Sorting by Prefix Block-Interchanges

Anthony Labarre

The 31st International Symposium on Algorithms and Computation (ISAAC)

December 14th, 2020

General problem

Transform X into Y using as few operations as possible from S; the length of an optimal sequence is the S-distance between X and Y.

General problem

Transform X into Y using as few operations as possible from S; the length of an optimal sequence is the S-distance between X and Y.

Applications arise in:

① computational biology:

② interconnection networks:

General problem

Transform X into Y using as few operations as possible from S; the length of an optimal sequence is the S-distance between X and Y.

Applications arise in:

- computational biology:
 - X and Y are genomes, S = mutations;
 - solution = evolutionary scenario between X and Y;
- ② interconnection networks:

General problem

Transform X into Y using as few operations as possible from S; the length of an optimal sequence is the S-distance between X and Y.

Applications arise in:

- computational biology:
 - X and Y are genomes, S = mutations;
 - solution = evolutionary scenario between X and Y;
- 2 interconnection networks:
 - Cayley graph generated by S = network N;
 - X and Y are nodes in N;
 - solution = shortest routing path between X and Y;

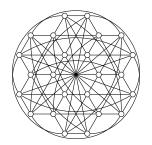
Motivations (prefix constraints)

Additional restrictions are sometimes placed on operations to simplify the underlying problems or to obtain a "better" structure.

Example (S_4 : exchanges \mapsto prefix exchanges)

$$V = \text{permutations of } \{1, 2, \dots, n\}$$

 $E = \{\{\pi, \sigma\} \text{ s.t. } \exists (i, j) : \pi(i, j) = \sigma\}$



variant	V	degree	<i>E</i>	diameter
unrestricted	n!	$\binom{n}{2}$	$n! \binom{n}{2}/2$	n-1

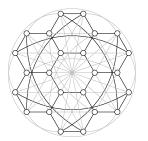
Motivations (prefix constraints)

Additional restrictions are sometimes placed on operations to simplify the underlying problems or to obtain a "better" structure.

Example (S_4 : exchanges \mapsto prefix exchanges)

$$V = \text{permutations of } \{1, 2, \dots, n\}$$

 $E = \{\{\pi, \sigma\} \text{ s.t. } \exists (1, j) : \pi(1, j) = \sigma\}$



variant	V	degree	<i>E</i>	diameter
unrestricted	n!	(n)	$n!\binom{n}{2}/2$	n-1
prefix	n!	n-1	n!(n-1)/2	$\lfloor 3(n-1)/2 \rfloor$

.

Motivations (block-interchanges)

Block-interchanges swap any two nonintersecting intervals:

Example (sorting by block-interchanges)

$$\pi = 7 \ 1 \ \boxed{4 \ 5} \ 3 \ \boxed{2} \ 6 \rightarrow \boxed{7} \ \boxed{1 \ 2 \ 3 \ 4 \ 5 \ 6} \rightarrow 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7$$

"unrestricted"

"prefix"

- Sorting by (unrestricted) block-interchanges is easy;
- Sorting by prefix block-interchanges is:
 - NP-hard for strings [Cho+14];
 - open for permutations;
- Block-interchanges generalise a few other operations;

Current state of knowledge and context

The complexity of sorting problems on permutations is well-understood . . .

Operation	Unrestricted	Prefix-constrained		
signed reversal	in P			
reversal	NP-hard			
double cut-and-join	NP-hard			
signed double cut-and-join	in P			
exchange	in P			
block-transposition	NP-hard			
block-interchange	in P			
(

(see paper for references)

(You might know sorting by (signed) prefix reversals as *(burnt) pancake flipping.*)

Current state of knowledge and context

The complexity of sorting problems on permutations is well-understood . . . except in the prefix setting.

Operation	Unrestricted	Prefix-constrained
signed reversal	in P	open
reversal	NP-hard	NP-hard
double cut-and-join	NP-hard	open
signed double cut-and-join	in P	open
exchange	in P	in P
block-transposition	NP-hard	open
block-interchange	in P	open

(see paper for references)

(You might know sorting by (signed) prefix reversals as *(burnt) pancake flipping.*)

Results

- We give a 2-approximation algorithm for sorting by prefix block-interchanges;
- 2 We show how to obtain tighter lower and upper bounds;

3 We prove that the diameter (i.e. the maximum value the distance can reach) is $\lfloor 2n/3 \rfloor$); (see paper)

Given a permutation π in S_n :

Example (for $\pi = 7 \ 1 \ 4 \ 5 \ 3 \ 2 \ 6$)

7 1 4 5 3 2

Given a permutation π in S_n :

$$\bullet \pi_i \mapsto (\pi'_{2i-1}, \pi'_{2i}) = (2\pi_i - 1, 2\pi_i);$$

Example (for $\pi = 7 \ 1 \ 4 \ 5 \ 3 \ 2 \ 6$)

Given a permutation π in S_n :

- $\bullet \pi_i \mapsto (\pi'_{2i-1}, \pi'_{2i}) = (2\pi_i 1, 2\pi_i);$
- **2** add $\pi'_0 = 0$ and $\pi'_{2n+1} = 2n + 1$;

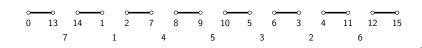
Example (for $\pi = 7 \ 1 \ 4 \ 5 \ 3 \ 2 \ 6$)

Given a permutation π in S_n :

- $\bullet \pi_i \mapsto (\pi'_{2i-1}, \pi'_{2i}) = (2\pi_i 1, 2\pi_i);$
- **2** add $\pi'_0 = 0$ and $\pi'_{2n+1} = 2n + 1$;
- **3 black** edges: $\{\pi'_{2i}, \pi'_{2i+1}\};$

(consecutive positions)

Example (for $\pi = 7 \ 1 \ 4 \ 5 \ 3 \ 2 \ 6$)



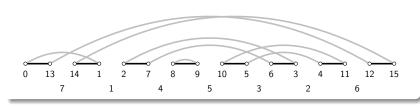
1.5

Given a permutation π in S_n :

- $\bullet \pi_i \mapsto (\pi'_{2i-1}, \pi'_{2i}) = (2\pi_i 1, 2\pi_i);$
- **2** add $\pi'_0 = 0$ and $\pi'_{2n+1} = 2n + 1$;
- **3 black** edges: $\{\pi'_{2i}, \pi'_{2i+1}\};$
- **4** grey edges: $\{2i, 2i + 1\}$;

(consecutive positions)

(consecutive values)

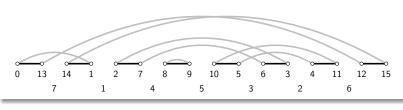


Given a permutation π in S_n :

- $\bullet \pi_i \mapsto (\pi'_{2i-1}, \pi'_{2i}) = (2\pi_i 1, 2\pi_i);$
- 2 add $\pi'_0 = 0$ and $\pi'_{2n+1} = 2n + 1$;
- **3 black** edges: $\{\pi'_{2i}, \pi'_{2i+1}\}$;
 - **4** grey edges: $\{2i, 2i + 1\}$;

(consecutive positions) (consecutive values)

Example (for $\pi = 7 \ 1 \ 4 \ 5 \ 3 \ 2 \ 6$)

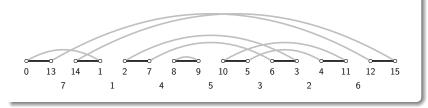


 $G(\pi)$ is a collection of alternating cycles;

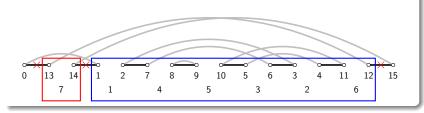
- length of cycle = number of black edges;
- goal: obtain only *trivial* (= length 1) cycles (see next slide);

- The block-interchange $\beta(i,j,k,\ell)$ swaps intervals $[i\cdots j-1]$ and $[k\cdots\ell-1]$ in permutation π $(1 \le i < j \le k < \ell \le n+1);$
- If i = 1, then β is a *prefix block-interchange* (pbi for short);
- Goal: sort π using as few pbis as possible;

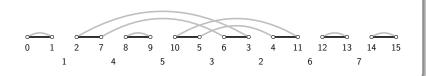
Example (for $\pi = 7 \ 1 \ 4 \ 5 \ 3 \ 2 \ 6$)



- The block-interchange $\beta(i,j,k,\ell)$ swaps intervals $[i\cdots j-1]$ and $[k\cdots\ell-1]$ in permutation π $(1 \le i < j \le k < \ell \le n+1);$
- If i = 1, then β is a *prefix block-interchange* (pbi for short);
- Goal: sort π using as few pbis as possible;

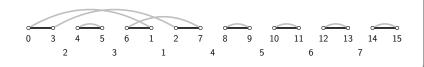


- The block-interchange $\beta(i,j,k,\ell)$ swaps intervals $[i\cdots j-1]$ and $[k\cdots\ell-1]$ in permutation π $(1 \le i < j \le k < \ell \le n+1);$
- If i = 1, then β is a prefix block-interchange (pbi for short);
- Goal: sort π using as few pbis as possible;

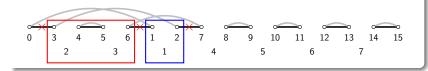


- The block-interchange $\beta(i, j, k, \ell)$ swaps intervals $[i \cdots j 1]$ and $[k \cdots \ell 1]$ in permutation π $(1 \le i < j \le k < \ell \le n + 1)$;
- If i = 1, then β is a *prefix block-interchange* (pbi for short);
- Goal: sort π using as few pbis as possible;

- The block-interchange $\beta(i, j, k, \ell)$ swaps intervals $[i \cdots j 1]$ and $[k \cdots \ell 1]$ in permutation π $(1 \le i < j \le k < \ell \le n + 1)$;
- If i = 1, then β is a *prefix block-interchange* (pbi for short);
- Goal: sort π using as few pbis as possible;



- The block-interchange $\beta(i,j,k,\ell)$ swaps intervals $[i\cdots j-1]$ and $[k\cdots\ell-1]$ in permutation π $(1 \le i < j \le k < \ell \le n+1);$
- If i = 1, then β is a *prefix block-interchange* (pbi for short);
- Goal: sort π using as few pbis as possible;



- The block-interchange $\beta(i,j,k,\ell)$ swaps intervals $[i\cdots j-1]$ and $[k\cdots\ell-1]$ in permutation π $(1 \le i < j \le k < \ell \le n+1);$
- If i = 1, then β is a *prefix block-interchange* (pbi for short);
- Goal: sort π using as few pbis as possible;

Example (for
$$\pi = 7 \ 1 \ 4 \ 5 \ 3 \ 2 \ 6$$
)

This shows that the *prefix block-interchange distance* of π ($pbid(\pi)$) is at most 3.

A first upper bound

We use the following function:

$$g(\pi) = \frac{n+1+c(G(\pi))}{2} - c_1(G(\pi)) - \begin{cases} 0 & \text{if } \pi_1 = 1, \\ 1 & \text{otherwise.} \end{cases}$$

A first upper bound

We use the following function:

$$g(\pi) = \frac{n+1+c(G(\pi))}{2} - c_1(G(\pi)) - \begin{cases} 0 & \text{if } \pi_1 = 1, \\ 1 & \text{otherwise.} \end{cases}$$

Our algorithm proves the following:

Theorem

For any π in S_n , we have $pbid(\pi) \leq g(\pi)$.

A first upper bound

We use the following function:

$$g(\pi) = \frac{n+1+c(G(\pi))}{2} - c_1(G(\pi)) - \begin{cases} 0 & \text{if } \pi_1 = 1, \\ 1 & \text{otherwise.} \end{cases}$$

Our algorithm proves the following:

Theorem

For any π in S_n , we have $pbid(\pi) \leq g(\pi)$.

We assume $\pi_1 \neq 1$ (otherwise we simply move the longest sorted prefix $1 \ 2 \ \cdots \ k$ of π right before k+1).

Remarks:

- Computations are easy but omitted lest the audience fall asleep;
- $g(\pi)$ is a *lower* bound on two other prefix distances;

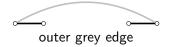
The approximation algorithm: the case where $\pi_1 \neq 1$ Lemma ([HP99])

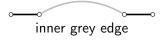
Every grey edge in a nontrivial cycle intersects another grey edge.

Lemma ([HP99])

Every grey edge in a nontrivial cycle intersects another grey edge.

We distinguish between "outer" grey edges and "inner" grey edges:





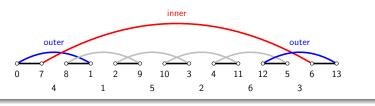
Lemma ([HP99])

Every grey edge in a nontrivial cycle intersects another grey edge.

We distinguish between "outer" grey edges and "inner" grey edges:

... because some grey edges are only intersected by outer grey edges.

Example



Proof $(pbid(\pi) \leq g(\pi))$.

By the previous lemma, the *first grey edge* $\{1, j\}$ intersects a grey edge $\{i, k\}$;

_

Proof $(pbid(\pi) \leq g(\pi))$.

By the previous lemma, the *first grey edge* $\{1, j\}$ intersects a grey edge $\{i, k\}$;

1 if $\{i, k\}$ is inner, apply $\beta(1, i, j, k)$:

_

Proof $(pbid(\pi) \leq g(\pi))$.

By the previous lemma, the *first grey edge* $\{1, j\}$ intersects a grey edge $\{i, k\}$;

1 if $\{i, k\}$ is inner, apply $\beta(1, i, j, k)$:

2 if $\{i, k\}$ is outer with j < k, apply $\beta(1, i, j, k)$:

']

Proof
$$(pbid(\pi) \leq g(\pi))$$
.

By the previous lemma, the *first grey edge* $\{1, j\}$ intersects a grey edge $\{i, k\}$;

- **1** if $\{i, k\}$ is inner, apply $\beta(1, i, j, k)$:
- 2 if $\{i, k\}$ is outer with j < k, apply $\beta(1, i, j, k)$:

3 otherwise $\{i, k\}$ is outer with j = k; apply $\beta(1, i, i, k)$:

_

Proof
$$(pbid(\pi) \leq g(\pi))$$
.

By the previous lemma, the *first grey edge* $\{1, j\}$ intersects a grey edge $\{i, k\}$;

- 1) if $\{i, k\}$ is inner, apply $\beta(1, i, j, k)$:
- 2 if $\{i, k\}$ is outer with j < k, apply $\beta(1, i, j, k)$:

3 otherwise $\{i, k\}$ is outer with j = k; apply $\beta(1, i, i, k)$:

Each choice yields $g(\pi\beta) - g(\pi) \le -1$ (details omitted), so $pbid(\pi) \le g(\pi)$.

Lower bounding *pbid* (outline)

We bound *pbid* using the following framework [Lab13]:

• $G(\pi)$ is itself a permutation (which we write $\overline{\pi}$);

We bound *pbid* using the following framework [Lab13]:

- $G(\pi)$ is itself a permutation (which we write $\overline{\pi}$);
- the mapping $\pi \mapsto \pi \beta$ translates to $\overline{\pi} \mapsto \overline{\pi}(\overline{\beta})^{\overline{\pi}}$;

We bound *pbid* using the following framework [Lab13]:

- $G(\pi)$ is itself a permutation (which we write $\overline{\pi}$);
- the mapping $\pi \mapsto \pi \beta$ translates to $\overline{\pi} \mapsto \overline{\pi}(\overline{\beta})^{\overline{\pi}}$;
- the image of a pbi $\overline{\beta}$ is $\overline{\beta(1,j,k,\ell)} = (j,\ell)(1,k)$;

We bound *pbid* using the following framework [Lab13]:

- $G(\pi)$ is itself a permutation (which we write $\overline{\pi}$);
- the mapping $\pi \mapsto \pi \beta$ translates to $\overline{\pi} \mapsto \overline{\pi}(\overline{\beta})^{\overline{\pi}}$;
- the image of a pbi $\overline{\beta}$ is $\overline{\beta(1,j,k,\ell)} = (j,\ell)(1,k)$;

Theorem

For all $\pi \in S_n$, we have $pbid(\pi) \ge g(\pi)/2$.

Proof idea.

.. and therefore the approximation has ratio 2.

We bound *pbid* using the following framework [Lab13]:

- $G(\pi)$ is itself a permutation (which we write $\overline{\pi}$);
- the mapping $\pi \mapsto \pi \beta$ translates to $\overline{\pi} \mapsto \overline{\pi}(\overline{\beta})^{\overline{\pi}}$;
- the image of a pbi $\overline{\beta}$ is $\overline{\beta(1,j,k,\ell)} = (j,\ell)(1,k)$;

Theorem

For all $\pi \in S_n$, we have $pbid(\pi) \ge g(\pi)/2$.

Proof idea.

• Every sequence of pbis for π yields a sequence of special pairs of 2-cycles for $\overline{\pi} \Rightarrow pbid(\pi) \geq$ "special distance" $(\overline{\pi})$.

.. and therefore the approximation has ratio 2.

We bound *pbid* using the following framework [Lab13]:

- $G(\pi)$ is itself a permutation (which we write $\overline{\pi}$);
- the mapping $\pi \mapsto \pi \beta$ translates to $\overline{\pi} \mapsto \overline{\pi}(\overline{\beta})^{\overline{\pi}}$;
- the image of a pbi $\overline{\beta}$ is $\overline{\beta(1,j,k,\ell)} = (j,\ell)(1,k)$;

Theorem

For all $\pi \in S_n$, we have $pbid(\pi) \ge g(\pi)/2$.

Proof idea.

- Every sequence of pbis for π yields a sequence of special pairs of 2-cycles for $\overline{\pi} \Rightarrow pbid(\pi) \geq$ "special distance" $(\overline{\pi})$.
- For every pbi β , we have $g(\overline{\pi\beta}) g(\overline{\pi}) = g(\pi\beta) g(\pi) \ge -2$;

.. and therefore the approximation has ratio 2.

We bound *pbid* using the following framework [Lab13]:

- $G(\pi)$ is itself a permutation (which we write $\overline{\pi}$);
- the mapping $\pi \mapsto \pi \beta$ translates to $\overline{\pi} \mapsto \overline{\pi}(\overline{\beta})^{\overline{\pi}}$;
- the image of a pbi $\overline{\beta}$ is $\overline{\beta(1,j,k,\ell)} = (j,\ell)(1,k)$;

Theorem

For all $\pi \in S_n$, we have $pbid(\pi) \ge g(\pi)/2$.

Proof idea.

- Every sequence of pbis for π yields a sequence of special pairs of 2-cycles for $\overline{\pi} \Rightarrow pbid(\pi) \geq$ "special distance" $(\overline{\pi})$.
- For every pbi β , we have $g(\overline{\pi\beta}) g(\overline{\pi}) = g(\pi\beta) g(\pi) \ge -2$;
- Therefore: $pbid(\pi) \geq$ "special distance" $(\overline{\pi}) \geq g(\pi)/2$.

.. and therefore the approximation has ratio 2.

Recall that we can always decrease $g(\cdot)$ by one. A more involved analysis of the proof (and additional ideas) yields:

Proposition

If $G(\pi)$ contains a "nonleftmost" 2-cycle, then there is a pbi that decreases $g(\pi)$ by 2.

Recall that we can always decrease $g(\cdot)$ by one. A more involved analysis of the proof (and additional ideas) yields:

Proposition

If $G(\pi)$ contains a "nonleftmost" 2-cycle, then there is a pbi that decreases $g(\pi)$ by 2.

Letting $c_2^{\emptyset}(G(\pi))$ denote the number of such 2-cycles, we get:

Recall that we can always decrease $g(\cdot)$ by one. A more involved analysis of the proof (and additional ideas) yields:

Proposition

If $G(\pi)$ contains a "nonleftmost" 2-cycle, then there is a pbi that decreases $g(\pi)$ by 2.

Letting $c_2^{\emptyset}(G(\pi))$ denote the number of such 2-cycles, we get:

Theorem

For any π in S_n , we have $pbid(\pi) \leq g(\pi) - \lceil c_2^{\emptyset}(G(\pi))/2 \rceil$.

4.5

Recall that we can always decrease $g(\cdot)$ by one. A more involved analysis of the proof (and additional ideas) yields:

Proposition

If $G(\pi)$ contains a "nonleftmost" 2-cycle, then there is a pbi that decreases $g(\pi)$ by 2.

Letting $c_2^{\emptyset}(G(\pi))$ denote the number of such 2-cycles, we get:

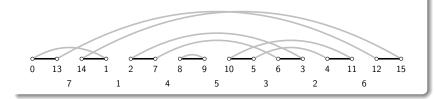
Theorem

For any
$$\pi$$
 in S_n , we have $pbid(\pi) \leq g(\pi) - \lceil c_2^{\emptyset}(G(\pi))/2 \rceil$.

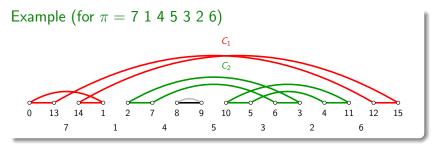
The "/2" part stems from the fact that exploiting a 2-cycle sometimes leads to "destroying" another 2-cycle.

A *component* of $G(\pi)$ is a connected component of the intersection graph of its nontrivial cycles.

Example (for
$$\pi = 7 \ 1 \ 4 \ 5 \ 3 \ 2 \ 6$$
)



A *component* of $G(\pi)$ is a connected component of the intersection graph of its nontrivial cycles.



A *component* of $G(\pi)$ is a connected component of the intersection graph of its nontrivial cycles.

Example (for
$$\pi = 7\ 1\ 4\ 5\ 3\ 2\ 6$$
)

$$C_1$$

$$C_2$$

$$0\ 13\ 14\ 1\ 2\ 7\ 8\ 9\ 10\ 5\ 6\ 3\ 4\ 11\ 12\ 15\ 7\ 1\ 4\ 5\ 3\ 2\ 6$$

• Pbis are restricted block-interchanges, so $pbid(\pi) \ge bid(\pi)$;

A *component* of $G(\pi)$ is a connected component of the intersection graph of its nontrivial cycles.

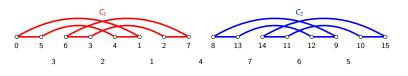
- Pbis are restricted block-interchanges, so $pbid(\pi) \geq bid(\pi)$;
- The number of components (= $CC(G(\pi))$) will help improve on this trivial result;

Theorem

For any
$$\pi$$
 in S_n , we have $pbid(\pi) \geq bid(\pi) + CC(G(\pi)) - \begin{cases} 0 & \text{if } \pi_1 = 1, \\ 1 & \text{otherwise.} \end{cases}$

Proof idea.

Example



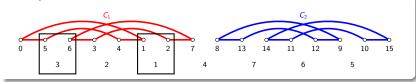
Theorem

For any
$$\pi$$
 in S_n , we have $pbid(\pi) \geq bid(\pi) + CC(G(\pi)) - \begin{cases} 0 & \text{if } \pi_1 = 1, \\ 1 & \text{otherwise.} \end{cases}$

Proof idea.

• Merging components does not "help" \Rightarrow sort each of them separately;

Example



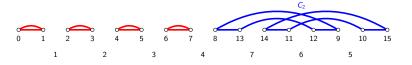
Theorem

For any π in S_n , we have $pbid(\pi) \geq bid(\pi) + CC(G(\pi)) - \begin{cases} 0 & \text{if } \pi_1 = 1, \\ 1 & \text{otherwise.} \end{cases}$

Proof idea.

- Merging components does not "help" \Rightarrow sort each of them separately;
- Sorting each component separately cannot be achieved with less than $bid(\pi)$ operations;

Example



Theorem

For any
$$\pi$$
 in S_n , we have $pbid(\pi) \geq bid(\pi) + CC(G(\pi)) - \begin{cases} 0 & \text{if } \pi_1 = 1, \\ 1 & \text{otherwise.} \end{cases}$

Proof idea.

- Merging components does not "help" \Rightarrow sort each of them separately;
- Sorting each component separately cannot be achieved with less than $bid(\pi)$ operations;
- "Accessing" each component except the leftmost one requires an additional operation.

Example

Future work

- Complexity?
- Can an approximation ratio lower than 2 be achieved?
- Can tighter bounds be obtained?
- Impacts of results on sorting strings by pbis?

Thanks!

Questions?

Selected references

- [Cho+14] Shih-Wen Chou et al. "Prefix Block-Interchanges on Binary Strings". Proceedings of the International Computer Symposium on Intelligent Systems and Applications. Vol. 274. Frontiers in Artificial Intelligence and Applications. Taichung, Taiwan, 2014, pp. 1960–1969. DOI: 10.3233/978-1-61499-484-8-1960.
- [HP99] Sridhar Hannenhalli and Pavel A. Pevzner. "Transforming Cabbage into Turnip: Polynomial Algorithm for Sorting Signed Permutations by Reversals". *Journal of the ACM* 46.1 (1999), pp. 1–27. DOI: 10.1145/300515.300516.
- [Lab13] Anthony Labarre. "Lower Bounding Edit Distances between Permutations". SIAM Journal on Discrete Mathematics 27.3 (2013), pp. 1410–1428. DOI: 10.1137/13090897X.