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Edit Distances and Factorisations of Even Permutations

Introduction

Edit distances

Edit operations: given fixed set of allowed operations;

Edit distance: minimum number of edit operations needed to
transform X into Y ;

�←→ · · · �←→

Many applications:

spelling correction (example: type “dsitnace” in Google);
genome rearrangements;
interconnection networks;

...
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Permutations

Permutations

Permutations can model:

genomes and mutations
[Hannenhalli and Pevzner, 1999]

devices in interconnection networks

〈1 2 3 4〉 〈2 1 3 4〉

〈4 1 3 2〉

〈3 1 2 4〉〈3 2 1 4〉〈4 2 1 3〉

〈2 3 1 4〉

〈4 2 3 1〉〈3 2 4 1〉

〈2 4 3 1〉

〈3 1 4 2〉

〈1 4 3 2〉

〈4 1 2 3〉

〈1 3 2 4〉

〈1 2 4 3〉

〈2 3 4 1〉

〈3 4 2 1〉

〈2 1 4 3〉

〈1 3 4 2〉

〈3 4 1 2〉〈4 3 2 1〉 〈4 3 1 2〉

〈2 4 1 3〉〈1 4 2 3〉
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Permutations

Permutations: basic definitions

Permutation: linear ordering of {1, 2, . . . , n};
Disjoint cycle decomposition:(

1 2 3 4 5 6 7
4 1 6 2 5 7 3

)
= (1, 4, 2)(3, 6, 7)(5).

The graph of permutation π, denoted by Γ(π):

4 1 6 2 5 7 3

π is even if Γ(π) has an even number of even cycles;

Conjugacy class: permutations with the same decomposition;

1-cycles (or fixed points) are often omitted;
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The problem(s)

Let:

π be a permutation of {1, 2, . . . , n};
S = {s1, s2, . . .} be a set of permutations of {1, 2, . . . , n} (the
edit operations);
ι be the identity permutation 〈1 2 · · · n〉;

We want to:
1 “sort π by S”: find a sequence of elements of S that sorts π

and is as short as possible:

π ◦ x1 ◦ x2 ◦ · · · ◦ xt = ι where x1, . . . , xt ∈ S and t is minimal

2 “compute the S-distance dS(π, ι)”: find the length of such a
sequence;
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The problem(s)

Some edit operations

From genome rearrangements:

reversals: 〈3 2 5 4 1〉 → 〈3 2 1 4 5〉
transpositions: 〈3 2 5 4 1 〉 → 〈 3 4 1 2 5〉
block-interchanges: 〈 5 4 3 2 1〉 → 〈 3 4 5 2 1 〉

From interconnection networks:

prefix reversals: 〈2 3 5 4 1〉 → 〈4 5 3 2 1〉
prefix transpositions: 〈 3 2 5 4 1 〉 → 〈4 1 3 2 5〉



Edit Distances and Factorisations of Even Permutations

Introduction

The problem(s)

Background

Operation Sorting Distance Diameter

cl
as

si
ca

l reversals NP-hard NP-hard n − 1

signed reversals O(n3/2) O(n) n + 1
block-interchanges O(n log n) O(n) n/2
transpositions2 ? ? n

2 ≤ ? ≤ 2n
3

pr
efi

x reversals ? ? 15n
14 ≤ ? ≤ 18n

11
signed reversals ? ? 3n

2 ≤ ? ≤ 2(n − 1)
transpositions ? ? 2n

3 ≤ ? ≤ n − log8 n

All three prefix variants are 2-approximable;

211/8-approximable [Elias and Hartman, 2006]
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Results

Expression of the “cycle graph” [Bafna and Pevzner, 1998] of
π as an even permutation π;

Reformulation of every edit distance problem on π in terms
of particular factorisations of π;

Simple recovery of previous results;

New lower bound on the prefix transposition distance, which
outperforms previous results;

Improved lower bound on the maximal value of that distance
( 2n

3 →
⌊

3n+1
4

⌋
);
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The “cycle graph”

The “cycle graph” [Bafna and Pevzner, 1998]

The “cycle graph” of π, denoted by G (π):

π0

π1

π2

π3

π4

π5

π6

π7

0

3

7

5

2

6

1

4

(here π = 〈4 1 6 2 5 7 3〉)
1 V (G ) = (π0 = 0, π1, π2, . . . , πn);

2 E (G ) =

{black arcs} ∪ {grey arcs};

Unique decomposition into “alternating cycles”;
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The “cycle graph” of π, denoted by G (π):
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G (π) as an even permutation

“Monochrome” decomposition:

0

3

7

5

2

6

1

4

0

3

7

5

2

6

1

4

π̂ π̇
= =

π =

(0, 3, 7, 5, 2, 6, 1, 4)

◦

(0, 1, 2, 3, 4, 5, 6, 7)
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G (π) as an even permutation
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G(π) as an even permutation

G (π) as an even permutation

“Monochrome” decomposition:

0

3

7

5

2

6

1

4

0

3

7

5

2

6

1

4

π̂ π̇
= =

π = (0, 3, 7, 5, 2, 6, 1, 4) ◦ (0, 1, 2, 3, 4, 5, 6, 7)
= (0, 4, 2, 7, 3)(1, 6, 5)
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G(π) as an even permutation

G (π) as an even permutation

We have π = π̂ ◦ π̇, with Γ(π) ' G (π); indeed:

0

3

7

5

2

6

1

4

π̂ π̇
= =

π = (0, 3, 7, 5, 2, 6, 1, 4) ◦ (0, 1, 2, 3, 4, 5, 6, 7)
= (0, 4, 2, 7, 3)(1, 6, 5)
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A general lower bounding technique

Note that “sorting by S” is equivalent to “factorising by S”:

π ◦ x1 ◦ x2 ◦ · · · ◦ xt︸ ︷︷ ︸
x1,x2,...,xt∈S

= ι⇔ π = x−1
t ◦ x−1

t−1 ◦ · · · ◦ x−1
1︸ ︷︷ ︸

x−1
1 ,x−1

2 ,...,x−1
t ∈S

Theorem 1

Let:

1 S ⊂ Sn, with S = {s1, s2, . . .},
2 S ′ = {s1, s2, . . .},
3 C the set of conjugacy classes that intersect S ′.

Then for all π in Sn, every factorisation of π into t elements of S
yields a factorisation of π into t elements of C.
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A general lower bounding technique

Theorem 1 in action

Our problem:

computing dS(π):

π π ◦ x1 π ◦ x1 ◦ x2
· · ·

ι

New problem:

computing dC(π): π ι

dC(π) ≤ dS(π)

π ◦ y1 π ◦ y1 ◦ y2

· · ·

Lemma 2

For all π, σ in Sn:

π ◦ σ = π ◦ σ ◦ π−1 ◦ π
= σπ ◦ π.
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A general lower bounding technique

A lower bound on the block-interchange distance

Example 3 (lower bound on bid(π))

S ={block-interchanges}, denoted by β(i , j , k , l);(
1 · · · i − 1 i · · · j − 1 j j + 1 · · · k − 1 k · · · l − 1 l l + 1 · · · n

1 · · · i − 1 k · · · l − 1 j j + 1 · · · k − 1 i · · · j − 1 l l + 1 · · · n

)
.
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A general lower bounding technique

A lower bound on the block-interchange distance

Example 3 (lower bound on bid(π))

S ={block-interchanges}, denoted by β(i , j , k , l); we have:

β(i , j , k, l) = (i−1, k−1)(j−1, l−1) (1 ≤ i < j ≤ k < l ≤ n+1).

We have S ′ ⊆ C, where C contains all pairs of 2-cycles;

We have dC(π) = |π|−c(Γ(π))
2 ;

Therefore, we recover the result of [Christie, 1996]:

∀ π ∈ Sn : bid(π) ≥ n + 1− c(Γ(π))

2
.
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A general lower bounding technique

A lower bound on the transposition distance

Example 3 (lower bound on td(π))

S ={transpositions}, denoted by τ(i , j , k);(
1 · · · i − 1 i i + 1 · · · j − 2 j − 1 j j + 1 · · · k − 1 k · · · n

1 · · · i − 1 j j + 1 · · · k − 1 i i + 1 · · · j − 2 j − 1 k · · · n

)
.
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A general lower bounding technique

A lower bound on the transposition distance

Example 3 (lower bound on td(π))

S ={transpositions}, denoted by τ(i , j , k); we have:

τ(i , j , k) = (i − 1, k − 1, j − 1) (1 ≤ i < j < k ≤ n + 1).

We have S ′ ⊆ C, the set of all 3-cycles;

We have dC(π) = |π|−codd (Γ(π))
2 ;

Therefore, we recover the result of [Bafna and Pevzner, 1998]:

∀ π ∈ Sn : td(π) ≥ n + 1− codd(Γ(π))

2
.
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A general lower bounding technique

A new lower bound on the prefix transposition distance

Example 3 (lower bound on ptd(π))

S ={prefix transpositions}; we get:

τ(1, j , k) = (0, k − 1, j − 1) (1 < j < k ≤ n + 1).

We have S ′ ⊆ C, the set of all 3-cycles that contain 0;

We can compute dC(π), and this yields the following new
lower bound :

∀ π ∈ Sn : ptd(π) ≥ n + 1 + c(Γ(π))

2
−c1(Γ(π))−

{
0 if π1 = 1,
1 otherwise.
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A general lower bounding technique

Quality of the results

Block-interchanges: the lower bound is the exact distance;
Prefix transpositions: the new result:

always outperforms [Dias and Meidanis, 2002];
“often” outperforms [Chitturi and Sudborough, 2008]:
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A general lower bounding technique

The prefix transposition diameter of Sn

These permutations satisfy ptd(π) ≥
⌊

3n+1
4

⌋
, thereby

improving on the lower bound of 2n/3 by
[Chitturi and Sudborough, 2008]:

0 3 2 1 4 7 6 5 8
(a)

0 1 4 3 2 5 8 7 6 9
(b)

0 1 4 3 2 5 8 7 6 9 10
(c)

0 2 1 3 6 5 4 7 10 9 8 11
(d)
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Future work

Complexity/approximation issues (transpositions, prefix
operations);

Can the π model provide upper bounds?

Extending the π model to signed permutations and/or other
structures;



Edit Distances and Factorisations of Even Permutations

Future work

Thank you!
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