
Solving the Tree Containment Problem for
Genetically Stable Networks in Quadratic Time

Philippe Gambette Andreas D. M. Gunawan Anthony Labarre
Stéphane Vialette Louxin Zhang

International Workshop on Combinatorial Algorithms

October 6th, 2015

Context and motivations

I Phylogenetic trees are routinely used to represent evolution, but
they cannot display exchanges of genetic material between species;

I When these happen, we rely on phylogenetic networks instead;

Example (tree)

(from Wikimedia)

Example (network)

(from The Genealogical World of Phylogenetic Networks)

I We still need to verify that the network “contains” a prescribed set
of trees to ensure consistency with previous biological knowledge;

https://commons.wikimedia.org/wiki/File:Phylogenetic_tree.svg
http://phylonetworks.blogspot.fr/2013/10/what-are-evolutionary-networks.html

Phylogenetic networks and related concepts

A phylogenetic network is a rooted DAG with a labelled leaf set
{`1, `2, . . . , `k}.

`1 `2

`3

`4

`5

I root: indegree 0;

I tree nodes: indegree 1, outdegree 2;

I reticulations: indegree 2, outdegree 1;

I leaves: outdegree 0;

We only consider binary networks and trees, i.e. all internal nodes
have degree three.

Phylogenetic networks and related concepts

A phylogenetic network is a rooted DAG with a labelled leaf set
{`1, `2, . . . , `k}.

`1 `2

`3

`4

`5

I root: indegree 0;

I tree nodes: indegree 1, outdegree 2;

I reticulations: indegree 2, outdegree 1;

I leaves: outdegree 0;

We only consider binary networks and trees, i.e. all internal nodes
have degree three.

Phylogenetic networks and related concepts

A phylogenetic network is a rooted DAG with a labelled leaf set
{`1, `2, . . . , `k}.

`1 `2

`3

`4

`5

I root: indegree 0;

I tree nodes: indegree 1, outdegree 2;

I reticulations: indegree 2, outdegree 1;

I leaves: outdegree 0;

We only consider binary networks and trees, i.e. all internal nodes
have degree three.

Phylogenetic networks and related concepts

A phylogenetic network is a rooted DAG with a labelled leaf set
{`1, `2, . . . , `k}.

`1 `2

`3

`4

`5

I root: indegree 0;

I tree nodes: indegree 1, outdegree 2;

I reticulations: indegree 2, outdegree 1;

I leaves: outdegree 0;

We only consider binary networks and trees, i.e. all internal nodes
have degree three.

Phylogenetic networks and related concepts

A phylogenetic network is a rooted DAG with a labelled leaf set
{`1, `2, . . . , `k}.

`1 `2

`3

`4

`5

I root: indegree 0;

I tree nodes: indegree 1, outdegree 2;

I reticulations: indegree 2, outdegree 1;

I leaves: outdegree 0;

We only consider binary networks and trees, i.e. all internal nodes
have degree three.

Tree subdivisions

A subdivision of a tree T is a tree T ′ obtained by inserting any
number of vertices into the edges of T .

Example (a tree and a subdivision)

`1 `2 `3 `4 `5 `1 `2 `3 `4 `5

T T ′

The tree containment problem

Network N displays tree T if we can obtain a subdivision of T by
removing incoming edges from reticulations and “dummy leaves”.

`1

`2 `5

`3 `4

`1

`2 `5

`3 `4

`1 `2 `3 `4 `5

remove edges contract paths

Problem (tree containment)

Input: a phylogenetic network N, a phylogenetic tree T .
Question: does N display T?

The tree containment problem

Network N displays tree T if we can obtain a subdivision of T by
removing incoming edges from reticulations and “dummy leaves”.

`1

`2 `5

`3 `4

`1

`2 `5

`3 `4

`1 `2 `3 `4 `5

remove edges contract paths

Problem (tree containment)

Input: a phylogenetic network N, a phylogenetic tree T .
Question: does N display T?

The tree containment problem

Network N displays tree T if we can obtain a subdivision of T by
removing incoming edges from reticulations and “dummy leaves”.

`1

`2 `5

`3 `4

`1

`2 `5

`3 `4

`1 `2 `3 `4 `5

remove edges contract paths

Problem (tree containment)

Input: a phylogenetic network N, a phylogenetic tree T .
Question: does N display T?

The tree containment problem

Network N displays tree T if we can obtain a subdivision of T by
removing incoming edges from reticulations and “dummy leaves”.

`1

`2 `5

`3 `4

`1

`2 `5

`3 `4

`1 `2 `3 `4 `5

remove edges contract paths

Problem (tree containment)

Input: a phylogenetic network N, a phylogenetic tree T .
Question: does N display T?

tree containment prior to this work
A → B class A contains class B

solvable in polynomial time
in P by class inclusion
NP-complete

phylogenetic tree

level-k

nested

galled network

k-nested

3-nested

tree-child

binary

genetically stable

galled tree

tree-based

distinct-cluster

reticulation-visible

tree-siblingspread-k

level-3

normal

nearly tree-child

time-consistent

regular

level-2

compressed

unicyclic

spread-2

spread-3

spread-1

FU-stable

2-nested

nearly stable

leaf outerplanar

genetically stable

(adapted from http://phylnet.univ-mlv.fr/isiphync by Philippe Gambette)

http://phylnet.univ-mlv.fr/isiphync

Our contributions

1. genetically stable (GS) networks;
2. inclusion relations w.r.t. other classes;
3. tree containment in P for GS networks;

A → B class A contains class B
solvable in polynomial time
in P by class inclusion
NP-complete

phylogenetic tree

level-k

nested

galled network

k-nested

3-nested

tree-child

binary

genetically stable

galled tree

tree-based

distinct-cluster

reticulation-visible

tree-siblingspread-k

level-3

normal

nearly tree-child

time-consistent

regular

level-2

compressed

unicyclic

spread-2

spread-3

spread-1

FU-stable

2-nested

nearly stable

leaf outerplanar

(adapted from http://phylnet.univ-mlv.fr/isiphync by Philippe Gambette)

http://phylnet.univ-mlv.fr/isiphync

Genetically stable networks
A node v in a network N is stable on a leaf ` if every path from the
root to ` contains v .

A network N is genetically stable if every
reticulation has a stable parent (on any leaf).

A GS network

`1

`2

`3 `4

a

b

c

d

a, b, c stable on `2
d stable on `4

A non-GS network

`1

`2 `5

`3 `4

a b

`2 can be reached through either a or
b

no other leaf “needs” a or b

Genetically stable networks
A node v in a network N is stable on a leaf ` if every path from the
root to ` contains v . A network N is genetically stable if every
reticulation has a stable parent (on any leaf).

A GS network

`1

`2

`3 `4

a

b

c

d

a, b, c stable on `2
d stable on `4

A non-GS network

`1

`2 `5

`3 `4

a b

`2 can be reached through either a or
b

no other leaf “needs” a or b

Genetically stable networks
A node v in a network N is stable on a leaf ` if every path from the
root to ` contains v . A network N is genetically stable if every
reticulation has a stable parent (on any leaf).

A GS network

`1

`2

`3 `4

a

b

c

d

a, b, c stable on `2
d stable on `4

A non-GS network

`1

`2 `5

`3 `4

a b

`2 can be reached through either a or
b

no other leaf “needs” a or b

Genetically stable networks
A node v in a network N is stable on a leaf ` if every path from the
root to ` contains v . A network N is genetically stable if every
reticulation has a stable parent (on any leaf).

A GS network

`1

`2

`3 `4

a

b

c

d

a, b, c stable on `2
d stable on `4

A non-GS network

`1

`2 `5

`3 `4

a b

`2 can be reached through either a or
b

no other leaf “needs” a or b

Overview of the algorithm

The subtree induced by two
sibling leaves `, `′ and their
parent α in a tree is called
a cherry, and is denoted by
{α, `, `′}.

`1 `2 `3 `4 `5

Algorithm for tree containment in GS networks

1. Select a cherry C = {α, `, `′} in T ;

2. If there is no match for C in N, report no;

3. Otherwise, remove the match from N and C from T ;

4. If T is now a single node, report yes, otherwise go back to 1;

Matches and removals are such that N displays T if and only if N ′

displays T ′.

Overview of the algorithm

The subtree induced by two
sibling leaves `, `′ and their
parent α in a tree is called
a cherry, and is denoted by
{α, `, `′}.

`1 `2 `3 `4 `5

Algorithm for tree containment in GS networks

1. Select a cherry C = {α, `, `′} in T ;

2. If there is no match for C in N, report no;

3. Otherwise, remove the match from N and C from T ;

4. If T is now a single node, report yes, otherwise go back to 1;

Matches and removals are such that N displays T if and only if N ′

displays T ′.

Matching cherries: stability helps

Stability narrows down choices for matching α, (α, `1) and (α, `2) in N:

α

`1 `2

T : N :

`1 `2

p

P1 P2

Lemma (1)

If N displays T through some subdivision T ′, then α must be matched to
a node p such that:

1. `1 and `2 are the only leaves on which p can be stable;

2. `1 is the only leaf on which vertices in P1 \ {p} can be stable;

3. `2 is the only leaf on which vertices in P2 \ {p} can be stable.

Matching cherries: genetic stability helps
Lemma (1) allows us to focus on specific paths, i.e. paths P from
x to ` such that each vertex in P \ {x} is either stable only on ` or
not stable at all. What if several choices exist?

`1 `2

x y

P1

P2 Q1

Q2

Lemma (2)

If N is genetically stable and contains vertices x and y connected
to leaves `1 and `2 through specific paths that only intersect at x
(resp. y), then either y ∈ P1 ∪ P2 or x ∈ Q1 ∪ Q2.

Modifying N and T when N is genetically stable

Lemma (2) allows us to restrict our search to the lowest common
ancestor p of `1 and `2 such that paths p `1 and p `2 in N
are specific.

α

`1 `2

T : N :

`1 `2

p

P1 P2

Lemma (3)

If p, P1 and P2 match α, (α, `1) and (α, `2) in a GS network N,
then N displays T if and only if N \ P1 \ P2 displays T \ {`1, `2}.

Finding a match for α, (α, `1) and (α, `2) in N

1. Move up from `1 until we find a lowest common ancestor of `1 and
`2 connected to `2 by a path free of nodes stable on other leaves;

α

`1 `2

T : N :

`1 `2

w1

2. Move up from `2 to w1 while remaining in a specific path to `2;

α

`1 `2

T : N :

`1 `2

w1

w2

3. If we succeed, we obtain two specific paths to `1 and `2 in N;

Correctness and running time

The previous lemmas prove the correctness of the algorithm.

Algorithm for tree containment in GS networks

1. Select a cherry C = {α, `, `′} in T ;

2. If there is no match for C in N, report no;

3. Otherwise, remove the match from N and C from T ;

4. If T is now a single node, report yes, otherwise go back to 1;

The running time is dominated by checking stability, which implies
a running time of O(|V | · (|E |+ |V |)) = O(|L|2) where |L| is the
number of leaves of N.

Relevance of GS networks

A fair amount of real-world networks could be genetically stable:

Future work

phylogenetic tree

level-k

nested

galled network

k-nested

3-nested

tree-child

binary

genetically stable

galled tree

tree-based

distinct-cluster

reticulation-visible

tree-siblingspread-k

level-3

normal

nearly tree-child

time-consistent

regular

level-2

compressed

unicyclic

spread-2

spread-3

spread-1

FU-stable

2-nested

nearly stable

leaf outerplanar

I Major open problem: complexity for reticulation-visible networks;

I Refine hardness results;

I Improve the complexity for tractable cases;

	Context and motivations
	Problem statement
	Solution
	Future work

