signed genomes: perfect matchings on {0,1,2,...,2n+ 1};

Example (from permutations to genomes)

5 1 2 4 3 6

Modelling genomes

A more unified treatment is provided by:
@ unsigned genomes: paths on {0,1,2,...,n+1};
@® signed genomes: perfect matchings on {0,1,2,...,2n+ 1};

Example (from permutations to genomes)

Modelling genomes

A more unified treatment is provided by:
@ unsigned genomes: paths on {0,1,2,...,n+1};
@® signed genomes: perfect matchings on {0,1,2,...,2n+ 1};

Example (from permutations to genomes)

Modelling genomes

A more unified treatment is provided by:
@ unsigned genomes: paths on {0,1,2,...,n+1};
@® signed genomes: perfect matchings on {0,1,2,...,2n+ 1};

Example (from permutations to genomes)

5 1 2 4 3 6
0 5 1 2 4 3 6 7
Id: o o o o o o o o
0 1 2 3 4 5 6 7
EEID ID ID @& T

x <0 (2[x[,2]x| —1); x>0 (2[x] — 1,2[x]);

Modelling genomes

A more unified treatment is provided by:
@ unsigned genomes: paths on {0,1,2,...,n+1};
@® signed genomes: perfect matchings on {0,1,2,...,2n+ 1};

Example (from permutations to genomes)

5 1 2 4 3 6
0 5 1 2 4 3 6 7
Id: o o o o o o o o
0 1 2 3 4 5 6 7
EEID ID ID @& T

Omms cmmms Gmmme Ommme Gumme Ommms cmmmy
010 9 1 2 3 4 7 8 6 5 11 1213

x <0 (2[x[,2]x| —1); x>0 (2[x] — 1,2[x]);

Modelling genomes

A more unified treatment is provided by:

@ unsigned genomes: paths on {0,1,2,...,n+1};

@® signed genomes: perfect matchings on {0,1,2,...,2n+ 1};

Example (from permutations to genomes)

5 1 2 4 3 6

0 5 1 2 4 3 6 7
Id: o o o o o o o o
0 1 2 3 4 5 6 7

) mmmo ommmy cmmms

010 9 1 2 3 4 7 8 6 5 11 1213

1d: 0==0 Owm0 OmmO OwemO OwemO OwemO Ow=O
01 2 3 4 5 6 7 8 9 10 11 1213

x <0 (2[x[,2]x| —1); x>0 (2[x] — 1,2[x]);

10

The double cut-and-join (DCJ) operation

A double cut-and-join (DCJ) removes two edges {u, v} and {w, x}
from a graph, then connects the four endpoints in one of two ways.

Example
u v u v u v
OO
w X w X w X
The graph might be directed, belong to a particular class, ... which may

restrict our options for reconnecting the endpoints (see examples later
on).

11

DClJs in a biological setting

® DClJs generalise several well-studied mutations, e.g.:

® transpositions; 3M5@426—345026
® reversals; 315426—+324516
® signed reversals; 3-15 —-426—-3-24 —-516
® block-transpositions; 3 65342156
[]

block-interchanges; 3 4 —326415

DClJs in a biological setting

® DClJs generalise several well-studied mutations, e.g.:

® transpositions; 3M5@426—345026
® reversals; 315426—+324516
® signed reversals; 3-15 —-426—-3-24 —-516
® block-transpositions; 3 6342156
® block-interchanges; 3 4 —326415

® Sorting genomes by DClJs is:
® in P in the signed case [7];
® NP-hard in the unsigned case [5];

13

The prefix constraint

e We study prefix DCJs: one of the cut edges must be incident
with 0;

® The constraint has no biological relevance: it originates from
interconnection network design;

® Theoretical interest: many “unrestricted” problems remain
open under the prefix constraint;

14

Results

We obtain:

® new lower bounds for sorting by prefix reversals or DClJs
(signed or unsigned);
® a polynomial time algorithm for sorting by signed prefix DCls;

® a 3/2-approximation for sorting by unsigned prefix DClJs;

To the best of our knowledge, this is the first (2 —)-approximation
for a prefix sorting problem not known to be in P.

15

Mimicking other rearrangements using DClJs

16

Algebraic transpositions as DClJs

Let m be a permutation and () be its graph; i.e., the cycles of =
are exactly those of ().

Example
Let us compute (1,2,3)(4,5,6) = (1,4) o (1,2,3,4,5,6).
1
2 / N& 6

L]

3\/kRA /5

4

17

Algebraic transpositions as DClJs

Let m be a permutation and () be its graph; i.e., the cycles of =
are exactly those of ().

Example
Let us compute (1,2,3)(4,5,6) = (1,4) o (1,2,3,4,5,6).

2L/1 6 2/1N&6
P2 el B
3 4/75 3\&4/5

We must obtain a collection of cycles, so the red option is invalid.

18

Algebraic transpositions as DClJs

Let m be a permutation and () be its graph; i.e., the cycles of =
are exactly those of ().

Example
Let us compute (1,2,3)(4,5,6) = (1,4) o (1,2,3,4,5,6).

2/1 6 2/1N&6 2/1 6
X v

e e N s A4

. S, L

We must obtain a collection of cycles, so the red option is invalid.

Reversals as DCJs

Viewing permutations of {1,2,...,n} as paths on
{0,1,2...,n,n+ 1} allows us to express reversals as DCJs.
Example
o [) .
0 3 § 5 4 2) 6 7
[]

o9
w

(o]
ES
o

=)
(=)}
~3d

20

Reversals as DCJs

Viewing permutations of {1,2,...,n} as paths on
{0,1,2...,n,n+ 1} allows us to express reversals as DCJs.
Example
o [] .
0 3 § 5 4 2) 6 7
[]

o9
w

(o]
ES
o

=)
(=)}
~3d

21

Reversals as DCJs

Viewing permutations of {1,2,...,n} as paths on
{0,1,2...,n,n+ 1} allows us to express reversals as DCJs.
Example

O 0
0 3 1 5 4 2 6 7
/]\

o [] .
0 3 § 5 4 2) 6 7
o [) .
0 3 L2 4 5 1) 6 7

We must obtain a path, so the red option is forbidden.

Reversals as DCJs

Viewing permutations of {1,2,...,n} as paths on
{0,1,2...,n,n+ 1} allows us to express reversals as DCJs.
Example

O 0
0 3 1 5 4 2 6 7
/]\

o [) .
0 3 § 5 4 2) 6 7
1
] m 3
0 3 1 5 4 2 6 7
o [] .
0 3 L2 4 5 1) 6 7

We must obtain a path, so the red option is forbidden.

bl

Block-transpositions as DClJs

We can also simulate block-transpositions using two DClJs.

Example

oo
w
=
o
S
N
(=)}
~3d

o9
w
IS
[N}
=
&
o
~0o

24

Block-transpositions as DClJs

We can also simulate block-transpositions using two DClJs.

Example

oo
w
=
o
S
N
(=)}
~3d

o9
w
IS
[N}
=
&
o
~0o

75

Block-transpositions as DClJs

We can also simulate block-transpositions using two DClJs.

Example

oo
w
=
o
S
N
(=)}
~3d

oo
w
—
o
£y
N
(=)}
~3d

o9
w
IS
[N}
=
&
o
~0o

26

Block-transpositions as DClJs

We can also simulate block-transpositions using two DClJs.

Example
O 0
0 3 1 5 4 2 6 7
) /-)/(-\\]
0 3 1 5 4 2 6 7

oo
w
—
o
£y
N
(=)}
~3d

o9
w
IS
[N}
=
&
o
~0o

27

Signed reversals as DClJs
Likewise, we can represent signed permutations and mimick signed
reversals using DCls.

Example

010 9 1 2 3 4 7 8 6 5 11 12 13

010 9 5 6 8 7 4 3 2 1 11 1213

28

Signed reversals as DClJs
Likewise, we can represent signed permutations and mimick signed
reversals using DCls.

Example

=0 00 OO0 O&—0 —0 &0 0=—0

010 9 1 2 3 4 7 8 6 5 11 12 13

010 9 5 6 8 7 4 3 2 1 11 1213

20

Signed reversals as DClJs
Likewise, we can represent signed permutations and mimick signed
reversals using DCls.

Example

=0 00 OO0 O&—0 —0 &0 0=—0

010 9 1 2 3 4 7 8 6 5 11 12 13

010 9 5 6 8 7 4 3 2 1 11 1213

Results

21

Preliminary results

Theorem (Cayley distance)

Sorting any permutation 7 in S, requires n — c(m) transpositions.

Example

Y

—Q
N
“P
=P

29

Preliminary results

Theorem (Cayley distance)

Sorting any permutation 7 in S, requires n — c(m) transpositions.

Theorem (“Prefix” Cayley distance)

[1] For any permutation 7 in S,, the number of prefix transpositions
required to sort T is exactly (c1(m) = number of trivial cycles)

0 if’/Tl = 1,
2 otherwise.

n+ c(r) — 2c(m) — {

Example

¢ ¢

—Q
N
w
=9

23

Preliminary results

Theorem (Cayley distance)

Sorting any permutation 7 in S, requires n — c(m) transpositions.

Theorem (“Prefix” Cayley distance)

[1] For any permutation 7 in S,, the number of prefix transpositions

required to sort T is exactly

n+ c(r) — 2c(m) — {

(c1(7) = number of trivial cycles)

0 if’/Tl = 1,
2 otherwise.

Intuition

Example

¢ ¢

—Q
N
“P
=9

24

Preliminary results

Theorem (Cayley distance)

Sorting any permutation 7 in S, requires n — c(m) transpositions.

Theorem (“Prefix” Cayley distance)

[1] For any permutation 7 in S,, the number of prefix transpositions

required to sort T is exactly

n+ c(r) — 2c(m) — {

(c1(7) = number of trivial cycles)

0 if’/Tl = 1,
2 otherwise.

Intuition

® we can only split the
cycle that contains 7y;

Example

¢ ¢

—Q
N
w
=9

25K

Preliminary results

Theorem (Cayley distance)

Sorting any permutation 7 in S, requires n — c(w) transpositions.

Theorem (“Prefix” Cayley distance)

[1] For any permutation 7 in S,, the number of prefix transpositions

required to sort is exactly

n+ c(r) — 2c(m) — {

(c1(7) = number of trivial cycles)

0 if’/Tl = 1,
2 otherwise.

Intuition

® we can only split the
cycle that contains 7y;

® if m;y = 1 but 7 is not
sorted, we must waste
one operation to access
another nontrivial cycle.

Example

¢ 2>

—Q
N
w
=9

26

Preliminary results

Theorem (Cayley distance)

Sorting any permutation 7 in S, requires n — c(w) transpositions.

Theorem (“Prefix” Cayley distance)

[1] For any permutation 7 in S,, the number of prefix transpositions

required to sort is exactly

n+ c(r) — 2c(m) — {

(c1(7) = number of trivial cycles)

0 if’/Tl = 1,
2 otherwise.

Intuition

® we can only split the
cycle that contains 7y;

® if m;y = 1 but 7 is not
sorted, we must waste
one operation to access
another nontrivial cycle.

Example

7

Preliminary results

Theorem (Cayley distance)

Sorting any permutation 7 in S, requires n — c(w) transpositions.

Theorem (“Prefix” Cayley distance)

[1] For any permutation 7 in S,, the number of prefix transpositions
required to sort is exactly (c1(m) = number of trivial cycles)

0 if’/Tl = 1,
2 otherwise.

n+ c(r) — 2c(m) — {

Intuition Example

° i .
we can only Sp|l1.2 the 2 @ oY @
cycle that contains 7y; 14 2 &1 2

® if 1y = 1 but 7 is not l(“)
sorted, we must waste
one operatlon-tf) access 2 2 2 @ 2 o
another nontrivial cycle. 12 3 4 = ¥ 7)

v

Preliminary results

Theorem (Cayley distance)

Sorting any permutation 7 in S, requires n — c(w) transpositions.

Theorem (“Prefix” Cayley distance)

[1] For any permutation 7 in S,, the number of prefix transpositions

required to sort is exactly

n+ c(r) — 2c(m) — {

(c1(7) = number of trivial cycles)

0 if’/Tl = 1,
2 otherwise.

Intuition

® we can only split the
cycle that contains 7y;

® if m;y = 1 but 7 is not
sorted, we must waste
one operation to access
another nontrivial cycle.

Example

20

Approach

® As we have seen, (prefix) transpositions are (prefix) DCls;
e Strategy:
® find “the right graph” representation for pairs of genomes,
depending on the mutations we want to use;

® rely on the prefix Cayley distance to obtain bounds based on
that graph;

40

Signed prefix DClJs

® A signed genome is a perfect matching G over {0,1,...,2n+ 1};
® We want to obtain Id = {{0,1},{2,3},...,{2n,2n+ 1}};

Example
G e e OO OO OO OO
8 6 10 11
Id o o o) o o o o) o o)

0 1 2 3 4 5 6 7 8 9 10 11

Signed prefix DClJs

® A signed genome is a perfect matching G over {0,1,...,2n+ 1};
® We want to obtain Id = {{0,1},{2,3},...,{2n,2n+ 1}};
® The breakpoint graph BG(G) is the union of G and Id;

Example
G OO OO OO OO OO OO
8 6 10 11
Id o o o) o o o o) o o)
0 1 2 3 4 5 6 7 8 9 10 11

0 2 1 7 8 6 5 4 3 9 10 11

Signed prefix DClJs

® A signed genome is a perfect matching G over {0,1,...,2n+ 1};

® We want to obtain Id = {{0,1},{2,3},...,{2n,2n+ 1}};
® The breakpoint graph BG(G) is the union of G and Id;

Example
G OO OO OO OO OO
1 8 6
Id o o o) o) o o o)
0 1 2 3 4 5 6 7 8 9
0 2 1 7 8 6 5 4 3 9

10 11

@] o]
10 11

10 11

Every vertex has degree 2 = collection of cycles.

A3

Signed prefix DClJs

e Prefix DCJs have the same effect on BG(G) as on the cycles of a
permutation; therefore:

A4

Signed prefix DClJs

e Prefix DCJs have the same effect on BG(G) as on the cycles of a
permutation; therefore:

Theorem
For any signed genome G, we have

0 if{0,1} € G,

psdcj(G) > n+1+ ¢(BG(G)) — 2c1(BG(G)) — { > otherwise.

A5

Signed prefix DClJs

e Prefix DCJs have the same effect on BG(G) as on the cycles of a
permutation; therefore:

Theorem
For any signed genome G, we have

0 if{0,1} € G,

psdcj(G) > n+1+ ¢(BG(G)) — 2¢1(BG(G)) — { 2> othermise.

Example
With G as in the previous slide:

BG(G): o e O S o o) formm—) OO om0}

we have psd¢j(G) >6+3—-2x2—-2=3.

A6

Sorting by signed prefix DCJs is in P

Algorithm outline
Until G = Id, check edge {0, v} € G:

Example

A7

Sorting by signed prefix DClJs is

Algorithm outline
Until G = Id, check edge {0, v} € G:

@ if v # 1. connect v to its "grey
neighbour” in Id;

in P

Example

A8

Sorting by signed prefix DClJs is

Algorithm outline
Until G = Id, check edge {0, v} € G:

@ if v # 1. connect v to its "grey
neighbour” in Id;

in P

Example

OmmC O Ome=0 OO
4 3 6 5 7

A0

Sorting by signed prefix DCJs is in P

Algorithm outline
Until G = Id, check edge {0, v} € G:

@ if v # 1. connect v to its "grey
neighbour” in Id;

Example

50

Sorting by signed prefix DCJs is in P

Algorithm outline
Until G = Id, check edge {0, v} € G:
@ if v # 1. connect v to its "grey
neighbour” in Id;
® otherwise v = 1: apply any
prefix DCJ that involves a black
edge from a nontrivial cycle.

Example

51

Sorting by signed prefix DCJs is in P

Algorithm outline
Until G = Id, check edge {0, v} € G:
@ if v # 1. connect v to its "grey
neighbour” in Id;
® otherwise v = 1: apply any
prefix DCJ that involves a black
edge from a nontrivial cycle.

Example

59

Sorting by signed prefix DCJs is in P

Algorithm outline
Until G = Id, check edge {0, v} € G:
@ if v # 1. connect v to its "grey
neighbour” in Id;
® otherwise v = 1: apply any
prefix DCJ that involves a black
edge from a nontrivial cycle.

Example

53

Sorting by signed prefix DCJs is in P

Algorithm outline
Until G = Id, check edge {0, v} € G:
@ if v # 1. connect v to its "grey
neighbour” in Id;
® otherwise v = 1: apply any
prefix DCJ that involves a black
edge from a nontrivial cycle.

Example

o
w
o
o

KA

Sorting by signed prefix DCJs is in P

Algorithm outline

Until G = Id, check edge {0, v} € G:

@ if v # 1. connect v to its "grey
neighbour” in Id;

® otherwise v = 1: apply any
prefix DCJ that involves a black
edge from a nontrivial cycle.

Example

5K

Sorting by signed prefix DCJs is in P

Algorithm outline
Until G = Id, check edge {0, v} € G:
@ if v # 1. connect v to its "grey
neighbour” in Id;
® otherwise v = 1: apply any
prefix DCJ that involves a black
edge from a nontrivial cycle.

Example

o
w
o
o

56

Sorting by signed prefix DCJs is in P

Algorithm outline

Until G = Id, check edge {0, v} € G:

@ if v # 1. connect v to its "grey
neighbour” in Id;

® otherwise v = 1: apply any
prefix DCJ that involves a black
edge from a nontrivial cycle.

Example

57

Sorting by signed prefix DCJs is in P

Algorithm outline Example
Until G = Id, check edge {0, v} € G:
® if v # 1: connect v to its “grey bt Lt N3

neighbour” in Id;
® otherwise v = 1: apply any S

prefix DCJ that involves a black

edge from a nontrivial cycle.

Every operation decreases the value
of our lower bound by 1 = algorithm
is optimal. AN NN ¢]

58

Signed prefix reversals

® Signed prefix reversals are signed prefix DCJs that must
preserve an additional structural constraint (details omitted);
v therefore, psrd(G) > psdcj(G);
X but previous algorithm cannot be used,;

50

Unsigned prefix DCJs

® An unsigned genome is a path G over {0,1,...,n+1};
® We want to obtain the path Id = (0,1,...,n+1);

Example
G: O O e e e ()
0 3 2 5 4 1 6
Id: O Qe Qe Qe Qe Qe QO
0 1 2 3 4 5 6

® An unsigned version of the breakpoint graph yields a similar lower
bound to the signed case (no time for details);

60

A lower bound for sorting by unsigned prefix DClJs

Theorem

For any genome G, we have:

pdci(G) > n+ 1+ c*(UBG(G)) — 2¢; (UBG(G))
0 if{0,1} € G and {1,2} € G,
—<¢ 1 if{0,1} € G and {1,2} ¢ G,
2 otherwise.

where c*(-) (resp. ¢;(-)) is the number of (trivial) cycles in an
optimal decomposition of UBG(G).

An optimal decomposition can be computed as follows:
@ remove all edges that belong to trivial cycles;

® each connected component that remains is Eulerian and
therefore constitutes a nontrivial cycle.

61

Approximating the unsigned prefix DCJ distance
An edge e € G is a breakpoint if 0 ¢ e and e ¢ Id, and an
adjacency otherwise;

Example

The following genome has 3 breakpoints and 3 adjacencies:

62

Approximating the unsigned prefix DCJ distance
An edge e € G is a breakpoint if 0 ¢ e and e ¢ Id, and an
adjacency otherwise;

Example

The following genome has 3 breakpoints and 3 adjacencies:

O O
0 3 2 5 4 1 6
4
Lemma

For any genome G, we have pdcj(G) > b(G).

Approximating the unsigned prefix DCJ distance
An edge e € G is a breakpoint if 0 ¢ e and e ¢ Id, and an
adjacency otherwise;

Example

The following genome has 3 breakpoints and 3 adjacencies:

O O
0 3 2 5 4 1 6
4
Lemma

For any genome G, we have pdcj(G) > b(G).

Proof.

A prefix DCJ cuts {0, v} and another edge, then reconnects their

endpoints. But {0, v} is never a breakpoint, so b(G) can only
decrease by 1.

O

v

A

A 3/2-approximation algorithm for unsigned prefix DCls

Algorithm outline
Until G = Id, consider edge {0, v} € G:

@ifv#£l

Example

65

A 3/2-approximation algorithm for unsigned prefix DCls

Algorithm outline
Until G = Id, consider edge {0, v} € G:

@ifv#£l

@® otherwise v = 1:

@ if {1,2} ¢ G: 3 breakpoint {2, z}
= create {{0, z},{1,2}}

@ otherwise {1,2} € G:
extract the longest run of
adjacencies from 1; and then we
can apply case 1 twice.

Example

66

A 3/2-approximation algorithm for unsigned prefix DCls

Algorithm outline
Until G = Id, consider edge {0, v} € G:

@ifv#£l

@® otherwise v = 1:

@ if {1,2} ¢ G: 3 breakpoint {2, z}
= create {{0, z},{1,2}}

@ otherwise {1,2} € G:
extract the longest run of
adjacencies from 1; and then we
can apply case 1 twice.

Example

67

A 3/2-approximation algorithm for unsigned prefix DCls

Algorithm outline
Until G = Id, consider edge {0, v} € G:

@ifv#£l

@® otherwise v = 1:

® if {1,2} ¢ G: 3 breakpoint {2,z}
= create {{0, z},{1,2}}

@® otherwise {1,2} € G:
extract the longest run of
adjacencies from 1; and then we
can apply case 1 twice.

Example

68

A 3/2-approximation algorithm for unsigned prefix DCls

Algorithm outline
Until G = Id, consider edge {0, v} € G:

@ if v £ 1, then at least one of {v —1, x}
or {v+1,y} is a breakpoint;
= create {{0,x},{v—1,v}} or
{0,y} {v,v+ 13}

@® otherwise v = 1:

® if {1,2} ¢ G: 3 breakpoint {2, z}
= create {{0, z},{1,2}}

@® otherwise {1,2} € G:
extract the longest run of
adjacencies from 1; and then we
can apply case 1 twice.

Example

60

A 3/2-approximation algorithm for unsigned prefix DCls

Algorithm outline
Until G = Id, consider edge {0, v} € G:

@ if v £ 1, then at least one of {v —1, x}
or {v+1,y} is a breakpoint;
= create {{0,x},{v—1,v}} or
{0,y} {v,v+ 13}

@® otherwise v = 1:

® if {1,2} ¢ G: 3 breakpoint {2, z}
= create {{0, z},{1,2}}

@® otherwise {1,2} € G:
extract the longest run of
adjacencies from 1; and then we
can apply case 1 twice.

Example

70

A 3/2-approximation algorithm for unsigned prefix DCls

Algorithm outline
Until G = Id, consider edge {0, v} € G:
@ if v £ 1, then at least one of {v —1, x}
or {v+1,y} is a breakpoint;
= create {{0,x},{v—1,v}} or
{{0,y} {viv +1}};

@® otherwise v = 1:

® if {1,2} ¢ G: 3 breakpoint {2, z}
= create {{0, z},{1,2}}

@® otherwise {1,2} € G:
extract the longest run of
adjacencies from 1; and then we
can apply case 1 twice.

Example

71

A 3/2-approximation algorithm for unsigned prefix DCls

Algorithm outline
Until G = Id, consider edge {0, v} € G:
@ if v £ 1, then at least one of {v —1, x}
or {v+1,y} is a breakpoint;
= create {{0,x},{v—1,v}} or
{{0,y} {viv +1}};

@® otherwise v = 1:

® if {1,2} ¢ G: 3 breakpoint {2, z}
= create {{0, z},{1,2}}

@® otherwise {1,2} € G:
extract the longest run of
adjacencies from 1; and then we
can apply case 1 twice.

Example

79

A 3/2-approximation algorithm for unsigned prefix DCls

Algorithm outline
Until G = Id, consider edge {0, v} € G:
@ if v £ 1, then at least one of {v —1, x}
or {v+1,y} is a breakpoint;
= create {{0,x},{v—1,v}} or
{{0,y} {viv +1}};

@® otherwise v = 1:

® if {1,2} ¢ G: 3 breakpoint {2, z}
= create {{0, z},{1,2}}

@® otherwise {1,2} € G:
extract the longest run of
adjacencies from 1; and then we
can apply case 1 twice.

Example

73

A 3/2-approximation algorithm for unsigned prefix DCls

Algorithm outline
Until G = Id, consider edge {0, v} € G:

@ if v £ 1, then at least one of {v —1, x}
or {v+1,y} is a breakpoint;
= create {{0,x},{v—1,v}} or
{{0,y} {v,v+1}};

@® otherwise v = 1:

® if {1,2} ¢ G: 3 breakpoint {2,z}
= create {{0, z},{1,2}}

@® otherwise {1,2} € G:
extract the longest run of
adjacencies from 1; and then we
can apply case 1 twice.

Approximation guarantee

® Case 1: b(G) decreases
by 1;

74

A 3/2-approximation algorithm for unsigned prefix DCls

Algorithm outline
Until G = Id, consider edge {0, v} € G:

@ if v £ 1, then at least one of {v —1, x}
or {v+1,y} is a breakpoint;
= create {{0,x},{v—1,v}} or
{{0,y} {v,v+1}};

@® otherwise v = 1:

® if {1,2} ¢ G: 3 breakpoint {2,z}
= create {{0, z},{1,2}}

@® otherwise {1,2} € G:
extract the longest run of
adjacencies from 1; and then we
can apply case 1 twice.

Approximation guarantee

® Case 1: b(G) decreases
by 1;

® Case 2.1: b(G) decreases
by 1;

75

A 3/2-approximation algorithm for unsigned prefix DCls

Algorithm outline
Until G = Id, consider edge {0, v} € G:
@ if v £ 1, then at least one of {v —1, x}
or {v+1,y} is a breakpoint;
= create {{0,x},{v—1,v}} or
{{0,y} {viv+1}};

@® otherwise v = 1:

® if {1,2} ¢ G: 3 breakpoint {2,z}
= create {{0, z},{1,2}}

@® otherwise {1,2} € G:
extract the longest run of
adjacencies from 1; and then we
can apply case 1 twice.

Approximation guarantee

® Case 1: b(G) decreases
by 1;

® Case 2.1: b(G) decreases
by 1;

® Case 2.2: b(G) decreases
by 0, then by 2 (case 1);

76

A 3/2-approximation algorithm for unsigned prefix DCls

Algorithm outline
Until G = Id, consider edge {0, v} € G:
@ if v £ 1, then at least one of {v —1, x}
or {v+1,y} is a breakpoint;
= create {{0,x},{v—1,v}} or
{{0,y} {viv+1}};

@® otherwise v = 1:

® if {1,2} ¢ G: 3 breakpoint {2, z}
= create {{0, z},{1,2}}

@® otherwise {1,2} € G:
extract the longest run of
adjacencies from 1; and then we
can apply case 1 twice.

Approximation guarantee

® Case 1: b(G) decreases
by 1;

® Case 2.1: b(G) decreases
by 1;

® Case 2.2: b(G) decreases
by 0, then by 2 (case 1);

= Worst case: b(G)
decreases by 2 in 3 steps;

77

A 3/2-approximation algorithm for unsigned prefix DCls

Algorithm outline Approximation guarantee

Until G = Id, consider edge {0, v} € G: o Case 1: b(G) decreases
@ if v # 1, then at least one of {v—1,x} by 1;

or {v+1,y} is a breakpoint;
= create {{0,x},{v—1,v}} or
{0, y}, {v,v+1}}

@® otherwise v = 1:

® if {1,2} ¢ G: 3 breakpoint {2, z}

= create {{0, z},{1,2}}
@® otherwise {1,2} € G:
extract the longest run of

adjacencies from 1; and then we

can apply case 1 twice.

® Case 2.1: b(G) decreases
by 1;

® Case 2.2: b(G) decreases
by 0, then by 2 (case 1);

= Worst case: b(G)
decreases by 2 in 3 steps;

= [3/2-approximation|

78

Unsigned prefix reversals

® Unsigned prefix reversals are unsigned prefix DCJs that must
yield a path at each step;
v therefore, prd(G) > pdcj(G);
X but previous algorithm cannot be used,;

70

Open problems

e Complexity issues:

reversals DClJs
unsigned signed unsigned signed
unrestricted | NP-hard [4] | in P [6] | NP-hard [5] | in P [7]
prefix NP-hard [3] | 2?27 77?7 in P(here)

20

Open problems

e Complexity issues:

reversals DClJs
unsigned signed unsigned signed
unrestricted | NP-hard [4] | in P [6] | NP-hard [5] | in P [7]
prefix NP-hard [3] | 2?27 77?7 in P(here)

® Approximability: is there a better guarantee than:

e 2 for prefix reversals (signed or unsigned)?
® 3/2 for unsigned prefix DCJs?

21

Open problems

e Complexity issues:

reversals DClJs
unsigned signed unsigned signed
unrestricted | NP-hard [4] | in P [6] | NP-hard [5] | in P [7]
prefix NP-hard [3] | 2?27 77?7 in P(here)

® Approximability: is there a better guarantee than:

e 2 for prefix reversals (signed or unsigned)?
® 3/2 for unsigned prefix DCJs?

e Exploring (prefix) DCJs on other graph classes;

® finding a shortest scenario is NP-hard [2];

® there is a 7/4-approximation [2];

9

Open problems

e Complexity issues:

reversals DClJs
unsigned signed unsigned signed
unrestricted | NP-hard [4] | in P [6] | NP-hard [5] | in P [7]
prefix NP-hard [3] | 2?27 77?7 in P(here)

® Approximability: is there a better guarantee than:

e 2 for prefix reversals (signed or unsigned)?
® 3/2 for unsigned prefix DCJs?

e Exploring (prefix) DCJs on other graph classes;

® finding a shortest scenario is NP-hard [2];

® there is a 7/4-approximation [2];

Thanks!

a3

References |

E

R 1 R i A

Sheldon B. Akers, Balakrishnan Krishnamurthy, and Dov Harel.

The star graph: An attractive alternative to the n-cube.
In Proceedings of the Fourth International Conference on Parallel Processing, pages 393—400. Pennsylvania
State University Press, August 1987.

Daniel Bienstock and Oktay Giinliik.

A degree sequence problem related to network design.
Networks, 24(4):195-205, 1994.

Laurent Bulteau, Guillaume Fertin, and Irena Rusu.

Pancake flipping is hard.
Journal of Computer and System Sciences, 81(8):1556-1574, 2015.

Alberto Caprara.

Sorting permutations by reversals and Eulerian cycle decompositions.

SIAM Journal on Discrete Mathematics, 12(1):91-110 (electronic), January 1999.
Xin Chen.

On sorting unsigned permutations by double-cut-and-joins.
Journal of Combinatorial Optimization, 25(3):339-351, April 2013.

Sridhar Hannenhalli and Pavel A. Pevzner.

Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals.
Journal of the ACM, 46(1):1-27, 1999.

Sophia Yancopoulos, Oliver Attie, and Richard Friedberg.

Efficient sorting of genomic permutations by translocation, inversion and block interchange.
Bioinformatics, 21(16):3340-3346, 2005.

24

	Mimicking other rearrangements using DCJs
	Results

