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Motivations (sorting problems)

General problem

Transform X into Y using as few operations as possible from S ;
the length of an optimal sequence is the S-distance between X and Y .

Applications arise in:

1 computational biology:

• X and Y are genomes, S = mutations;
• solution = evolutionary scenario between X and Y ;

2 interconnection networks:

• Cayley graph generated by S = network N;
• X and Y are nodes in N;
• solution = shortest routing path between X and Y ;
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Motivations (prefix constraints)
Additional restrictions are sometimes placed on operations to simplify the
underlying problems or to obtain a “better” structure.

Example (S4: exchanges 7→ prefix exchanges)

V = permutations of {1, 2, . . . , n}
E = {{π, σ} s.t. ∃(i , j) : π(i , j) = σ}

1 2 3 4 2 1 3 4

4 1 3 2

1 4 3 22 4 3 1

4 2 3 1

3 2 1 42 3 1 4 1 3 2 43 1 2 4

4 1 2 3

2 1 4 3

3 1 4 2

1 3 4 2

4 3 1 2

3 4 1 22 4 1 31 4 2 33 4 2 1

4 3 2 1

2 3 4 1

3 2 4 1

1 2 4 3

4 2 1 3

variant |V | degree |E | diameter

unrestricted n!
(
n
2

)
n!
(
n
2

)
/2 n − 1

prefix n! n − 1 n!(n − 1)/2 b3(n − 1)/2c
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Motivations (block-interchanges)

Block-interchanges swap any two nonintersecting intervals:

Example (sorting by block-interchanges)

π = 7 1 4 5 3 2 6 → 7 1 2 3 4 5 6 → 1 2 3 4 5 6 7

“unrestricted” “prefix”

• Sorting by (unrestricted) block-interchanges is easy;
• Sorting by prefix block-interchanges is:

• NP-hard for strings [Cho+14];
• open for permutations;

• Block-interchanges generalise a few other operations;
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Current state of knowledge and context

The complexity of sorting problems on permutations is
well-understood . . .

except in the prefix setting

.

Operation Unrestricted Prefix-constrained

signed reversal in P

open

reversal NP-hard

NP-hard

double cut-and-join NP-hard

open

signed double cut-and-join in P

open

exchange in P

in P

block-transposition NP-hard

open

block-interchange in P

open

(see paper for references)

(You might know sorting by (signed) prefix reversals as (burnt) pancake
flipping.)
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Results

1 We give a 2-approximation algorithm for sorting by prefix
block-interchanges;

2 We show how to obtain tighter lower and upper bounds;

3 We prove that the diameter (i.e. the maximum value the
distance can reach) is b2n/3c); (see paper)
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The breakpoint graph G (π) [HP99]
Given a permutation π in Sn:

1 πi 7→ (π′2i−1, π
′
2i ) = (2πi − 1, 2πi );

2 add π′0 = 0 and π′2n+1 = 2n + 1;

3 black edges: {π′2i , π′2i+1}; (consecutive positions)

4 grey edges: {2i , 2i + 1}; (consecutive values)

Example (for π = 7 1 4 5 3 2 6)

13 14 1 2 7 8 9 10 5 6 3 4 11 120 15

7 1 4 5 3 2 6

G (π) is a collection of alternating cycles;

• length of cycle = number of black edges;

• goal: obtain only trivial (= length 1) cycles (see next slide);

12



The breakpoint graph G (π) [HP99]
Given a permutation π in Sn:

1 πi 7→ (π′2i−1, π
′
2i ) = (2πi − 1, 2πi );

2 add π′0 = 0 and π′2n+1 = 2n + 1;

3 black edges: {π′2i , π′2i+1}; (consecutive positions)

4 grey edges: {2i , 2i + 1}; (consecutive values)

Example (for π = 7 1 4 5 3 2 6)

13 14 1 2 7 8 9 10 5 6 3 4 11 12

0 15

7 1 4 5 3 2 6

G (π) is a collection of alternating cycles;

• length of cycle = number of black edges;

• goal: obtain only trivial (= length 1) cycles (see next slide);

13



The breakpoint graph G (π) [HP99]
Given a permutation π in Sn:

1 πi 7→ (π′2i−1, π
′
2i ) = (2πi − 1, 2πi );

2 add π′0 = 0 and π′2n+1 = 2n + 1;

3 black edges: {π′2i , π′2i+1}; (consecutive positions)

4 grey edges: {2i , 2i + 1}; (consecutive values)

Example (for π = 7 1 4 5 3 2 6)

13 14 1 2 7 8 9 10 5 6 3 4 11 120 15

7 1 4 5 3 2 6

G (π) is a collection of alternating cycles;

• length of cycle = number of black edges;

• goal: obtain only trivial (= length 1) cycles (see next slide);

14



The breakpoint graph G (π) [HP99]
Given a permutation π in Sn:

1 πi 7→ (π′2i−1, π
′
2i ) = (2πi − 1, 2πi );

2 add π′0 = 0 and π′2n+1 = 2n + 1;

3 black edges: {π′2i , π′2i+1}; (consecutive positions)

4 grey edges: {2i , 2i + 1}; (consecutive values)

Example (for π = 7 1 4 5 3 2 6)

13 14 1 2 7 8 9 10 5 6 3 4 11 120 15

7 1 4 5 3 2 6

G (π) is a collection of alternating cycles;

• length of cycle = number of black edges;

• goal: obtain only trivial (= length 1) cycles (see next slide);

15



The breakpoint graph G (π) [HP99]
Given a permutation π in Sn:

1 πi 7→ (π′2i−1, π
′
2i ) = (2πi − 1, 2πi );

2 add π′0 = 0 and π′2n+1 = 2n + 1;

3 black edges: {π′2i , π′2i+1}; (consecutive positions)

4 grey edges: {2i , 2i + 1}; (consecutive values)

Example (for π = 7 1 4 5 3 2 6)

13 14 1 2 7 8 9 10 5 6 3 4 11 120 15

7 1 4 5 3 2 6

G (π) is a collection of alternating cycles;

• length of cycle = number of black edges;

• goal: obtain only trivial (= length 1) cycles (see next slide);

16



The breakpoint graph G (π) [HP99]
Given a permutation π in Sn:

1 πi 7→ (π′2i−1, π
′
2i ) = (2πi − 1, 2πi );

2 add π′0 = 0 and π′2n+1 = 2n + 1;

3 black edges: {π′2i , π′2i+1}; (consecutive positions)

4 grey edges: {2i , 2i + 1}; (consecutive values)

Example (for π = 7 1 4 5 3 2 6)

13 14 1 2 7 8 9 10 5 6 3 4 11 120 15

7 1 4 5 3 2 6

G (π) is a collection of alternating cycles;

• length of cycle = number of black edges;

• goal: obtain only trivial (= length 1) cycles (see next slide);
17



(Prefix) Block-interchanges

• The block-interchange β(i , j , k , `) swaps intervals [i · · · j − 1]
and [k · · · `− 1] in permutation π (1 ≤ i < j ≤ k < ` ≤ n + 1);

• If i = 1, then β is a prefix block-interchange (pbi for short);

• Goal: sort π using as few pbis as possible;

Example (for π = 7 1 4 5 3 2 6)

13 14 1 2 7 8 9 10 5 6 3 4 11 120 15

7 1 4 5 3 2 6

1 2 7 8 9 10 5 6 3 4 11 12 13 140 15

1 4 5 3 2 6 7

3 4 5 6 1 2 7 8 9 10 11 12 13 140 15

2 3 1 4 5 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 140 15

1 2 3 4 5 6 7

This shows that the prefix block-interchange distance of π
(pbid(π)) is at most 3.
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A first upper bound

We use the following function:

g(π) =
n + 1 + c(G (π))

2
− c1(G (π))−

{
0 if π1 = 1,
1 otherwise.

Our algorithm proves the following:

Theorem

For any π in Sn, we have pbid(π) ≤ g(π).

We assume π1 6= 1 (otherwise we simply move the longest sorted
prefix 1 2 · · · k of π right before k + 1).

Remarks:

• Computations are easy but omitted lest the audience fall asleep;

• g(π) is a lower bound on two other prefix distances;
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The approximation algorithm: the case where π1 6= 1

Lemma ([HP99])

Every grey edge in a nontrivial cycle intersects another grey edge.

We distinguish between “outer” grey edges and “inner” grey edges:

outer grey edge inner grey edge

... because some grey edges are only intersected by outer grey
edges.

Example

0 7 8 1 2 9 10 3 4 11 12 5 6 13

outer

inner

outer

4 1 5 2 6 3
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The approximation algorithm: the case where π1 6= 1

Proof (pbid(π) ≤ g(π)).

By the previous lemma, the first grey edge {1, j} intersects a grey
edge {i , k};

1 if {i , k} is inner, apply β(1, i , j , k):

1 i j ka b c d e f g h a f g d e b c h

2 if {i , k} is outer with j < k , apply β(1, i , j , k):

1 i j ka b c d e f g h a f g d e b c h

3 otherwise {i , k} is outer with j = k ; apply β(1, i , i , k):

a b c d e f a d e b c f

Each choice yields g(πβ)− g(π) ≤ −1 (details omitted), so
pbid(π) ≤ g(π).
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Lower bounding pbid (outline)

We bound pbid using the following framework [Lab13]:

• G (π) is itself a permutation (which we write π);

• the mapping π 7→ πβ translates to π 7→ π(β)π;

• the image of a pbi β is β(1, j , k, `) = (j , `)(1, k);

Theorem

For all π ∈ Sn, we have pbid(π) ≥ g(π)/2.

Proof idea.

• Every sequence of pbis for π yields a sequence of special pairs of 2-cycles
for π ⇒ pbid(π) ≥ “special distance”(π).

• For every pbi β, we have g(πβ)− g(π) = g(πβ)− g(π) ≥ −2;

• Therefore: pbid(π) ≥ “special distance”(π) ≥ g(π)/2.

... and therefore the approximation has ratio 2.
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Lower bounding pbid (outline)

We bound pbid using the following framework [Lab13]:

• G (π) is itself a permutation (which we write π);

• the mapping π 7→ πβ translates to π 7→ π(β)π;

• the image of a pbi β is β(1, j , k, `) = (j , `)(1, k);

Theorem

For all π ∈ Sn, we have pbid(π) ≥ g(π)/2.

Proof idea.
• Every sequence of pbis for π yields a sequence of special pairs of 2-cycles

for π ⇒ pbid(π) ≥ “special distance”(π).

• For every pbi β, we have g(πβ)− g(π) = g(πβ)− g(π) ≥ −2;

• Therefore: pbid(π) ≥ “special distance”(π) ≥ g(π)/2.

... and therefore the approximation has ratio 2.
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A provably better upper bound using “short” cycles

Recall that we can always decrease g(·) by one. A more involved
analysis of the proof (and additional ideas) yields:

Proposition

If G (π) contains a “nonleftmost” 2-cycle, then there is a pbi that
decreases g(π) by 2.

Letting c∅2 (G (π)) denote the number of such 2-cycles, we get:

Theorem

For any π in Sn, we have pbid(π) ≤ g(π)− dc∅2 (G (π))/2e.

The “/2” part stems from the fact that exploiting a 2-cycle
sometimes leads to “destroying” another 2-cycle.
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A provably better upper bound using “short” cycles
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A probably better lower bound using “components”

A component of G (π) is a connected component of the
intersection graph of its nontrivial cycles.

Example (for π = 7 1 4 5 3 2 6)

13 14 1 2 7 8 9 10 5 6 3 4 11 120 15

7 1 4 5 3 2 6

13 14 1 2 7 8 9 10 5 6 3 4 11 120 15

7 1 4 5 3 2 6

C1

C2

• Pbis are restricted block-interchanges, so pbid(π) ≥ bid(π);

• The number of components (=CC (G (π))) will help improve
on this trivial result;
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A probably better lower bound

Theorem

For any π in Sn, we have pbid(π) ≥ bid(π) + CC(G(π))−
{

0 if π1 = 1,
1 otherwise.

Proof idea.

• Merging components does not “help” ⇒ sort each of them separately;

• Sorting each component separately cannot be achieved with less than
bid(π) operations;

• “Accessing” each component except the leftmost one requires an
additional operation.

Example

0 5 6 3 4 1 2 7 8 13 14 11 12 9 10 15

3 2 1 4 7 6 5

0 1 2 3 4 5 6 7 8 13 14 11 12 9 10 15

1 2 3 4 7 6 5

C1 C2
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A probably better lower bound
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Future work

• Complexity?

• Can an approximation ratio lower than 2 be achieved?

• Can tighter bounds be obtained?

• Impacts of results on sorting strings by pbis?

Thanks!
Questions?
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