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Context and motivations

I Phylogenetic trees are routinely used to represent evolution, but
they cannot display exchanges of genetic material between species;

I When these happen, we rely on phylogenetic networks instead;

Example (tree)

(from Wikimedia)

Example (network)

(from The Genealogical World of Phylogenetic Networks)

I We still need to verify that the network “contains” a prescribed set
of trees to ensure consistency with previous biological knowledge;

https://commons.wikimedia.org/wiki/File:Phylogenetic_tree.svg
http://phylonetworks.blogspot.fr/2013/10/what-are-evolutionary-networks.html


Phylogenetic networks and related concepts

A phylogenetic network is a rooted DAG with a labelled leaf set
{`1, `2, . . . , `k}.

`1 `2

`3

`4

`5

I root: indegree 0;

I tree nodes: indegree 1, outdegree 2;

I reticulations: indegree 2, outdegree 1;

I leaves: outdegree 0;

We only consider binary networks and trees, i.e. all internal nodes
have degree three.
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Tree subdivisions

A subdivision of a tree T is a tree T ′ obtained by inserting any
number of vertices into the edges of T .

Example (a tree and a subdivision)

`1 `2 `3 `4 `5 `1 `2 `3 `4 `5

T T ′



The tree containment problem

Network N displays tree T if we can obtain a subdivision of T by
removing incoming edges from reticulations and “dummy leaves”.

`1

`2 `5

`3 `4

`1

`2 `5

`3 `4

`1 `2 `3 `4 `5

remove edges contract paths

Problem (tree containment)

Input: a phylogenetic network N, a phylogenetic tree T .
Question: does N display T?
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tree containment prior to this work
A → B class A contains class B

solvable in polynomial time
in P by class inclusion
NP-complete

phylogenetic tree
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genetically stable

(adapted from http://phylnet.univ-mlv.fr/isiphync by Philippe Gambette)

http://phylnet.univ-mlv.fr/isiphync


Our contributions

1. genetically stable (GS) networks;
2. inclusion relations w.r.t. other classes;
3. tree containment in P for GS networks;

A → B class A contains class B
solvable in polynomial time
in P by class inclusion
NP-complete
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(adapted from http://phylnet.univ-mlv.fr/isiphync by Philippe Gambette)
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Genetically stable networks
A node v in a network N is stable on a leaf ` if every path from the
root to ` contains v .

A network N is genetically stable if every
reticulation has a stable parent (on any leaf).

A GS network

`1
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a

b

c

d

a, b, c stable on `2
d stable on `4

A non-GS network

`1

`2 `5

`3 `4

a b

`2 can be reached through either a or
b

no other leaf “needs” a or b
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Overview of the algorithm

The subtree induced by two
sibling leaves `, `′ and their
parent α in a tree is called
a cherry, and is denoted by
{α, `, `′}.

`1 `2 `3 `4 `5

Algorithm for tree containment in GS networks

1. Select a cherry C = {α, `, `′} in T ;

2. If there is no match for C in N, report no;

3. Otherwise, remove the match from N and C from T ;

4. If T is now a single node, report yes, otherwise go back to 1;

Matches and removals are such that N displays T if and only if N ′

displays T ′.
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Matching cherries: stability helps

Stability narrows down choices for matching α, (α, `1) and (α, `2) in N:

α

`1 `2

T : N :

`1 `2

p

P1 P2

Lemma (1)

If N displays T through some subdivision T ′, then α must be matched to
a node p such that:

1. `1 and `2 are the only leaves on which p can be stable;

2. `1 is the only leaf on which vertices in P1 \ {p} can be stable;

3. `2 is the only leaf on which vertices in P2 \ {p} can be stable.



Matching cherries: genetic stability helps
Lemma (1) allows us to focus on specific paths, i.e. paths P from
x to ` such that each vertex in P \ {x} is either stable only on ` or
not stable at all. What if several choices exist?

`1 `2

x y

P1

P2 Q1

Q2

Lemma (2)

If N is genetically stable and contains vertices x and y connected
to leaves `1 and `2 through specific paths that only intersect at x
(resp. y), then either y ∈ P1 ∪ P2 or x ∈ Q1 ∪ Q2.



Modifying N and T when N is genetically stable

Lemma (2) allows us to restrict our search to the lowest common
ancestor p of `1 and `2 such that paths p  `1 and p  `2 in N
are specific.

α

`1 `2

T : N :

`1 `2

p

P1 P2

Lemma (3)

If p, P1 and P2 match α, (α, `1) and (α, `2) in a GS network N,
then N displays T if and only if N \ P1 \ P2 displays T \ {`1, `2}.



Finding a match for α, (α, `1) and (α, `2) in N

1. Move up from `1 until we find a lowest common ancestor of `1 and
`2 connected to `2 by a path free of nodes stable on other leaves;

α

`1 `2

T : N :

`1 `2

w1

2. Move up from `2 to w1 while remaining in a specific path to `2;

α

`1 `2

T : N :

`1 `2

w1

w2

3. If we succeed, we obtain two specific paths to `1 and `2 in N;



Correctness and running time

The previous lemmas prove the correctness of the algorithm.

Algorithm for tree containment in GS networks

1. Select a cherry C = {α, `, `′} in T ;

2. If there is no match for C in N, report no;

3. Otherwise, remove the match from N and C from T ;

4. If T is now a single node, report yes, otherwise go back to 1;

The running time is dominated by checking stability, which implies
a running time of O(|V | · (|E |+ |V |)) = O(|L|2) where |L| is the
number of leaves of N.



Relevance of GS networks

A fair amount of real-world networks could be genetically stable:



Future work
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I Major open problem: complexity for reticulation-visible networks;

I Refine hardness results;

I Improve the complexity for tractable cases;
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