Sorting by Prefix Block-Interchanges

Anthony Labarre
The 31st International Symposium on Algorithms and Computation (ISAAC)

December 14th, 2020

~, Université
>:\< Gustave Eiffel
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General problem

Transform X into Y using as few operations as possible from S;
the length of an optimal sequence is the S-distance between X and Y.
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Motivations (sorting problems)

General problem

Transform X into Y using as few operations as possible from S;
the length of an optimal sequence is the S-distance between X and Y.

Applications arise in:
@ computational biology:
® X and Y are genomes, S = mutations;
® solution = evolutionary scenario between X and Y
® interconnection networks:

® Cayley graph generated by S = network N;
® X and Y are nodes in N,
® solution = shortest routing path between X and Y;



Motivations (prefix constraints)

Additional restrictions are sometimes placed on operations to simplify the
underlying problems or to obtain a “better” structure.
Example (Ss: exchanges — prefix exchanges)

V = permutations of {1,2,...,n}
E = {{m,o} s.t. 3(i,j) : 7(i.)) = 0}
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unrestricted | n! @) nl(3)/2 n—1




Motivations (prefix constraints)

Additional restrictions are sometimes placed on operations to simplify the
underlying problems or to obtain a “better” structure.
Example (S;: exchanges — prefix exchanges)

V = permutations of {1,2,...,n}
E={{m 0} s.t. 3(1,)): 7(1)) = 0}

variant | |V| degree |E]| diameter
unrestricted | n! () nl(3)/2 n—1
prefix nl n—1 nl(n=1)/2 [3(n—1)/2]




Motivations (block-interchanges)

Block-interchanges swap any two nonintersecting intervals:

Example (sorting by block-interchanges)

mr=71[45[3[2]6 - 7/[123456]+1234567

“unrestricted” “prefix”

® Sorting by (unrestricted) block-interchanges is easy;
® Sorting by prefix block-interchanges is:

® NP-hard for strings [Cho+14];
® open for permutations;

® Block-interchanges generalise a few other operations;



Current state of knowledge and context

The complexity of sorting problems on permutations is
well-understood . ..

Operation Unrestricted Prefix-constrained
signed reversal in P

reversal NP-hard

double cut-and-join NP-hard

signed double cut-and-join in P

exchange in P

block-transposition NP-hard

block-interchange in P

(see paper for references)

(You might know sorting by (signed) prefix reversals as (burnt) pancake
flipping.)



Current state of knowledge and context

The complexity of sorting problems on permutations is

well-understood ... except in the prefix setting.

Operation Unrestricted Prefix-constrained
signed reversal in P open

reversal NP-hard NP-hard

double cut-and-join NP-hard open

signed double cut-and-join in P open

exchange in P in P
block-transposition NP-hard open
block-interchange in P open

(see paper for references)

(You might know sorting by (signed) prefix reversals as (burnt) pancake
flipping.)
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Results

@ We give a 2-approximation algorithm for sorting by prefix
block-interchanges;

® We show how to obtain tighter lower and upper bounds;

© We prove that the diameter (i.e. the maximum value the
distance can reach) is |2n/3]); (see paper)
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The breakpoint graph G(7) [HP99]

Given a permutation 7 in S,:

Example (form=71453206)
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The breakpoint graph G(7) [HP99]

Given a permutation 7 in S,:
@ 7 — (mh_4,mh;) = (2w — 1,2m;);

Example (form=71453206)
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The breakpoint graph G(7) [HP99]

Given a permutation 7 in S,:
@ 7 — (mh_4,mh;) = (2w — 1,2m;);
@® add 1y =0 and 75, ; =2n+ 1,

Example (form=71453206)
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The breakpoint graph G(7) [HP99]
Given a permutation 7 in S,:
@ 7 — (mh_4,mh;) = (2w — 1,2m;);
@® add 1y =0 and 75, ; =2n+ 1,
© black edges: {m;, 75, 1 }; (consecutive positions)

Example (form=7145326)

O OD O] Q) ) QD) Qo) Qe

0 13 14 1 2 7 8 9 10 5 6 3 4 11 12 15
7 1 4 5 3 2 6
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The breakpoint graph G(7) [HP99]
Given a permutation 7 in S,:
@ 7 — (mh_4,mh;) = (2w — 1,2m;);
@® add 1y =0 and 75, ; =2n+ 1,
© black edges: {m;, 75, 1 }; (consecutive positions)
(4] edges: {2i,2i +1}; (consecutive values)

Example (form=7145326)

O D ) QD) ) D) Qo) )

0 13 14 1 2 7 8 9 10 5 6 3 4 11 12 15
7 1 4 5 3 2 6
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The breakpoint graph G(7) [HP99]
Given a permutation 7 in S,:
@ 7 — (mh_4,mh;) = (2w — 1,2m;);
@® add 1y =0 and 75, ; =2n+ 1,
© black edges: {m;, 75, 1 }; (consecutive positions)
(4] edges: {2i,2i +1}; (consecutive values)

Example (form=7145326)

O D ) QD) ) D) Qo) )

0 13 14 1 2 7 8 9 10 5 6 3 4 11 12 15
7 1 4 5 3 2 6

G(7) is a collection of alternating cycles;
® Jength of cycle = number of black edges;

® goal: obtain only trivial (= length 1) cycles (see next slide);



(Prefix) Block-interchanges

® The block-interchange (i, j, k,¢) swaps intervals [i---j — 1]
and [k---¢ — 1] in permutation 7 (1<i<j<k<t<n+1);
e If i =1, then [ is a prefix block-interchange (pbi for short);

® Goal: sort w using as few pbis as possible;

Example (form=7145326)

) ) ) Q) ) ) ) )

0 13 14 1 2 7 8 9 10 5 6 3 4 11 12 15
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(Prefix) Block-interchanges

® The block-interchange (i, j, k,¢) swaps intervals [i---j — 1]
and [k---¢ — 1] in permutation 7 (1<i<j<k<t<n+1);
e If i =1, then [ is a prefix block-interchange (pbi for short);

® Goal: sort w using as few pbis as possible;

Example (form=7145326)

0 13 14 1 2 7 8 9 10 5 6 3 4 11 12| 15
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(Prefix) Block-interchanges

® The block-interchange (i, j, k,¢) swaps intervals [i---j — 1]
and [k---¢ — 1] in permutation 7 (1<i<j<k<t<n+1);
e If i =1, then [ is a prefix block-interchange (pbi for short);

® Goal: sort w using as few pbis as possible;

Example (form=7145326)

) O ) Q) ) ) ) Q)

0 1 2 7 8 9 10 5 6 3 4 11 12 13 14 15
1 4 5 3 2 6 7
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(Prefix) Block-interchanges

® The block-interchange (i, j, k,¢) swaps intervals [i---j — 1]
and [k---¢ — 1] in permutation 7 (1<i<j<k<t<n+1);
e If i =1, then [ is a prefix block-interchange (pbi for short);

® Goal: sort w using as few pbis as possible;

Example (form=7145326)

O==ret=O Oy OO OO Ommret=0 Omtré=0 OO OO

0 1 2 7 8 9 10 5 6 3 4 11 12 13 14 15
1 4 5 3 2 6 7
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(Prefix) Block-interchanges

® The block-interchange (i, j, k,¢) swaps intervals [i---j — 1]
and [k---¢ — 1] in permutation 7 (1<i<j<k<t<n+1);
e If i =1, then [ is a prefix block-interchange (pbi for short);

® Goal: sort w using as few pbis as possible;

Example (form=7145326)

) ) ) ) ) ) ) Q)

0 3 4 5 6 1 2 7 8 9 10 11 12 13 14 15
2 3 1 4 5 6 7
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(Prefix) Block-interchanges

® The block-interchange (i, j, k,¢) swaps intervals [i---j — 1]
and [k---¢ — 1] in permutation 7 (1<i<j<k<t<n+1);
e If i =1, then [ is a prefix block-interchange (pbi for short);

® Goal: sort w using as few pbis as possible;

Example (form=7145326)

ey mY OO O=iet=0 Omtré=0 OO OO OO OO
3 6 7 8 9 10 11 12 13 14 15
2 3 1 4 5 6 7
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(Prefix) Block-interchanges

® The block-interchange (i, j, k,¢) swaps intervals [i---j — 1]
and [k---¢ — 1] in permutation 7 (1<i<j<k<t<n+1);
e If i =1, then [ is a prefix block-interchange (pbi for short);

® Goal: sort w using as few pbis as possible;

Example (form=7145326)

) ) —") O—) —() ) ) Q)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 3 4 5 6 7

This shows that the prefix block-interchange distance of
(pbid(m)) is at most 3.
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A first upper bound

We use the following function:

gy = "] —|—2C(G(7T))

- a(6(m) - {

0 ifm =1,

1 otherwise.

75



A first upper bound

We use the following function:

n+1+c(G(r))

g(ﬂ): > —Cl(G(TF))—{ 0 if7r1=1,

1 otherwise.

Our algorithm proves the following:

Theorem
For any 7 in S, we have pbid(m) < g(r). J
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A first upper bound

We use the following function:

n+1+c(G(r))

g(ﬂ): > —Cl(G(TF))—{ 0 if’f['l:l?

1 otherwise.

Our algorithm proves the following:
Theorem

For any 7 in S, we have pbid(m) < g(r).

We assume 71 # 1 (otherwise we simply move the longest sorted
prefix 1 2 --- k of m right before k + 1).

Remarks:
® Computations are easy but omitted lest the audience fall asleep;

® g(m) is a lower bound on two other prefix distances;
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The approximation algorithm: the case where 7 # 1
Lemma ([HP99])

Every grey edge in a nontrivial cycle intersects another grey edge.

|

28



The approximation algorithm: the case where m; # 1
Lemma ([HP99])

Every grey edge in a nontrivial cycle intersects another grey edge.

We distinguish between “outer” grey edges and “inner” grey edges:

oo} Q) Q) O

outer grey edge inner grey edge
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The approximation algorithm: the case where m; # 1
Lemma ([HP99])

Every grey edge in a nontrivial cycle intersects another grey edge.

We distinguish between “outer” grey edges and “inner” grey edges:

oo} Q) Q) O

outer grey edge inner grey edge

... because some grey edges are only intersected by outer grey
edges.

Example

inner

outer outer

o—, ) S —) )
0 7 8 1 2 9 10 3 4 11 12 5 6 13




The approximation algorithm: the case where 7 # 1

Proof (pbid(m) < g()).

By the previous lemma, the first grey edge {1./} intersects a grey
edge {/. k};
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The approximation algorithm: the case where 7 # 1

Proof (pbid(m) < g()).

By the previous lemma, the first grey edge {1./} intersects a grey
edge {/. k};

@ if {/. Kk} isinner, apply B(1,1,J, k):
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The approximation algorithm: the case where m; # 1

Proof (pbid(m) < g()).

By the previous lemma, the first grey edge {1./} intersects a grey
edge {/. k};

@ if {/. Kk} isinner, apply B(1,1,J, k):

—> OO Om—0 Om—0 O
1°® =jf i a f e d B b« h

{ k} is outer with j < k, apply (1,1, J, k):

=0 > OO O [e==="3) O
afg e < il ejf gl a f g d e b« h
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The approximation algorithm: the case where m; # 1

Proof (pbid(m) < g()).
By the previous lemma, the first grey edge {1./} intersects a grey
edge {/. k};

@ if {/. Kk} isinner, apply B(1,1,J, k):

> Ommmm0 =) Qe OO

Al o® < il =jf i a f e d e b

@ if {/. k| is outer with j < k, apply 5(1,1,/, k):

=0 > OO O [e==="3) O
alq b < il cjf & gkl a f g d e b c h

© otherwise {/, k| is outer with j = k; apply 5(1,1,1, k):

_?fﬁ s ety om0 oo
al b ¢ fd e |Ff a d e b < f
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The approximation algorithm: the case where m; # 1

Proof (pbid(m) < g()).
By the previous lemma, the first grey edge {1, )} intersects a grey
edge {/. k};

@ if {/. Kk} isinner, apply B(1,1,J, k):

—> OO Om—0 Om—0 O
Al o® e |4 el f i a f e d e b«

! J

@ if {/. k| is outer with j < k, apply 5(1,1,/, k):

=0 > OO O [e==="3) O
alq b < il cjf & gkl a f g d e b c h

© otherwise {/, k} is outer with j = k; apply 8(1,1/,1, k):
s Ky

_?fﬁ s ety om0 oo
al b ¢ fd e |Ff a d e b < f

Each choice yields g(73) — g(m) < —1 (details omitted), so

pbid(m) < g(m). O

2K



Lower bounding pbid (outline)
We bound pbid using the following framework [Lab13]:

e G(m) is itself a permutation (which we write 7);
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Lower bounding pbid (outline)

We bound pbid using the following framework [Lab13]:
e G(m) is itself a permutation (which we write 7);

® the mapping 7 — 73 translates to 7 — 7(5)";
e the image of a pbi 3 is 5(1,], k, ) = (j, £)(1, k);
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Lower bounding pbid (outline)

We bound pbid using the following framework [Lab13]:

e G(m) is itself a permutation (which we write 7);

® the mapping 7 — 73 translates to 7 — 7(5)";

e the image of a pbi 5 is 3(1,/, k,¢) = (j, £)(1, k);

Theorem
For all m € S, we have pbid(m) > g(m)/2.

Proof idea.

.. and therefore the approximation has ratio 2.
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Lower bounding pbid (outline)

We bound pbid using the following framework [Lab13]:
e G(m) is itself a permutation (which we write 7);

® the mapping 7 — 73 translates to 7 — 7(5)";
e the image of a pbi 3 is 3(1,, k, /) = (j,¢)(1, k);

Theorem
For all m € S, we have pbid(m) > g(m)/2.

Proof idea.

® Every sequence of pbis for 7 yields a sequence of special pairs of 2-cycles
for T = pbid(w) > “special distance” (7).

. and therefore the approximation has ratio 2.
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Lower bounding pbid (outline)

We bound pbid using the following framework [Lab13]:
e G(m) is itself a permutation (which we write 7);

® the mapping 7 — 73 translates to 7 — 7(5)";
e the image of a pbi 3 is 3(1,, k, /) = (j,¢)(1, k);

Theorem
For all m € S, we have pbid(m) > g(m)/2.

Proof idea.

® Every sequence of pbis for 7 yields a sequence of special pairs of 2-cycles
for T = pbid(w) > “special distance” (7).

® For every pbi 3, we have g(nf8) — g(7) = g(nf8) — g(m) > —2;

.. and therefore the approximation has ratio 2.
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Lower bounding pbid (outline)

We bound pbid using the following framework [Lab13]:
e G(m) is itself a permutation (which we write 7);

® the mapping 7 — 73 translates to 7 — 7(5)";
e the image of a pbi 3 is 3(1,, k, /) = (j,¢)(1, k);

Theorem
For all m € S, we have pbid(m) > g(m)/2.

Proof idea.

® Every sequence of pbis for 7 yields a sequence of special pairs of 2-cycles
for T = pbid(w) > “special distance” (7).

® For every pbi 3, we have g(nf8) — g(7) = g(nf8) — g(m) > —2;
® Therefore: pbid(w) > “special distance” (7) > g(m)/2.

. and therefore the approximation has ratio 2.

pilp,



A provably better upper bound using “short” cycles

Recall that we can always decrease g(-) by one. A more involved
analysis of the proof (and additional ideas) yields:
Proposition

If G(m) contains a “nonleftmost” 2-cycle, then there is a pbi that
decreases g(m) by 2.

473



A provably better upper bound using “short” cycles

Recall that we can always decrease g(-) by one. A more involved
analysis of the proof (and additional ideas) yields:
Proposition

If G(m) contains a “nonleftmost” 2-cycle, then there is a pbi that
decreases g(m) by 2.

Letting c2(G(r)) denote the number of such 2-cycles, we get:
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A provably better upper bound using “short” cycles

Recall that we can always decrease g(-) by one. A more involved
analysis of the proof (and additional ideas) yields:
Proposition

If G(m) contains a “nonleftmost” 2-cycle, then there is a pbi that
decreases g(m) by 2.

Letting c2(G(r)) denote the number of such 2-cycles, we get:

Theorem
For any 7 in S,, we have pbid(r) < g(r) — [¢J(G(x))/2]. J
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A provably better upper bound using “short” cycles

Recall that we can always decrease g(-) by one. A more involved
analysis of the proof (and additional ideas) yields:

Proposition

If G(m) contains a “nonleftmost” 2-cycle, then there is a pbi that
decreases g(m) by 2.

Letting c2(G(r)) denote the number of such 2-cycles, we get:

Theorem
For any 7 in S,, we have pbid(r) < g(r) — [¢J(G(x))/2]. J

The "/2" part stems from the fact that exploiting a 2-cycle
sometimes leads to “destroying” another 2-cycle.
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A probably better lower bound using “components”

A component of G(r) is a connected component of the
intersection graph of its nontrivial cycles.

Example (form=71453206)

o I o e R e T e T S Y o S B o e e e ®)

0 13 14 1 2 7 8 9 10 5 6 3 4 1 12 15
7 1 4 5 3 2 6
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A probably better lower bound using “components”

A component of G(r) is a connected component of the
intersection graph of its nontrivial cycles.

Example (form=71453206)
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A probably better lower bound using “components”

A component of G(r) is a connected component of the
intersection graph of its nontrivial cycles.

Example (form=71453206)

0 13 14 1 2 7 8 9 10 5 6 3 4 1 12 15
7 1 4 5 3 2 6

® Pbis are restricted block-interchanges, so pbid(w) > bid(r);
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A probably better lower bound using “components”

A component of G(r) is a connected component of the
intersection graph of its nontrivial cycles.

Example (form=71453206)

0 13 14 1 2 7 8 9 10 5 6 3 4 1 12 15
7 1 4 5 3 2 6

® Pbis are restricted block-interchanges, so pbid(w) > bid(r);

® The number of components (=CC(G(x))) will help improve
on this trivial result;
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A probably better lower bound

Theorem

ifﬂ'l = 1,

For any m in S,, we have pbid(m) > bid(w) + CC(G(~w)) — { (1) otherwise

Proof idea.

Example
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A probably better lower bound

Theorem

For any m in S,, we have pbid(m) > bid(w) + CC(G(~w)) — { (1) ifm =1,

otherwise.

Proof idea.

® Merging components does not “help” = sort each of them separately;

G G
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A probably better lower bound

Theorem

For any m in S,, we have pbid(m) > bid(7) + CC(G(w)) — { (1) ifm =1,

otherwise.

Proof idea.
® Merging components does not “help” = sort each of them separately;

® Sorting each component separately cannot be achieved with less than
bid(7) operations;
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A probably better lower bound

Theorem

For any m in S,, we have pbid(m) > bid(7) + CC(G(w)) — { (1) ifm =1,

otherwise.

Proof idea.
® Merging components does not “help” = sort each of them separately;
® Sorting each component separately cannot be achieved with less than
bid(m) operations;
® “Accessing” each component except the leftmost one requires an
additional operation.

Example

G

KA



Future work

Complexity?

Can an approximation ratio lower than 2 be achieved?

Can tighter bounds be obtained?

Impacts of results on sorting strings by pbis?

Thanks!

Questions?
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