Solving the Tree Containment Problem for Genetically Stable Networks in Quadratic Time

Philippe Gambette Andreas D. M. Gunawan **Anthony Labarre** Stéphane Vialette Louxin Zhang

International Workshop on Combinatorial Algorithms

October 6th, 2015

Context and motivations

- Phylogenetic trees are routinely used to represent evolution, but they cannot display exchanges of genetic material between species;
- ▶ When these happen, we rely on **phylogenetic networks** instead;

We still need to verify that the network "contains" a prescribed set of trees to ensure consistency with previous biological knowledge;

A **phylogenetic network** is a rooted DAG with a labelled leaf set $\{\ell_1, \ell_2, \dots, \ell_k\}$.

A **phylogenetic network** is a rooted DAG with a labelled leaf set $\{\ell_1, \ell_2, \dots, \ell_k\}$.

A **phylogenetic network** is a rooted DAG with a labelled leaf set $\{\ell_1, \ell_2, \dots, \ell_k\}$.

A **phylogenetic network** is a rooted DAG with a labelled leaf set $\{\ell_1, \ell_2, \dots, \ell_k\}$.

A **phylogenetic network** is a rooted DAG with a labelled leaf set $\{\ell_1, \ell_2, \dots, \ell_k\}$.

Tree subdivisions

A **subdivision** of a tree T is a tree T' obtained by inserting any number of vertices into the edges of T.

Example (a tree and a subdivision)

Network N displays tree T if we can obtain a subdivision of T by removing incoming edges from reticulations and "dummy leaves".

Network N displays tree T if we can obtain a subdivision of T by removing incoming edges from reticulations and "dummy leaves".

Network N displays tree T if we can obtain a subdivision of T by removing incoming edges from reticulations and "dummy leaves".

Network N displays tree T if we can obtain a subdivision of T by removing incoming edges from reticulations and "dummy leaves".

Problem (TREE CONTAINMENT)

Input: a phylogenetic network N, a phylogenetic tree T.

Question: does N display T?

TREE CONTAINMENT prior to this work

 $({\tt adapted\ from\ http://phylnet.univ-mlv.fr/isiphync\ by\ Philippe\ Gambette})$

Our contributions

- 1. genetically stable (GS) networks;
- 2. inclusion relations w.r.t. other classes;
- TREE CONTAINMENT in P for GS networks;

 $A \rightarrow B$ class A contains class B solvable in polynomial time in P by class inclusion NP-complete

(adapted from http://phylnet.univ-mlv.fr/isiphync by Philippe Gambette)

A node v in a network N is **stable on a leaf** ℓ if every path from the root to ℓ contains v.

A node v in a network N is **stable on a leaf** ℓ if every path from the root to ℓ contains v. A network N is **genetically stable** if every reticulation has a stable parent (on any leaf).

A node v in a network N is **stable on a leaf** ℓ if every path from the root to ℓ contains v. A network N is **genetically stable** if every reticulation has a stable parent (on any leaf).

A GS network

a, b, c stable on ℓ_2 d stable on ℓ_4

A node v in a network N is **stable on a leaf** ℓ if every path from the root to ℓ contains v. A network N is **genetically stable** if every reticulation has a stable parent (on any leaf).

A GS network

a, b, c stable on ℓ_2 d stable on ℓ_4

A non-GS network

 ℓ_2 can be reached through either a or b no other leaf "needs" a or b

Overview of the algorithm

The subtree induced by two sibling leaves ℓ , ℓ' and their parent α in a tree is called a **cherry**, and is denoted by $\{\alpha, \ell, \ell'\}$.

Overview of the algorithm

The subtree induced by two sibling leaves ℓ , ℓ' and their parent α in a tree is called a **cherry**, and is denoted by $\{\alpha, \ell, \ell'\}$.

Algorithm for TREE CONTAINMENT in GS networks

- 1. Select a cherry $C = \{\alpha, \ell, \ell'\}$ in T;
- 2. If there is no **match** for *C* in *N*, report NO;
- 3. Otherwise, **remove** the match from N and C from T;
- 4. If T is now a single node, report YES, otherwise go back to 1;

Matches and removals are such that N displays T if and only if N' displays T'.

Matching cherries: stability helps

Stability narrows down choices for matching α , (α, ℓ_1) and (α, ℓ_2) in N:

Lemma (1)

If N displays T through some subdivision T', then α must be matched to a node p such that:

- 1. ℓ_1 and ℓ_2 are the only leaves on which p can be stable;
- 2. ℓ_1 is the only leaf on which vertices in $P_1 \setminus \{p\}$ can be stable;
- 3. ℓ_2 is the only leaf on which vertices in $P_2 \setminus \{p\}$ can be stable.

Matching cherries: genetic stability helps

Lemma (1) allows us to focus on **specific** paths, i.e. paths P from x to ℓ such that each vertex in $P \setminus \{x\}$ is either stable only on ℓ or not stable at all. What if several choices exist?

Lemma (2)

If N is genetically stable and contains vertices x and y connected to leaves ℓ_1 and ℓ_2 through specific paths that only intersect at x (resp. y), then either $y \in P_1 \cup P_2$ or $x \in Q_1 \cup Q_2$.

Modifying N and T when N is genetically stable

Lemma (2) allows us to restrict our search to the lowest common ancestor p of ℓ_1 and ℓ_2 such that paths $p \rightsquigarrow \ell_1$ and $p \rightsquigarrow \ell_2$ in N are specific.

Lemma (3)

If p, P_1 and P_2 match α , (α, ℓ_1) and (α, ℓ_2) in a GS network N, then N displays T if and only if $N \setminus P_1 \setminus P_2$ displays $T \setminus \{\ell_1, \ell_2\}$.

Finding a match for α , (α, ℓ_1) and (α, ℓ_2) in N

1. Move up from ℓ_1 until we find a lowest common ancestor of ℓ_1 and ℓ_2 connected to ℓ_2 by a path free of nodes stable on other leaves;

2. Move up from ℓ_2 to w_1 while remaining in a specific path to ℓ_2 ;

3. If we succeed, we obtain two specific paths to ℓ_1 and ℓ_2 in N;

Correctness and running time

The previous lemmas prove the correctness of the algorithm.

Algorithm for TREE CONTAINMENT in GS networks

- 1. Select a cherry $C = \{\alpha, \ell, \ell'\}$ in T;
- 2. If there is no **match** for *C* in *N*, report NO;
- 3. Otherwise, **remove** the match from N and C from T;
- 4. If T is now a single node, report YES, otherwise go back to 1;

The running time is dominated by checking stability, which implies a running time of $O(|V| \cdot (|E| + |V|)) = O(|L|^2)$ where |L| is the number of leaves of N.

Relevance of GS networks

A fair amount of real-world networks could be genetically stable:

Recombination rates of the coalescent model with recombination

Future work

- Major open problem: complexity for reticulation-visible networks;
- Refine hardness results:
- Improve the complexity for tractable cases;